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Modern programming environments 
foster the integration of automated, 
extensible, and reusable tools.  New 
tools can thus leverage the available 
functionality and collect data from 
program and process. The synergy of 
both will allow to automate current 
empirical approaches.  This leads to 
automated assistance in all 
development decisions for programmers 
and managers alike: “For this task, you 
should collaborate with Joe, because it 
will likely require risky work on the 
ʻMailboxʼ class.”

Turbo Pascal - just 
30K (Eclipse: 118 MB 
- 4,000x as big)

Integration - Foto von 
Werkstatt, 
Werkzeugkiste



Tools evolve

Tools integrate

Tools work together

Tools evolve

But do these tools 
work together?  
Where is the whole 
more than the sum of 
its parts?

Tools can only work 
together if they draw 
on different artefacts

What are we working 
on in SE - we are 
constantly producing 
and analyzing 
artefacts: code, 
specs, etc.
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Tools can only work 
together if they draw 
on different artefacts

What are we working 
on in SE - we are 
constantly producing 
and analyzing 
artefacts: code, 
specs, etc.

Tools can only work 
together if they draw 
on different artefacts

What are we working 
on in SE - we are 
constantly producing 
and analyzing 
artefacts: code, 
specs, etc.

Combining these sources will allow us to 
get this “waterfall effect” – that is, being 
submerged by data; having more data 
than we could possibly digest.



Bugs Changes

Bugs Changes

Map bugs to 
code locations

Eclipse BugsWhere do these bugs come from?

Such software archives are being 
used in practice all the time.  If you 
file a bug, for instance, the report 
is stored in a bug database, and 
the resulting fix is stored in the 
version archive.

These databases can then be 
mined to extract interesting 
information.  From bugs and 
changes, for instance, we can tell 
how many bugs were fixed in a 
particular location.

This is what you get when doing such a 
mapping for eclipse.  Each class is a 
rectangle in here (the larger the 
rectangle, the larger its code); the colors 
tell the defect density – the brighter a 
rectangle, the more defects were fixed 
in here.  Interesting question: Why are 
come modules so much more defect-
prone than others?  This is what has 
kept us busy for years now.



Is it the Developers?

Does experience 
matter?

Bug density 
correlates with 

experience!

Is it History?

I found lots of 
bugs here.  Will 
there be more?

Yes! (But where 
did these come 

from?)

How about metrics?

Do code metrics 
correlate with bug 

density?
Sometimes!



Uh. Coverage?

Does test coverage 
correlate with bug 

density?

Yes –
 the more coverage,

 the more bugs!

Ah! Language features?

Are gotos 
harmful?

No correlation!

Ok. Problem Domain?

Which tokens 
do matter?

import • extends 
• implements



Eclipse Imports

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all components importing ui
show a post-release defect

71% of all components importing compiler
show a post-release defect

Joint work with Adrian Schröter • Tom Zimmermann

Eclipse Imports

Correlation with failure

Correlation with success

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

Firefox vulnerabilities

The best hint so far what it is that 
determines the defect-proneness is the 
import structure of a module.  In other 
words: “What you eat determines what 
you are” (i.e. more or less defect-prone).

  For instance, if your code is related to 
compilers, it is much more defect-prone, 
than, say, code related to user 
interfaces. 
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Prediction Component Fact

1 nsDOMClassInfo 3

2 SGridRowLayout 95

3 xpcprivate 6

4 jsxml 2

5 nsGenericHTMLElement 8

6 jsgc 3

7 nsISEnvironment 12

8 jsfun 1

9 nsHTMLLabelElement 18

10 nsHttpTransaction 35



Bugs Changes

• contain full record of project history

• maintained via programming environments

• automatic maintenance and access

• freely accessible in open source projects

Software Archives
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Mining and Learning from Software

Predicting Code Quality
“These components have the highest chance to fail in production”

foo()

bar()x

y 1

Program Past Defect Density

This was just a simple example.  
So, the most important aspect that 
software archives give you is 
automation.  They are maintained 
automatically (“The data comes to 
you”), and they can be evaluated 
automatically (“Instantaneous 
results”).  For researchers, there 
are plenty open source archives 
available, allowing us to test, 
compare, and evaluate our tools.

