Learning from Software

Andreas Zeller

Saarland University

Programming Environments

C:\WINDOWS\system32\command.com

ile: C:FOSE.PAS
ile:

Compile Run Save
e Dir Quit compiler Options
ext: 64 hytes
ree: 62868 hytes
>
Main file name: fose

>

A Tool Set

The Future of Programming
Environments: Integration, Synergy, and
Assistance

Andreas Zeller, Saarland Universi

Modern programming environments
foster the integration of automated,
tool n thus lever the availabl
functionality and collect data from
program and process. The synergy of
— both will-allow toautomate current——
irical hes. This lead
automated assistance in all
development decisions for programmers
and managers alike: “For this task, you
will likelv require riskv work on the

Turbo Pascal - just

~— 30K (Eclipse: 118 MB—
- 4,000x as big)

Integration - Foto von
Werkzeugkiste

Tools evolve

Tools evolve

But do these tools
work together?
Where is the whole
more than the sum of
its-parts?

Tools can only work
together if they draw
on different artefacts

What are we working
on in SE - we are
constantly producing
and analyzing
artefacts: code,
specs, etc.

Tools can only work

— together if they draw

on different artefacts

constantly producing

~and analyzing
artefacts: code,
specs, etc.

Tools can only work

— together if they draw
m ?' m T.I ﬁ' " on different artefacts
Learning from Software What are we working

on in SE - we are
Andreas Zeller Constantlv DrOdUCIng

Saarland University a n d a n a Il !ZI n g
e-mail Bugs I Effort Navigatio Change Chats E“ E a I Et E ES - E s EI a’

specs, etc.

Combining these sources will allow us to
get this “waterfall effect” — that is, being

Models Specs I Code I Traces Proﬂles Tests l

Effort Navigatio

Such software archives are being
used in practice all the time. If you

file a bug, for instance, the report
Fo e stomts o ot) is stored in a bug database, and
& the resulting fix is stored in the
S 1 : 2R version archive.

ion Key:
other applicat. I

to submit a bug report to .

"Submit Report.) € Cancel)

These databases can then be
mined to extract interesting
information. From bugs and
changes, for instance, we can tell
how many bugs were fixed in a
particular location.

Map bugs to

code locations

This is what you get when doing such a

[T [T [=T E D — sy _ mapping for eclipse. Each class is a
| | rectangle inhere (the farger the
E |-_ === rectangle, the larger its code); the colors
_-,. besctpse o orgclpsefacsaction tell the defect density — the brig hte.r a

— rectangle, the more defects were fixed

in here. Interesting question: Why are
come-modules-so-much-more-defect-
prone than others? This is what has
kept us busy for years now.

= =" I

R —
i org.eclipsédebug.intemal

B vy

s it the Developers!?

Bug density
correlates with
experience!

Does experience
matter?

s it History!?

| found lots of Yes! (But where
bugs here. Will did these come
there be more? from?)

How about metrics?

Do code metrics
correlate with bug
density?

Uh. Coverage?

Does test coverage Yes —
correlate with bug the more coverage,
density? the more bugs!

Ah! Language features!?

Are gotos
harmful?

Ok. Problem Domain?

Which tokens import ® extends
do matter? s implements

import
import
import
import
import
import
import

Eclipse Imports

71% of all components impeorting compiler
show a post-release defect

org.eclipse.jdt.internal.compiler.lookup.*;
org.eclipse. jdt.internal.compiler.*;
org.eclipse.jdt.internal.compiler.ast.*;
org.eclipse.jdt.internal.compiler.util.*;

org.eclipse.pde.core.*;
org.eclipse. jface.wizard.*;
org.eclipse.ui.*;

