
Learning from Software
Andreas Zeller

Saarland University

Programming Environments

A Tool Set

The Future of Programming
Environments: Integration, Synergy, and
Assistance
Andreas Zeller, Saarland University

Modern programming environments
foster the integration of automated,
extensible, and reusable tools. New
tools can thus leverage the available
functionality and collect data from
program and process. The synergy of
both will allow to automate current
empirical approaches. This leads to
automated assistance in all
development decisions for programmers
and managers alike: “For this task, you
should collaborate with Joe, because it
will likely require risky work on the
ʻMailboxʼ class.”

Turbo Pascal - just
30K (Eclipse: 118 MB
- 4,000x as big)

Integration - Foto von
Werkstatt,
Werkzeugkiste

Tools evolve

Tools integrate

Tools work together

Tools evolve

But do these tools
work together?
Where is the whole
more than the sum of
its parts?

Tools can only work
together if they draw
on different artefacts

What are we working
on in SE - we are
constantly producing
and analyzing
artefacts: code,
specs, etc.

Tools work together

Learning from Software
Andreas Zeller

Saarland University

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Tools can only work
together if they draw
on different artefacts

What are we working
on in SE - we are
constantly producing
and analyzing
artefacts: code,
specs, etc.

Tools can only work
together if they draw
on different artefacts

What are we working
on in SE - we are
constantly producing
and analyzing
artefacts: code,
specs, etc.

Combining these sources will allow us to
get this “waterfall effect” – that is, being
submerged by data; having more data
than we could possibly digest.

Bugs Changes

Bugs Changes

Map bugs to
code locations

Eclipse BugsWhere do these bugs come from?

Such software archives are being
used in practice all the time. If you
file a bug, for instance, the report
is stored in a bug database, and
the resulting fix is stored in the
version archive.

These databases can then be
mined to extract interesting
information. From bugs and
changes, for instance, we can tell
how many bugs were fixed in a
particular location.

This is what you get when doing such a
mapping for eclipse. Each class is a
rectangle in here (the larger the
rectangle, the larger its code); the colors
tell the defect density – the brighter a
rectangle, the more defects were fixed
in here. Interesting question: Why are
come modules so much more defect-
prone than others? This is what has
kept us busy for years now.

Is it the Developers?

Does experience
matter?

Bug density
correlates with

experience!

Is it History?

I found lots of
bugs here. Will
there be more?

Yes! (But where
did these come

from?)

How about metrics?

Do code metrics
correlate with bug

density?
Sometimes!

Uh. Coverage?

Does test coverage
correlate with bug

density?

Yes –
 the more coverage,

 the more bugs!

Ah! Language features?

Are gotos
harmful?

No correlation!

Ok. Problem Domain?

Which tokens
do matter?

import • extends
• implements

Eclipse Imports

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all components importing ui
show a post-release defect

71% of all components importing compiler
show a post-release defect

Joint work with Adrian Schröter • Tom Zimmermann

Eclipse Imports

Correlation with failure

Correlation with success

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

Firefox vulnerabilities

The best hint so far what it is that
determines the defect-proneness is the
import structure of a module. In other
words: “What you eat determines what
you are” (i.e. more or less defect-prone).

 For instance, if your code is related to
compilers, it is much more defect-prone,
than, say, code related to user
interfaces.

nsIContent.h

nsIContentUtils.h

nsIScriptSecurityManager.h

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘✔

nsIPrivateDOMEvent.h

nsReadableUtils.h

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘
✘

Prediction Component Fact

1 nsDOMClassInfo 3

2 SGridRowLayout 95

3 xpcprivate 6

4 jsxml 2

5 nsGenericHTMLElement 8

6 jsgc 3

7 nsISEnvironment 12

8 jsfun 1

9 nsHTMLLabelElement 18

10 nsHttpTransaction 35

Bugs Changes

• contain full record of project history

• maintained via programming environments

• automatic maintenance and access

• freely accessible in open source projects

Software Archives

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Mining and Learning from Software

Predicting Code Quality
“These components have the highest chance to fail in production”

foo()

bar()x

y 1

Program Past Defect Density

This was just a simple example.
So, the most important aspect that
software archives give you is
automation. They are maintained
automatically (“The data comes to
you”), and they can be evaluated
automatically (“Instantaneous
results”). For researchers, there
are plenty open source archives
available, allowing us to test,
compare, and evaluate our tools.

