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Learning from Mistakes

Fixing the Process

• Any defect escaping into the wild should 
have been caught by local quality assurance

• Besides fixing the defect, we also must fix 
quality assurance!
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Things to do

• Improve your test suite

• Set up assertions

• Improve training

• Improve the software process

• Improve the analysis tools
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Things to Measure

• How much damage did the defect do?

• How much effort did it take to fix it?

• What is the risk we are taking in letting 
such defects go unnoticed?
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Some Facts

• In Eclipse and Mozilla, 30–40% of all changes 
are fixes (Sliverski et al., 2005)

• Fixes are 2–3 times smaller than other 
changes (Mockus + Votta, 2000)

• 4% of all one-line changes introduce new errors 
(Purushothaman + Perry, 2004)
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More Facts

• A module that is one year older has 30% less 
errors (Graves et al., 2000)

• New code is 2.5 times as defect-prone as old 
code (Ostrand + Weyuker, 2002)
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2003-02-19 (aweinand): fixed 
#13332
createGeneralPage()
createTextComparePage()
fKeys[]
initDefaults()
buildnotes_compare.html
PatchMessages.properties
plugin.properties

Learning from History

1/47,000

The Risk of Change
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Change Fix

• Some locations in a program are risky: 
many changes result in a fix
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public IRuntimeClasspathEntry[] resolveClasspath(IRuntimeClasspathEntry[] entries, 
                                                 ILaunchConfiguration configuration) 
throws CoreException { 
  List all = new ArrayList(entries.length); 
  for (int i = 0; i < entries.length; i++) { 
    switch (entries[i].getType()) { 
      case IRuntimeClasspathEntry.PROJECT: 
        all.add(entries[i]); 
        break; 
      case IRuntimeClasspathEntry.OTHER: 
        IRuntimeClasspathEntry2 entry = (IRuntimeClasspathEntry2)entries[i]; 
        if (entry.getTypeId().equals(DefaultProjectClasspathEntry.TYPE ID)) { 
          IRuntimeClasspathEntry[] children = entry.getRuntimeClasspathEntries(configuration); 
          IRuntimeClasspathEntry[] res = 
            JavaRuntime.resolveSourceLookupPath(children, configuration); 
          for (int j = 0; j < res.length; j++) { 
            all.add(res[j]); 
          } 
        } 
        break; 
      default: 
        IRuntimeClasspathEntry[] resolved = 
          JavaRuntime.resolveRuntimeClasspathEntry(entries[i], configuration); 
        for (int j = 0; j < resolved.length; j++) { 
          all.add(resolved[j]); 
        } 
        break; 
      } 
    } 
  return (IRuntimeClasspathEntry[])all.toArray(new IRuntimeClasspathEntry[all.size()]); 
}

The most risky code
in Eclipse
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The most risky code
in Eclipse
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• 1.3 if (buildVM != null) { bug 16313

• 1.4 function deleted bug 7999

• 1.5 reimplementation bug 26681

• 1.7. Bug 44877 - Wrong JDK source lookup

• 1.8. Fallback fix for bug 44877  undid 1.7.

• 1.10 once again a switch statement

• 1.12 VariableClasspathEntry.TYPE_ID …

8 out of 9 changes 
resulted in later fixes

Fixes and Changes
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Change Fix

• How do we know a change is a fix?

Problem
The problem database
relates fixes to problems
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Change

Problem

Fix

Lo
ca

tio
n

Hints for relating problems and fixes include

• Problem ID in the log message of the fix: 
Fixed bug 53784: .class file missing

• Changes before closing a problem:   
Before closing #53784, changed This.java

• For about 50% of all closed problems,   
we can identify the related fix

Problems ➔ Fixes
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Fix-Inducing Changes
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Change Problem

• Can I predict the risk of change?

• Which are the risky locations?

• Do they have common features?

What makes
changes risky?
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To determine whether changes induce risk,   
a number of metrics have been proposed:

size of file being changed size of the change

number of changes so far number of fixes so far

What makes
changes risky?
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Our claim: past risk at the change location
is best predictor for future risk

# of past fix-inducing changes
at the change location

# of past fix-inducing fixes
at the change location
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Past risk is best predictor 
for future risk
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Hatari
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Change here is risky

Change Risk

Most risky locations
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Risk along the Week
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What makes
changes risky?
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Change Problem

• Past risk at the location

• The day of the week

• Properties of the code?

19

20

21



Risk ⇒ Complexity
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• A location is complex if it is risky to change

• Factual complexity measure – in contrast to 
metrics like McCabe and related

• Risk of change allows for evaluation and 
mining of metrics

Mining Metrics
Which features correlate with risk?
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do…while multiple 
inheritance DirectX API

iterators no iterators method size

developer use of XP and more…

Correlation specific to project – or universal

Requirements

• Well-kept version and bug databases

• Link between changes and problems

• Willingness to change

• Policy on how to handle sensitive data
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Space Shuttle Software
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Problem Tracking
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• When was the error discovered? How? 
Who? What flight?

• How was the error introduced?  Why 
wasn’t it caught?

• How was the error corrected?  Are there 
similar errors?

• What can we learn from previous errors?

The Process
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• Software error = an error in the process

• Planning the software carefully in advance

• Reducing risk at all stages

• Keeping record of all activities

• “Not even rocket science” – just standard 
practice in engineering
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This work is licensed under the Creative Commons Attribution License.  To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA. 
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