Combining these sources will allow us to 
get this “waterfall effect” – that is, being 
submerged by data; having more data 
than we could possibly digest.



Predicting Code Quality
“These components have the highest chance to fail in production”

Machine
Learner

Predicting Code Quality
“These components have the highest chance to fail in production”

Machine
Learner

foo()

bar()x

y 1

Locating Abnormal Behavior
“This execution is abnormal because it accesses a password file in ParseURL()”

Sequence
Learner

open() read() close() open() write() close()

open() read() close() open() read() write() close()



Locating Abnormal Behavior
“This execution is abnormal because it accesses a password file in ParseURL()”

Sequence
Learner

open() read() unlink()

Suggesting Related Code
“Module Z contains code which you may find useful”

foo()

bar()x

y 1

bar()

bar()

bar()

Suggesting Changes
“This test uses assert(); consider assertTrue() instead”

foo()

bar()x

y 1

foo()

baz()x

x 1



Suggesting Changes
“This test uses assert(); consider assertTrue() instead”

Machine
Learner

Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

public class Purse {
  final int MAX_BALANCE;
  int balance;
  //@ invariant  0 ≤ balance && balance ≤ MAX_BALANCE;

  byte[] pin;
  /*@ invariant pin != null && pin.length == 4 &&
    @           (\forall int i; 0 ≤ i && i < 4;
    @                        0 ≤ byte[i] && byte[i] ≤ 9)
    @*/

  /*@ requires   amount ≥ 0;
    @ assignable balance;
    @ ensures    balance == \old(balance) - amount && 
    @            \result == balance;
    @ signals    (PurseException) balance == \old(balance);
    @*/
  int debit(int amount) throws PurseException { … }

Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

public class Purse {
  final int MAX_BALANCE;
  int balance;
  //@ invariant  0 ≤ balance && balance ≤ MAX_BALANCE;

  byte[] pin;
  /*@ invariant pin != null && pin.length == 4 &&
    @           (\forall int i; 0 ≤ i && i < 4;
    @                        0 ≤ byte[i] && byte[i] ≤ 9)
    @*/

  /*@ requires   amount ≥ 0;
    @ assignable balance;
    @ ensures    balance == \old(balance) - amount && 
    @            \result == balance;
    @ signals    (PurseException) balance == \old(balance);
    @*/
  int debit(int amount) throws PurseException { … }

Banking
Purse • balance • PIN • debit…



Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

When retrieving money from an ATM, 
the customer inserts his card and 
enters a PIN (a 4-digit number) and the 
amount to be retrieved…

Banking
Purse • balance • PIN • debit…

Linking Artifacts
“This workaround is due to our customer’s requirement from December 12”

When retrieving money from an ATM, 
the customer inserts his card and 
enters a PIN (a 4-digit number) and the 
amount to be retrieved…

Banking
Purse • balance • PIN • debit…

foo()

bar()x

y 1

Program Past Effort

Predicting Effort and Risk
“This task will take n person hours because it involves scripting”

Effort



Predicting Effort and Risk
“This task will take n person hours because it involves scripting”
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Where do 
we get all 
this data 
from?
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Changes

Code

“People who changed function f()
 also changed…”
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Bugs Changes

Code Profiles

“Which modules 
should I test most?”

This is the oldest example, referring to 
work by Tom Zimmermann et al. at ICSE 
2004 (and the work of Annie Ying et al. 
at the same time): You change one 
function – which others should be 
changed?  This is easy to mine drawing 
on the change history and the code.

Defect density data as sketched before 
can be used to decide where to test 
most – of course, where the most 
defects are.  If one additionally takes 
profiles (e.g. usage data) into account, 
one can even allocate test efforts to 
minimize the predicted potential damage 
optimally.
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Code

“How long will it take
 to fix this bug?”
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Bugs Changes

Models

“Should I use 
design A or B?”
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Specs Code

“This requirement is 
risky”

If one has effort data, one can tell how 
long it takes to fix a bug.  Cathrin Weiß 
has a talk on this topic right after this 
keynote.

If one knows which program features 
correlate with which quality, one can use 
this measure to make all kinds of 
decisions.  Correlating design with 
failure probability will help making well-
founded design decisions.  This is not to 
say that managers canʼt do this right 
now, but having accurate project data 
available can certainly help assess the 
risks.