14% of all compenents importing ui
show a post-release defect

Joint work with Adrian Schréter * Tom Zimmermann

tables
base
svg
base e
is
st
xpconnect liveco
src test

fdlib e

src
layout) Ny = 5 o intl e o o

generic style ol T d 5 i % | aibag |[compone [bootstra

t | \ }5 1 aiag] earlos oo

1 §
= by zlib W
jtr png imcge |dec |s |I'src mac haal
src

Eclipse Imports

Correlation with failure

Correlation with success

Mozilla Vulnerabilities

security mailnews content extensions nsprpub
base imap base xsit xul canvas3d |webservice |python [spelich " i
lib src util src src P src temp doc src $0ap |pro | xpco Src src tests t
libpkix freebl softoken xslt |xpath| | src | isrc md
sche Wi |walle|univ [sche
pkix_pl_nss | mpi lecl = i st Vsre | Wi JuniTma
seard
modu | pki sy = jcont java ob)
svg events |xml xpcom | met|pre ins [typ
pkix_lincl | ssl util lcertd Jsmim ||| addrbook | compose | import html content | src [|[d[] _xforms o misc [pthre [[LIS
‘top [uti [r src src outl [src content |doc | [src xtf xmiterm autiwis |p thicp | o i
oex src src L) base iine [|*9_|coo[s io
eud sc Jan [ii
crmf | pki [pkcs |de X
i xpcom directon db ef xpinstall
L1 in local _|news Jexten L. A2 2
builtins |ca Pk1lwr mime io glue c-sdk sqlite3 Compiler Utilitie wizard
pkes12 src|[src_|[paim
= kil Jar ey src idap src Code |Front |[Gener ||| windows [libxpne
libraries [clie |i md setup Juni | GUSI
certhig Bas Jasn — bls Tibidap X Primi zli [qa
2 b Jp| reflect |string [typelib 2 exa 3
cmd t old_[ma xptcal x | 'pu |sr|ixpi|x suncsdk xp K 0s2 mac
zlib [lib|m [pk]si m‘ws ;k m; Yaodles src [|[s c-sdk b ’“""(‘:' Runtim [_gc__[Pack |/rserup i
crlu bit . " |Syste lsrli
o Dlugin 3 |base |tests 1dap y: 5 =
manager iss s tests st tools [sam Nbraries_Icil i md | C [N [C| Tools

org test |s [s |[def build_|compo x D

obsolete toolkit xpfe

xre |m | hi

gtkz text [tXtsv - appshel
— unichar [locale [ctl | calendar parser tools accessible
ase rdf s o perefsre chardet [T5 src srcp[iib 1 Ta 1t p| |20k [Bas[Rt [xu
sre src libjar | Xmi /s Il src libical [libic ; o=
xpwi |at_|ph e lip
it b = gtk semwen st | = msgsdk ck 3
prin fin (ht [bu o base | protocol g g
o Xlib lcola |9 |\ src T hep fep base src C expat_[muc|[—boehm
55 [Xib | mac_[theb [xiib src iz gase protocol -l reer11b_Ji
tamarin embedding S
core Lo a phot Trowser streamco | test Joo e plugin | uriloader| camino | ipc
i |[extha [b|[src |[iped
gtk windo be [xp [shijj| activex | gtk [phot bui other-license | ‘MR °
f src src cache _ ["gns LM d
lish s 7zst [iibare_ || 1oy
xpr o web src lib_|mston |view | mail
jcode MM powerp ava
cairo thebe || plu [pl at Bt iosaib 7zi rdf mac_|[“src_|[src [|com
webclient _[pluggab |~ browser
air itz |[src atk-1. [base [chro
e g compon| ga | tests | [srcmoz | | wf components = e profile buil_dom|sun_jweb
shell [ple i [printin [teste|fmfc [w places [migrat| 1 4 FfsrTJfwin s T sty Jiw
l do_[pl
i libpixma | i xpcom |60 ol [src [docshell | s sto]gcon mini
Js src veb e Jalul ! base s srclllst

chro

The best hint so far what it is that
determines the defect-proneness is the
import structure of a module. Inother
words: “What you eat determines what
you are” (i.e. more or less defect-prone).

For instance, if your code is related to
compilers, it is much more defect-prone,
than, say, code related to user
interfaces.

nsIContentUtils.h

nsIPrivateDOMEvent.h

re)
c
(0]
c
o
o
S
(o]

O

Prediction

sDOMClassInfo

HTMLLabelElement

This was just a simple example.

. So, the most important aspect that
Software Archives software archives give you is
automation. They are maintained
automatically (“The data comes to
you”), and they can be evaluated
automatically (“Instantaneous
automatic maintenance and access results”). For researchers, there

freely accessible in open source projects are _plenty open. source archives

| ; | ;
Bugs . Chang

contain full record of project history

maintained via programming environments

~—compare, and evaluate our tools.

Combining these sources will allow us to
get this “waterfall effect” — that is, being

)

Model Specs Code Traces Proﬁle Tests

miles ...

