Project 2
Comparing Coverage

Andrzej Wasylkowski

Grading

Project |
Project 2
Project 3
Project 4
Oral Exam

Your Task

® Obtain coverage information

® Compare coverage information to detect
anomalies

® middle.py
® XMLProc

® |mplement an advanced method

Obtaining Coverage

|. Set the tracing function
2. Invoke the program to be analyzed

3. Output coverage information

Setting the Trace
Function

def tracefunc (frame, event, arg):
if event == "line":
get the location
filename = frame.f_code.co_filename
line = frame.f_lineno

make sure this is a program file
if not filename.startswith (call_dir):
return tracefunc

obtain the relative filename
filename = filename[len (call_dir):]

IMPLEMENT: add to data structure

return tracefunc

Invoking the Program
to Be Analyzed

get the directory, where the tool was invoked
call_dir = os.path.abspath (sys.path[@])
if call_dir[-1] !'= os.sep:

call_dir = call_dir + os.sep

set the environment

sys.path[@] = os.path.abspath (os.path.dirname (program_to_analyze))
import __main__

sys.setrace (tracefunc)

invoke the program
try:

execfile (os.path.abspath (program_to_analyze), __main__.__dict__)
finally:

output the coverage obtained

Input & Output

® Your tool must be called get_coverage.py
and be runnable as follows:

$ python get_coverage.py OUTPUT_FILE PROGRAM [ARGS]

® Output lines that were executed

® Omit lines not belonging to the program

Obtaining Coverage:
Example |

$ python get_coverage.py middle.cov middle.py 2 1 3

Obtaining Coverage:
Example |

$ python get_coverage.py middle.cov middle.py 2 1 3
middle: 1
$

Obtaining Coverage:

Example |

$ python get_coverage.py middle.cov middle.py 2 1 3

middle:

1

$ cat middle.cov

Obtaining Coverage:

Example |

$ python get_coverage.py middle.cov middle.py 2 1 3

middle:

1

$ cat middle.cov

middle.
middle.
middle.
middle.
middle.
middle.
middle.

py:10
py:11
py:18
py:20
py:21
py:22
Y28,

Obtaining Coverage:
Example 2

$ python get_coverage.py xmlproc.cov xmlproc/xpcmd.py input.xml

Obtaining Coverage:
Example 2

$ python get_coverage.py xmlproc.cov xmlproc/xpcmd.py input.xml
xmlproc version 0.70

Parsing 'input.xml'

Parse complete, @ error(s) and @ warning(s)

$

Obtaining Coverage:
Example 2

$ python get_coverage.py xmlproc.cov xmlproc/xpcmd.py input.xml
xmlproc version 0.70

Parsing 'input.xml'
Parse complete, @ error(s) and @ warning(s)
$ cat xmlproc.cov

Obtaining Coverage:
Example 2

$ python get_coverage.py xmlproc.cov xmlproc/xpcmd.py input.xml
xmlproc version 0.70

Parsing 'input.xml'
Parse complete, @ error(s) and @ warning(s)
$ cat xmlproc.cov

xmlproc/outputters.py:58
xmlproc/outputters.py:6
xmlproc/xml/__init__.py:1
xmlproc/xml/parsers/__init__.py:1
xmlproc/xml/parsers/xmlproc/__init__.py:1
xmlproc/xml/parsers/xmlproc/charconv.py:103
xmlproc/xml/parsers/xmlproc/charconv.py:105

Comparing Coverage

|. Read the coverage data

2. Compare the coverage of passing and
failing runs

3. Output the coverage comparison

4. (Optional) Output graphical coverage
comparison

Input & Output

® Your tool must be called diff_coverage.py
and be runnable as follows:

$ python diff_coverage.py PASSING_SET FAILING_SET OUTPUT_FILE

® PASSING_SET contains names of passing
runs coverage files

® FAILING_SET contains names of failing
runs coverage files

Plain Output
Comparison

* Present information in a plain file

* Percentage of test cases that covered this
line (out of all test cases)

* Percentage of failing test cases that
covered this line (out of those test cases
that covered this line)

Plain Output
Comparison: Example

* 5 test cases (3 passing, 2 failing)

* Line covered by 2 test cases (| passing, |
failing):
* 2/5 test cases covered the line = 40%

e |/2 test cases that covered the line
were failing = 50%

Comparing Coverage:
Example |

$ cat middle_p.txt
middle_pl.cov
middle_p2.cov
middle_p3.cov
$ cat middle_f.txt
middle_f1.cov
middle_f2.cov