Combining these sources will allow us to
get this “waterfall effect” – that is, being
submerged by data; having more data
than we could possibly digest.

Predicting Code Quality
“These components have the highest chance to fail in production”

Machine
Learner

Predicting Code Quality
“These components have the highest chance to fail in production”

Machine
Learner

foo()

bar()x

y 1

Locating Abnormal Behavior
“This execution is abnormal because it accesses a password file in ParseURL()”

Sequence
Learner

open() read() close() open() write() close()

open() read() close() open() read() write() close()

Locating Abnormal Behavior
“This execution is abnormal because it accesses a password file in ParseURL()”

Sequence
Learner

open() read() unlink()

Suggesting Related Code
“Module Z contains code which you may find useful”

foo()

bar()x

y 1

bar()

bar()

bar()

Suggesting Changes
“This test uses assert(); consider assertTrue() instead”

foo()

bar()x

y 1

foo()

baz()x

x 1

Suggesting Changes
“This test uses assert(); consider assertTrue() instead”

Machine
Learner

Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

public class Purse {
 final int MAX_BALANCE;
 int balance;
 //@ invariant 0 ≤ balance && balance ≤ MAX_BALANCE;

 byte[] pin;
 /*@ invariant pin != null && pin.length == 4 &&
 @ (\forall int i; 0 ≤ i && i < 4;
 @ 0 ≤ byte[i] && byte[i] ≤ 9)
 @*/

 /*@ requires amount ≥ 0;
 @ assignable balance;
 @ ensures balance == \old(balance) - amount &&
 @ \result == balance;
 @ signals (PurseException) balance == \old(balance);
 @*/
 int debit(int amount) throws PurseException { … }

Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

public class Purse {
 final int MAX_BALANCE;
 int balance;
 //@ invariant 0 ≤ balance && balance ≤ MAX_BALANCE;

 byte[] pin;
 /*@ invariant pin != null && pin.length == 4 &&
 @ (\forall int i; 0 ≤ i && i < 4;
 @ 0 ≤ byte[i] && byte[i] ≤ 9)
 @*/

 /*@ requires amount ≥ 0;
 @ assignable balance;
 @ ensures balance == \old(balance) - amount &&
 @ \result == balance;
 @ signals (PurseException) balance == \old(balance);
 @*/
 int debit(int amount) throws PurseException { … }

Banking
Purse • balance • PIN • debit…

Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

When retrieving money from an ATM,
the customer inserts his card and
enters a PIN (a 4-digit number) and the
amount to be retrieved…

Banking
Purse • balance • PIN • debit…

Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

When retrieving money from an ATM,
the customer inserts his card and
enters a PIN (a 4-digit number) and the
amount to be retrieved…

Banking
Purse • balance • PIN • debit…

foo()

bar()x

y 1

Program Past Effort

Predicting Effort and Risk
“This task will take n person hours because it involves scripting”

Effort

Predicting Effort and Risk
“This task will take n person hours because it involves scripting”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Where do
we get all
this data
from?

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Changes

Code

“People who changed function f()
 also changed…”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs Changes

Code Profiles

“Which modules
should I test most?”

This is the oldest example, referring to
work by Tom Zimmermann et al. at ICSE
2004 (and the work of Annie Ying et al.
at the same time): You change one
function – which others should be
changed? This is easy to mine drawing
on the change history and the code.

Defect density data as sketched before
can be used to decide where to test
most – of course, where the most
defects are. If one additionally takes
profiles (e.g. usage data) into account,
one can even allocate test efforts to
minimize the predicted potential damage
optimally.

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort

Code

“How long will it take
 to fix this bug?”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs Changes

Models

“Should I use
design A or B?”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs Changes Chatse-mail

Specs Code

“This requirement is
risky”

If one has effort data, one can tell how
long it takes to fix a bug. Cathrin Weiß
has a talk on this topic right after this
keynote.