Mining and Learning from Software

Predicting Code Quality

“These components have the highest chance to fail in production”

o, |

Program Past Defect Density

Predicting Code Quality

“These components have the highest chance to fail in production”

Predicting Code Quality

“These components have the highest chance to fail in production”

o

Locating Abnormal Behavior

”

“This execution is abnormal because it accesses a password file in ParseURL()

open() read() close() open() write() close()

open() read() close() open() read() write() close()

\4

e

Locating Abnormal Behavior

“This execution is abnormal because it accesses a password file in ParseURL()”

open() read() unlink()

Suggesting Related Code

“Module Z contains code which you may find useful”

Suggesting Changes

“This test uses assert(); consider assertTrue() instead”

Suggesting Changes

“This test uses assert(); consider assertTrue() instead”

Linking Artifacts

“This workaround is due to our customer’s requirement from December 12”

public class Purse {
final int MAX_BALANCE;
int balance;
//@ dnvariant O < balance && balance < MAX_BALANCE;

byte[] pin;
/*@ 1dinvariant pin != null & pin.length == 4 &&
(\forall int i; 0 < i && i < 4;

0 < byte[i] && byte[i] < 9)

~

requires amount > 0;

assignable balance;

ensures balance == \old(balance) - amount &&
\result == balance;

signals (PurseException) balance == \old(balance);

Y

debit(int amount) throws PurseException { .. }

FTEPRERERS @e®

A
=

Linking Artifacts

“This workaround is due to our customer’s requirement from December 12”

public class Purse {
final int MAX_BALANCE;

int balance; o
//@ invariant 0 < balance & Ban kl ng
byte[] pin; Purse ¢ balance * PIN ¢ debit...
/*@ dnvariant pin != null &&
(\forall int 1

byte[1] && byte[1]
::/

requires amount > 0;
assignable balance;
ensures balance == \old(balance) - amount &&
\result == balance;
signals (PurseException) balance == \old(balance);
@s‘:/
int debit(int amount) throws PurseException { .. }

PEEAER OO

Linking Artifacts

“This workaround is due to our customer’s requirement from December 12”

Banking

Purse ¢ balance ¢ PIN ¢ debit...

When retrieving money from an ATM,
the customer inserts his card and
enters a PIN (a 4-digit number) and the
amount to be retrieved...

Linking Artifacts

“This workaround is due to our customer’s requirement from December 12”

Banking

Purse ¢ balance ¢ PIN ¢ debit...

When retrieving money from an ATM,
the customer inserts his card and
enters a PIN (a 4-digit number) and the
amount to be retrieved...

Predicting Effort and Risk

“This task will take n person hours because it involves scripting”

Program Past Effort

Predicting Effort and Risk

“This task will take n person hours because it involves scripting”

Model Specs Code Trace Proﬂle Tests

Where do
we get all
this data
from?

This is the oldest example, referring to
work by Tom Zimmermann et al. at ICSE

—atthe same time): You change one
function — which others should be
changed? This is easy to mine drawing
on the change history and the code.

“People who changed function f()
also changed...”

Defect density data as sketched before
can be used to decide where to test
—most=ofcourse, wherethemost——
lof i diti llv tal

profiles (e.g. usage data) into account,
one can even allocate test efforts to
minimize the predicted potential damage

antimal

I\l
optrtialry.

Code Proﬂle

“Which modules
should | test most?”

If one has effort data, one can tell how
long it takes to fix a bug. Cathrin WeiB3

— has atalk on this topic right after this

keynote.

“How long will it take
to fix this bug?”

If one knows which program features
correlate with which quality, one can use
—thismeasure to make alt kindsof ——
lecisi - lati lesi i
failure probability will help making well-
founded design decisions. This is not to
say that managers can’t do this right
“but havi , I
“Should | use available can certainly help assess the
design A or B?” risks.

Finally, a glimpse into the future, taking
natural language resources into

ac clou£ nt Hllel ideais to ass.oc’late lspecs
map these topics to source code. What
you then get is an idea of how specific
topics (or keywords) influence failure

———probability,-and-this-will-allow-you——
K licti [i

requirements.

Combining these sources will allow us to
get this “waterfall effect” — that is, being
submerged by data; having more data
than we could possibly digest.

The dirty story about this data is that it is
frequently collected manually. In fact,
the company phone book is among the
most important tools of an empirical
software engineering researchers. One
would phone one developer after the
other, and question them — say, “what
was your-effort”,-or “how often-did you
test module ‘foo’?”, and tick in the
appropriate form. In other words, data
is scarce, and as it is being collected
from humans after the fact, is prone to
errors, and prone to bias.