Comparing Coverage:
Example |

$ python diff_coverage.py middle_p.txt middle_f.txt diff.txt

Comparing Coverage:
Example |

$ python diff_coverage.py middle_p.txt middle_f.txt diff.txt
$ cat diff.txt

Comparing Coverage:
Example |

$ python diff_coverage.py middle_p.txt middle_f.txt diff.txt
$ cat diff.txt
middle.py:10 : 60% / 66%
middle.py:11 : 60% / 66%
middle.py:13 : 20% / 0%
middle.py:14 : 20% / 0%
middle.py:18 : 100% / 40%
middle.py:20 : 100% / 40%
middle.py:21 : 100% / 40%
middle.py:22 : 100% / 40%
mddle.py:23 : 100% / 4% <«__ That many test cases that

T many test cases covered this line were failing

covered this line

Graphical Output
Comparison (1)

® Output a file coverage.html

® Use hue and brightness to highlight lines,
in the style of the Tarantula tool

® hue(s) = red hue + %passed(s) /
(%passed(s) + %failed(s)) * hue range

® bright(s) = max (%passed(s), %failed(s))

Graphical Output
Comparison (2)

® Red hue=0

® Hue range = 0.33 for colors in the range
from red to green

® Use Python’s colorsys package and the
hsv_to_rgb function (with |.0 saturation
and bright as the v parameter)

Graphical Output
Comparison (3)

® Qutput each source line as a separate
HTML line, appropriately colored
(or gray, if never executed)

® Remember to escape special HTML
characters

® Python’s cgi module has an escape
function

Graphical Output
Comparison: example

middle.py

Test Data

Apply your tools to two programs
® The middle program shown in the lecture
® The XMLProc parser from Project |

Where does coverage information point to
as the reasons for the failures?

The middle Program

You do not need to create unit tests
Contrast the failing run with the passing runs
Passing runs

® (1,2,3),(24,1),(3,2,1),(3,3,5),(5,3,4),(5,5,5)
Failing run

* (2,1,3)

The XMLProc Parser

The XMLdata archive contains passing and
failing test input files

When parsed, the failing files issue warnings
and errors

For each of the three failing inputs,
demonstrate how their coverage differs
from the coverage of passing inputs

Implementing an
Advanced Method

® Nearest Neighbour
Renieris and Reiss, “Fault Localization with
Nearest Neighbour Queries” (ASE 2002)

® Call / Location Sequences
Dallmeier, Lindig, and Zeller, “Lightweight
Defect Localization for Java” (ECOOP 2005)

Nearest Neighbour

® Extend your get coverage.py tool:

$ python diff_coverage.py -nn PASSING_SET FAILING_SET OUTPUT_FILE

® Qutput the nearest passing run
® |f many are nearest, output the first one

® |s this technique more effective?

Nearest Neighbour:
Example |

$ cat middle_p.txt
middle_pl.cov
middle_p2.cov
middle_p3.cov

$ cat middle_f1.txt
middle_f1l.cov

Nearest Neighbour:
Example |

$ python diff_coverage.py -nn middle_p.txt middle_f1l.txt diff.txt

Nearest Neighbour:
Example |

$ python diff_coverage.py -nn middle_p.txt middle_f1l.txt diff.txt
Nearest passing run: middle_p2.cov

Nearest Neighbour:
Example |

$ python diff_coverage.py -nn middle_p.txt middle_f1l.txt diff.txt
Nearest passing run: middle_p2.cov
$ cat diff.txt

Nearest Neighbour:
Example |

$ python diff_coverage.py -nn middle_p.txt middle_f1l.txt diff.txt
Nearest passing run: middle_p2.cov

$ cat diff.txt

middle.py:10 : 50% / 100%

middle.py:11 : 50% / 100%

middle.py:18 : 100% / 50%

middle.py:20 : 100% / 50%

middle.py:21 : 100% / 50%

middle.py:22 : 100% / 50%

middle.py:23 : 100% / 50%

Remember: compare only two runs

Call / Location
Sequences

® Add two new tools

® Collect sequences of locations / calls

$ python get_sequences.py [-stmtl-call] WINDOW_SIZE
OUTPUT_FILE PROGRAM [ARGS]

® Output sequences from the failing run only

$ python diff_sequences.py
PASSING_SEQS FAILING_SEQS OUTPUT_FILE

® | ook into the handout for details on format

Project Grading

Obtaining Coverage
Comparing Coverage

Graphical Coverage Comparison
Nearest Neighbour
Call / Location Sequences

Submission

® 2008-12-19 23:59

® Send .zip archive to:
wasylkowski@st.cs.uni-sb.de

® Subject should start with [Project 2]
® |nput and output exactly as prescribed

® Source code should be documented