If one knows which program features
correlate with which quality, one can use
this measure to make all kinds of
decisions. Correlating design with
failure probability will help making well-
founded design decisions. This is not to
say that managers canʼt do this right
now, but having accurate project data
available can certainly help assess the
risks.

Finally, a glimpse into the future, taking
natural language resources into
account. The idea is to associate specs
with (natural language) topics, and to
map these topics to source code. What
you then get is an idea of how specific
topics (or keywords) influence failure
probability, and this will allow you
making predictions for specific
requirements.

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Obtaining Data

Combining these sources will allow us to
get this “waterfall effect” – that is, being
submerged by data; having more data
than we could possibly digest.

The dirty story about this data is that it is
frequently collected manually. In fact,
the company phone book is among the
most important tools of an empirical
software engineering researchers. One
would phone one developer after the
other, and question them – say, “what
was your effort”, or “how often did you
test module ʻfooʼ?”, and tick in the
appropriate form. In other words, data
is scarce, and as it is being collected
from humans after the fact, is prone to
errors, and prone to bias.

Jazz.net

IBM Jazz Faculty Award
for

Mining Jazz data to assess
development processes

25,000$

Eclipse Bugs

Combining these sources will allow us to
get this “waterfall effect” – that is, being
submerged by data; having more data
than we could possibly digest.

This is what you get when doing such a
mapping for eclipse. Each class is a
rectangle in here (the larger the
rectangle, the larger its code); the colors
tell the defect density – the brighter a
rectangle, the more defects were fixed
in here. Interesting question: Why are
come modules so much more defect-
prone than others? This is what has
kept us busy for years now.

Studies

Rosenberg, L. and Hyatt, L. “Developing An Effective Metrics Program”
European Space Agency Software Assurance Symposium, Netherlands, March, 1996

Make this
Actionable!

Assistance

Future environments will

• mine patterns from program + process

• apply rules to make predictions

• provide assistance in all development decisions

• adapt advice to project history

Letʼs now talk about results. What
should our tools do? Should they come
up with nice reports, and curves like this
one?

Programming environments also are the
tools that allow us to collect, maintain,
and integrate all this project data. This
is where the waterfall becomes
imminent. In pair programming, you
have a navigator peering over your
shoulder, giving you advice whether
what you are doing is good or bad. We
want the environment peer over your
shoulder – as an automated
“developerʼs buddy”. Whatever we do
must stand the test of the developers
– if they accept it, it will be good
enough.

Empirical SE 2.0

Usability

Economy
Remixability

Participation

Collaboration Perpetual Beta

Trust

Wikis

Simplicity

Joy of Use

The Long Tail
DataDriven

Social SoftwareRecommendation

Challenges

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Program Data

Process Data

…and thus realizing the concept of
Empirical Software Engineering 2.0.
You will find traces of all these concepts
in my talk – from participation over
usability and remixability to, hopefully,
economic consequences.

In order to get there, we have plenty of
challenges to overcome.

To start with, half of the data is related to
programs, the other half to processes.
People analyzing programs are not
necessarily process experts, and vice
versa.

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Deductive Reasoning

Inductive Reasoning

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Also, we have huge differences in terms
of methods. For code and models, we
use deductive reasoning, predicting
what can happen in the concrete by
analyzing the abstraction. In the other
areas, it is the other way round: From
collected data, we build abstractions
that capture patterns and rules. These
two methods are hard to bring together.

In the past, all of this data has been
processed by individual researchers.
Each of these faces stands for an entire
community, sometimes encompassing
thousands of researchers.

Matt Dwyer - Daniel Jackson - Tom
Reps - Mike Ernst - Ben Liblit - Mary
Jean Harrold - Gail Murphy - Tom
Zimmermann - Cathrin Weiß - Rob
DeLine - Harald Gall - Prem Devanbu

And to bring the data together, we need
to bring together the researchers. What
better place could there be than ICSE or
this workshop for this purpose?

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Summary

And to bring the data together, we need
to bring together the researchers. What
better place could there be than ICSE or
this workshop for this purpose?

Combining these sources will allow us to
get this “waterfall effect” – that is, being
submerged by data; having more data
than we could possibly digest.