9 Jazz - Mozilla Firefox

¥ 0o Gl
You ace browsng 25 Guest | Loan

JAZZ DEVELOPMENT

Home | Plans | WorkItems | Reports

“ &l Defect #14463

reate Wik tem

Overview | Links | Attachments
Simple Query
Details Description

Twe] [Odfect I have two projects

Severit
Created
Created

eam workitem (¢p uintermal ProjectareaP)
Catego Eioss U ™ ibm team face 1abelProviders.TypeLabel
Saved Queries o N ! v

P

IBM Jazz Faculty Award
for
Mining Jazz data to assess . emicton access$Siewtoremacion s
development processes e
25,000%

HtemAction Java: 20

Combining these sources will allow us to
v get this “waterfall effect” — that is, being
I by data: havi I

This is what you get when doing such a
mapping for eclipse. Each class is a

— rectangleinhere (the targerthe ——
— tell the defect density — the brighter a
rectangle, the more defects were fixed
in here. Interesting question: Why are
——come-modules-so-much-more-defect-——
___prone than others? Thisis whathas
kept us busy for years now.

org.eclipse.debug.internal

org.eclipse.help.ui

Studies

Make this
Actionable!

Rosenberg, L. and Hyatt, L.“Developing An Effective Metrics Program”
European Space Agency Software Assurance Symposium, Netherlands, March, 1996

P 2\/&9 33 mph

tomtom

Assistance

Java

- StandardSourcePathProvider.java - Eclipse Platform

G- |® 181§~ v o &ava

eeeeeee

13 (ASCll ko)
> & org.eclipse.jdt.launching.sourg
» & org.eclipse jdtlaunching.sour

IR System Ubrary OVM 1.4.2 ME
doc

lib
META-INF

schema

scripts

) abouthtmi 1.10 (ASCH -ko)

= 0 (7 StandardSourcePathProvider java ¢

hd } {
aval ies = recoverRuntinePath(configuration, 1JavalaunchConfigurationConstants. ATTR_SOURCE_PATH);
}
L
}

a 112 (ASCH -ko)

Future environments wil
* mine patterns from program + process

® apply rules to make predictions

I A i
® provide assistance In “-“ ‘1‘9‘\'*?“\’71’\‘"H“‘; dECISIONS

0.6000
0.5555
0.5000
0.4545

Let’s now talk about results. What
should our tools do? Should they come
up with nice reports, and curves like this
one?

Programming environments also are the
tools that allow us to collect, maintain,
andintegrate all this project data. This
is- where the waterfall becomes
imminent. In pair programming, you
have a navigator peering over your
shoulder, giving you advice whether
whatyou-are-doing-is-good-or-bad.-—We
want the environment peer over your
shoulder — as an automated
“developer’s buddy”. Whatever we do
must standthe test of the developers

— if they accept it, it will be good
enough.

|r)4 of Use

Participation Usability

Social Software

Simplicity

Empirical SE 2.0

Economy

Remixability
DataDriven

Challenges

E T

...and thus realizing the concept of
Empirical Software Engineering 2.0.
You will find traces of all these concepts
in-my talk — from participation over
usability and remixability to, hopefully,
economic consequences.

In order to get there, we have plenty of
challenges to overcome.

To start with, half of the data is related to
programs, the other half to processes.
People analyzing programs are not
necessarily process experts, and vice
versa.

E E T T

Model Specs Code Trace Profi Ie Tests

= R : L ‘W'! J s
e-mai Bugs Effor Nawgatl Chang Chat

Model Specs Code Traces Proﬁle Tests
-

Artificial .
Intelligence Information

Program Processing
Verification A N

X
Algorithms

Software
Systems

Visual Computing

Bioinformar’

2 o
e-mai Bugs Effort Navigati Chang Chats

Also, we have huge differences in terms
of methods. For code and models, we
use deductive reasoning, predicting
what can happen in the concrete by
analyzing the abstraction. In the other
areas, it is the other way round: From
collected data, we build abstractions
that capture patterns-and rules. These
two methods are hard to bring together.

In the past, all of this data has been
processed by individual researchers.
Each of these faces stands for anentire
community, sometimes encompassing
thousands of researchers.

Matt Dwyer - Daniel Jackson - Tom
Reps - Mike Ernst-Ben- Liblit - Mary
Jean Harrold - Gail Murphy - Tom
Zimmermann - Cathrin Weif3 - Rob
DeLine - Harald Gall - Prem Devanbu

And to bring the data together, we need
to bring together the researchers. What
better place could there be than {CSE or
this- workshop for-this purpose?

Models Specs I Code l Traces Proﬂles Tests l

e-mail I Bugs I Effort I Navigatio Changes Chats I

S e) TN
% ’*%}Z%”% ¥

Ly e X

Ga 2 AT
3 /(_.'.4/\/\ (277

g

\
N | ‘/
\ / 4,
s
R
¥El\; S S

Y — 4,///1![11‘.\\“":\\:\; A

2 Z TN 5

= = VN
= ’ .:/W)

e :

And to bring the data together, we need
to bring together the researchers. What

?

Combining these sources will allow us to
get this “waterfall effect” — that is, being

= , .