Finally, a glimpse into the future, taking 
natural language resources into 
account.  The idea is to associate specs 
with (natural language) topics, and to 
map these topics to source code.  What 
you then get is an idea of how specific 
topics (or keywords) influence failure 
probability, and this will allow you 
making predictions for specific 
requirements.
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Obtaining Data

Combining these sources will allow us to 
get this “waterfall effect” – that is, being 
submerged by data; having more data 
than we could possibly digest.

The dirty story about this data is that it is 
frequently collected manually.  In fact, 
the company phone book is among the 
most important tools of an empirical 
software engineering researchers.  One 
would phone one developer after the 
other, and question them – say, “what 
was your effort”, or “how often did you 
test module ʻfooʼ?”, and tick in the 
appropriate form.  In other words, data 
is scarce, and as it is being collected 
from humans after the fact, is prone to 
errors, and prone to bias.



Jazz.net

IBM Jazz Faculty Award 
for

Mining Jazz data to assess 
development processes

25,000$

Eclipse Bugs

Combining these sources will allow us to 
get this “waterfall effect” – that is, being 
submerged by data; having more data 
than we could possibly digest.

This is what you get when doing such a 
mapping for eclipse.  Each class is a 
rectangle in here (the larger the 
rectangle, the larger its code); the colors 
tell the defect density – the brighter a 
rectangle, the more defects were fixed 
in here.  Interesting question: Why are 
come modules so much more defect-
prone than others?  This is what has 
kept us busy for years now.



Studies

Rosenberg, L. and Hyatt, L. “Developing An Effective Metrics Program”
European Space Agency Software Assurance Symposium, Netherlands, March, 1996

Make this
Actionable!

Assistance

Future environments will

• mine patterns from program + process

• apply rules to make predictions

• provide assistance in all development decisions

• adapt advice to project history

Letʼs now talk about results.  What 
should our tools do?  Should they come 
up with nice reports, and curves like this 
one?

Programming environments also are the 
tools that allow us to collect, maintain, 
and integrate all this project data.  This 
is where the waterfall becomes 
imminent.   In pair programming, you 
have a navigator peering over your 
shoulder, giving you advice whether 
what you are doing is good or bad.  We 
want the environment peer over your 
shoulder – as an automated 
“developerʼs buddy”.  Whatever we do 
must stand the test of the developers 
– if they accept it, it will be good 
enough.



Empirical SE 2.0

Usability

Economy
Remixability

Participation

Collaboration Perpetual Beta

Trust

Wikis

Simplicity

Joy of Use

The Long Tail
DataDriven

Social SoftwareRecommendation

Challenges
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Program Data

Process Data

…and thus realizing the concept of 
Empirical Software Engineering 2.0.  
You will find traces of all these concepts 
in my talk – from participation over 
usability and remixability to, hopefully, 
economic consequences.

In order to get there, we have plenty of 
challenges to overcome.

To start with, half of the data is related to 
programs, the other half to processes.  
People analyzing programs are not 
necessarily process experts, and vice 
versa.
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Deductive Reasoning

Inductive Reasoning
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Also, we have huge differences in terms 
of methods.  For code and models, we 
use deductive reasoning, predicting 
what can happen in the concrete by 
analyzing the abstraction. In the other 
areas, it is the other way round: From 
collected data, we build abstractions 
that capture patterns and rules.  These 
two methods are hard to bring together.

In the past, all of this data has been 
processed by individual researchers.  
Each of these faces stands for an entire 
community, sometimes encompassing 
thousands of researchers.

Matt Dwyer - Daniel Jackson - Tom 
Reps - Mike Ernst - Ben Liblit - Mary 
Jean Harrold - Gail Murphy - Tom 
Zimmermann - Cathrin Weiß - Rob 
DeLine - Harald Gall - Prem Devanbu

And to bring the data together, we need 
to bring together the researchers.  What 
better place could there be than ICSE or 
this workshop for this purpose?
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Summary

And to bring the data together, we need 
to bring together the researchers.  What 
better place could there be than ICSE or 
this workshop for this purpose?

Combining these sources will allow us to 
get this “waterfall effect” – that is, being 
submerged by data; having more data 
than we could possibly digest.


