4,

. Observing Facts
/’ Andreas Zeller

F—

Reasoning about Runs

Induction
n runs
Observation
| run

Deduction
0 runs

Reasoning about Runs

Observation
| run

Deduction
0 runs

Principles of
Observation

Don’t interfere.
Know what and when to observe.

Proceed systematically.

Logging execution

General idea: Insert output statements at
specific places in the program

Also known as printf debugging

Printf Problems

Clobbered code

Clobbered output

Slow down

Possible loss of data (due to buffering)

Demonstrate
technique, using
sample program

Better Logging

Use standard formats
Make logging optional
Allow for variable granularity

Be persistent

Logging Functions

® Have specific functions for logging
(e.g. dprintf() to print to a specific logging
channel)

® Have specific macros that can be turned on
or offfor focusing as well as for production
code

Logging Frameworks

® Past: home-grown logging facilities

® Future: standard libraries for logging

® Example:The LOGFOR| framework

Again, demonstrate
the use of LOG()
interactively

The core idea of LOGFORJ is to
assign each class in an
LOGFO RJ application an
individual or common logger. A
// Initialize a logger. |Ogger |S a Component Wthh
final ULogger logger = ! takes a request for logging and
LoggerFactory.getLogger(TestLogging.class); Iogs it. Each Iogger has a
i/ Try a few logging methods |eve|, from DEBUG over INFO,
public static void main(String args[1) { WARN, and ERROR to FATAL
logger.debug("Start of main()"); .
logger.info ("A log message with level set to INFO"); (Very |mportant messages).
logger.warn ("A log message with level set to WARN");

logger.error("A log message with level set to ERROR");
logger.fatal("A log message with level set to FATAL");

new TestLogging().init(Q);

The core idea of LOGFORJ is to
assign each class in an

CUStOmiZing Logs application an

individual or common logger. A
Set root logger level to DEBUG and its only appender to Al. Iogger is a component which
log4j.rootLogger=DEBUG, Al takes a request for logging and
logs it. Each logger has a
level, from DEBUG over INFO,
WARN, and ERROR to FATAL

Al _uses PatternLayout. ; (Very |mportant messages)
log4j.appender.Al.layout=org.apache.log4j.PatternLayout

log4j.appender.Al.layout.ConversionPattern=\
%d [%t] %-5p %c %x - %m¥n

Al is set to be a ConsoleAppender.
log4j.appender.Al=org.apache.log4j.ConsoleAppender

2005-02-06 20:47:31,508 [main] DEBUG Testlogging - Start of
main()

2005-02-06 20:47:31,529 [main] INFO TestlLogging - A log
message with level set to INFO

#_Chainsaw v2 - Log Viewer EEX [E EBIX]
File View Curenttsb Help D Start Tutorial
a® & 0% @x: o v olx 3
Welcome to the Chainsaw v2 Tutorial. Here you will
= A X | Refiers foeus ow | | 1eam how to effectively utilise the many features of
4 Root Logger | © | Timestomp Chainsaw.
Zlcom | 142_|2004-0512154302311 «
Tonl ; A C >) © / Expressions
st o Color fiters
145_|2004.05-1215:4303,3 -
146 _[2004.05-1215:43: i e in 4 visplay filters
147 200405121543 i\ read-1 &
200 3 e o 7
14 154303313 ¢
150_|2004. 1
151|204
183 154303313 o
124 154808513, will be shown like this
185 |2004.0 i pary.__ Thread wrnmag 154
| 155 Lootos1215430013 | X oom somectherco_iwesat ________feromsgiss |2
[¢ - Outline
LA several "pretend” Receiver
Level ERROR example LoggingEvents
Logger o hercompany corecomponent and post them into Logdj just e a real Receiver
Time 2004-05-12 154303313 .
e Thcad you would like to read more about
NS IS Receivers first, then click here. (TODO)
NDC ol
Class
[Method When you are ready to hegin the tutorial, click
'F“;" here, or click the "Start Tutorial"* button in this
{{hostname,localhost) { some string,some valueGenerator 3) (log4jid, 156} (application, Generator Solews el
Properts (P oot (e s 156) (application, Gener
java lang Exception: somesxcepti .
Throwable org apache logéj chainsaw. Receivers
java lang Thread run Thread java $34)
After you have said yes to the confirmation dialog,
you should see 3 new tabs appear in the main GUI
N[e rm—— Py Evrwmavrar T evrean This is because the tutorial has installed 3 ‘Generator’
2 Receivers into the Logdj engine. ‘I 2
Receiver's panel toise oo |[oos o o " v

