
Andreas Zeller

Learning from Mistakes

Fixing the Process

• Any defect escaping into the wild should
have been caught by local quality assurance

• Besides fixing the defect, we also must fix
quality assurance!

2

Things to do

• Improve your test suite

• Set up assertions

• Improve training

• Improve the software process

• Improve the analysis tools

3

1

2

3

Things to Measure

• How much damage did the defect do?

• How much effort did it take to fix it?

• What is the risk we are taking in letting
such defects go unnoticed?

4

Some Facts

• In Eclipse and Mozilla, 30–40% of all changes
are fixes (Sliverski et al., 2005)

• Fixes are 2–3 times smaller than other
changes (Mockus + Votta, 2000)

• 4% of all one-line changes introduce new errors
(Purushothaman + Perry, 2004)

5

More Facts

• A module that is one year older has 30% less
errors (Graves et al., 2000)

• New code is 2.5 times as defect-prone as old
code (Ostrand + Weyuker, 2002)

6

4

5

6

7

2003-02-19 (aweinand): fixed
#13332
createGeneralPage()
createTextComparePage()
fKeys[]
initDefaults()
buildnotes_compare.html
PatchMessages.properties
plugin.properties

Learning from History

1/47,000

The Risk of Change

8

Change Fix

• Some locations in a program are risky:
many changes result in a fix

9

public IRuntimeClasspathEntry[] resolveClasspath(IRuntimeClasspathEntry[] entries,
 ILaunchConfiguration configuration)
throws CoreException {
 List all = new ArrayList(entries.length);
 for (int i = 0; i < entries.length; i++) {
 switch (entries[i].getType()) {
 case IRuntimeClasspathEntry.PROJECT:
 all.add(entries[i]);
 break;
 case IRuntimeClasspathEntry.OTHER:
 IRuntimeClasspathEntry2 entry = (IRuntimeClasspathEntry2)entries[i];
 if (entry.getTypeId().equals(DefaultProjectClasspathEntry.TYPE ID)) {
 IRuntimeClasspathEntry[] children = entry.getRuntimeClasspathEntries(configuration);
 IRuntimeClasspathEntry[] res =
 JavaRuntime.resolveSourceLookupPath(children, configuration);
 for (int j = 0; j < res.length; j++) {
 all.add(res[j]);
 }
 }
 break;
 default:
 IRuntimeClasspathEntry[] resolved =
 JavaRuntime.resolveRuntimeClasspathEntry(entries[i], configuration);
 for (int j = 0; j < resolved.length; j++) {
 all.add(resolved[j]);
 }
 break;
 }
 }
 return (IRuntimeClasspathEntry[])all.toArray(new IRuntimeClasspathEntry[all.size()]);
}

The most risky code
in Eclipse

7

8

9

The most risky code
in Eclipse

10

• 1.3 if (buildVM != null) { bug 16313

• 1.4 function deleted bug 7999

• 1.5 reimplementation bug 26681

• 1.7. Bug 44877 - Wrong JDK source lookup

• 1.8. Fallback fix for bug 44877 undid 1.7.

• 1.10 once again a switch statement

• 1.12 VariableClasspathEntry.TYPE_ID …

8 out of 9 changes
resulted in later fixes

Fixes and Changes

11

Change Fix

• How do we know a change is a fix?

Problem
The problem database
relates fixes to problems

12

Change

Problem

Fix

Lo
ca

tio
n

Hints for relating problems and fixes include

• Problem ID in the log message of the fix:
Fixed bug 53784: .class file missing

• Changes before closing a problem:
Before closing #53784, changed This.java

• For about 50% of all closed problems,
we can identify the related fix

Problems ➔ Fixes

10

11

12

Fix-Inducing Changes

13

Change Problem

• Can I predict the risk of change?

• Which are the risky locations?

• Do they have common features?

What makes
changes risky?

14

To determine whether changes induce risk,
a number of metrics have been proposed:

size of file being changed size of the change

number of changes so far number of fixes so far

What makes
changes risky?

15

Our claim: past risk at the change location
is best predictor for future risk

of past fix-inducing changes
at the change location

of past fix-inducing fixes
at the change location

13

14

15

16

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0 500 1000 1500 2000 2500 3000 3500

Re
ca

ll o
f 1

68
 m

os
t r

isk
y

file
s

in
 E

cli
ps

e

Top n files of ranking

size of file
total number of added lines

number of changes
number of fixes

number of fix-inducing changes
number of fix-inducing fixes

Past risk is best predictor
for future risk

17

Hatari

18

Change here is risky

Change Risk

Most risky locations

16

17

18

19

Risk along the Week

20

0

25

50

75

100

Mon Tue Wed Thu Fri Sat Sun

Mozilla Eclipse

Pr
ob

ab
ili

ty
 t

ha
t

a
ch

an
ge

 in
du

ce
s

a
la

te
r

fix

What makes
changes risky?

21

Change Problem

• Past risk at the location

• The day of the week

• Properties of the code?

19

20

21

Risk ⇒ Complexity

22

• A location is complex if it is risky to change

• Factual complexity measure – in contrast to
metrics like McCabe and related

• Risk of change allows for evaluation and
mining of metrics

Mining Metrics
Which features correlate with risk?

23

do…while multiple
inheritance DirectX API

iterators no iterators method size

developer use of XP and more…

Correlation specific to project – or universal

Requirements

• Well-kept version and bug databases

• Link between changes and problems

• Willingness to change

• Policy on how to handle sensitive data

24

22

23

24

Space Shuttle Software

25

Problem Tracking

26

• When was the error discovered? How?
Who? What flight?

• How was the error introduced? Why
wasn’t it caught?

• How was the error corrected? Are there
similar errors?

• What can we learn from previous errors?

The Process

27

• Software error = an error in the process

• Planning the software carefully in advance

• Reducing risk at all stages

• Keeping record of all activities

• “Not even rocket science” – just standard
practice in engineering

25

26

27

28

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

28