Logging with Aspects

® Basic idea: Separate concerns into individual
syntactic entities (aspects)

® Aspect code (advice) is woven into the
program code at specific places (join points)

® The same aspect code can be woven into
multiple places (pointcuts)

A Logging Aspect

public aspect LogBuy {
pointcut buyMethod():
call(public void Article.buy());
before(): buyMethod() {
System.out.println("Entering Article.buy()")
ks
after(): buyMethod() {
System.out.println("Leaving Article.buy()")
}
$ ajc logBuy.aj Article.java

$ java Article

Using Pointcuts

public aspect LogArticle {
pointcut allMethods():
call(public * Article.*(..));
before(): allMethods() {
System.out.println("Entering

+ thisJoinPoint)
&
after(): allMethods() {
System.out.println("Leaving " + thisJoinPoint)
}
L

Aspect Arguments

public aspect LogMoves {
pointcut setP(Line a_line, Point p):
call(void a_line.setP*(p));

after(Line a_line, Point p): setP(a_line, p) {
System.out.printlnCa_line +
" moved to

n

L p aL ".");

Observation Tools

® Getting started fast — without altering the
program code at hand

® Flexible observation of arbitrary events

® Transient sessions — no code is written

Debuggers

® Execute the program and make it stop
under specific conditions

® Observe the state of the stopped program

® Change the state of the program

aﬁ vﬁ shebsor‘t(lnt apl, S) -
N, ¢ gglng ession
Lhtehs=ai
do {
IE=E i
} while (h <= size);
do {
i /= 33
for (i = h; 1 < size; i++)
{
int v = a[i];
for (j =1i; j>=h& % a[j - h] >v; j -=h)
aljl = al[j - hl;
@ I="9D
alil = v;

1
} while ¢h !'= 1);

More Features

Control environment
Post mortem debugging
Logging data

Fix and continue

More on Breakpoints

® Data breakpoints (watchpoints)

® Conditional breakpoints

Show this
interactively with GDB
or DDD

Demonstrate
watchpoints and
conditionals
interactively

Debugger Caveats

® A debugger is a tool, not a toy!

F2RR DDD: /public/source/programming/ddd-3.2/ddd/cxxtest.C
File Edit View Program Commands Status Source Data

2 DX
Help|

OF t~seF[

e

value = 86
self = Ox80:
next = 0x80

next

Tist=>next = new List{a_global + start+);
Tist—>next—>next = new List(a_global + start++);
Tist—>next—>next—>next = Tlist;

@ (void) Tisks // Display this

17 Test £ DD Tip of the Day #5
void Tis

P delete 19stlCLISt ") 0x804dFE0 [step | Stepi
Bl i

Until | Finish |

X

Tist If you made a mistake, try Edit—Undo. This will undo the most oo
recent debugger command and redisplay the previous program state. =

fo |
bun

void ref
€

ga%e Close Prev Tip Next Tip
ele
date==

3

qug% graph display *(1ist—>next—>next->self) dependent on 4
gdb) |

A list= (List *) 0x804dfs0

Concepts

* Logging functions ("printf debugging”) are
easy to use, but clobber code and output

* To encapsulate and reuse debugging code,
use dedicated logging functions or aspects

Again, demonstrate
DDD interactively

Concepts (2)

* Logging functions can be turned on or off
(and may even remain in the source code)

* Aspects elegantly keep all logging code in
one place

* Debuggers allow flexible + quick
observation of arbitrary events

Concepts (3)

* To observe the final state of a crashing
program, use a debugger

* Advanced debuggers allow to query events
in a declarative fashion...

* ...as well as visualizing events and data

