Learning from Mistakes

Andreas Zeller

Fixing the Process

® Any defect escaping into the wild should
have been caught by local quality assurance

® Besides fixing the defect, we also must fix
quality assurance!

Things to do

Improve your test suite

Set up assertions

Improve training

Improve the software process

Improve the analysis tools

Things to Measure

® How much damage did the defect do?
® How much effort did it take to fix it?

® What is the risk we are taking in letting
such defects go unnoticed!?

Some Facts

® In Eclipse and Mozilla, 30—40% of all changes
are fixes (Sliverski et al., 2005)

® fixes are 2-3 times smaller than other
changes (Mockus + Votta, 2000)

® 4% of all one-line changes introduce new errors
(Purushothaman + Perry, 2004)

More Facts

® A module that is one year older has 30% less
errors (Graves et al.,2000)

® New code is 2.5 times as defect-prone as old
code (Ostrand + Weyuker, 2002)

Learning from History

2003-02-19 (aweinand): fixed

createGeneralPage()
create TextComparePage()
fKeys[]

initDefaults()
buildnotes_compare.html
PatchMessages.properties

lugin.properties
R Riak 1/47,000

The Risk of Change

A commarertch

eye

® Some locations in a program are risky:
many changes result in a fix

public IRuntimeClasspathEntry[] resolveClasspath(IRuntimeClasspathEntry[] entries,
. IL_unchC(afiguration configura ion)
throws CoreE> ('

L,
ep a « < a
List all = lew K‘l ‘o,,r‘,st(n ﬁ ri‘,'s‘cjgb‘/); ! (l >) L‘ 7 (p) C.' -
for (int i = @; i < entries.length; i++) {
switch (entries[i].getType()) {
case IRuntimeClasspathEntry.PROJECT:
all.add(entries[i]);
break;
case IRuntimeClasspathEntry.OTHER:
IRuntimeClasspathEntry2 entry = (IRuntimeClasspathEntry2)entries[i];
if (entry.getTypeId().equals(DefaultProjectClasspathEntry.TYPE ID)) {
IRuntimeClasspathEntry[] children = entry.getRuntimeClasspathEntries(configuration);
IRuntimeClasspathEntry[] res =
JavaRuntime.resolveSourcelLookupPath(children, configuration);
for (int j = @; j < res.length; j++) {
all.add(res[j]1);

}
break;
default:

IRuntimeClasspathEntry[] resolved =
JavaRuntime.resolveRuntimeClasspathEntry(entries[i], configuration);

for (int j = @; j < resolved.length; j++) {
all.add(resolved[j]1);

}

break;

}

¥
return (IRuntimeClasspathEntry[])all.toArray(new IRuntimeClasspathEntry[all.size()]);

The most risky code

in Eclipse

[.3 if (buildVM != null) { bug 16313
1.4 functjon delete

1.5 reim
8 out of 9 changes

1.7.Bu 1
2 resulted in later fixes

1.8. Fallf
I.10 once again a switch statement

.12 VariableClasspathEntry. TYPE_ID ...

Fixes and Changes

® How do we know a change is a fix?

“rantes v

The problem database 7 %
relates fixes to problems

ot i
@ "/
= el
e

Problems = Fixes

Hints for relating problems and fixes include

® Problem ID in the log message of the fix:
Fixed bug 53784: .class file missing

® Changes before closing a problem:
Before closing #53784, changed This.java

® For about 50% of all closed problems,
we can identify the related fix

Fix-Inducing Changes

= (el ¢

® Can | predict the risk of change?

® Which are the risky locations?

® Do they have common features!?

What makes
changes risky?

To determine whether changes induce risk,
a number of metrics have been proposed:

size of file being changed size of the change
number of changes so far number of fixes so far

What makes
changes risky?

Our claim: past risk at the change location
is best predictor for future risk

of past fix-inducing changes # of past fix-inducing fixes
at the change location at the change location

size of file
total number of added lines
number of changes
number of fixes
number of fix-inducing changes +~-=
number of fix-inducing fixes ---e-

Past risk is best predictor
for future risk

Recall of 168 most risky files in Eclipse

(0[0]0] 1500 2000 250 3000 3500
Top n files of ranking

Java - ThisJoinPointVisitor java - Eclipse Platform

|- 0- Q- | #H G- | @] 18+ 5l a0 s 5 &')ava BaCVS Repos... [i5Resource
Package Explorer [gu JUnit 32 = O|([ThisjoinPointVisitor java X =g
Finished after 5.129 seconds -
- - public boolean visit(MessageSend call, BlockScope scope) {
& 9 Q58 Expression receiver = call.receiver;
if (isRef(receiver, thisloinPointDec)) {
Runs: 2/2 BErors: 1 O Failures: 0 if (canTreatAsStatic(new String(call.selector))) {
if (replaceEffectivelyStaticRefs)
I replacek ffectivelyStaticRef(call);
} else {

¢ reg’

] /System.err.println(has stati
Failures | Hierarch:

g b v hasEffectivelyStaticRef = true;

v kiBytecodeOptimizeTest iF (call.arguments 1= null) {
JEtestjoinPointOptimizePass int argumentslength = call.arguments.length;

for (int 1 = 0; i < argumentsiength; is+)

testjoinPointOptimizeFail : ’

eEitesy J call.arguments[i].traverse(this, scope);

return fa Ch h . . I m
= Failure Trace h) ¥ g y
java.lang.IncompatibleClassChangeError return super.visit(call, scope);
t BytecodeOptimizeTe st.testoinPointOptim ’
t sun.reflect. NativeMethodAccessorimpl.inv <~ private MethodBinding getEquivalentStaticBinding(MethodBinding template) {
it sun.reflect.NativeMethodAccessorimpl.iny ReferenceBinding b = (ReferenceBinding)thisJoinPeintStaticPartDec. type;
at sun.reflect. DelegatingMethodAccessorimg return b.getExactMethod(template.selector, template.parameters);
}
Al T
|| o private void replaceEffectivelyStaticRef(MessageSend call) { =
& Change = e 3 e
Céa:; hodNameAndTypeCach :“:'1":"5 Console| Problems | 5! CVS Resource History 2 FfE|pr=08
ethodNameAndTypeCache
@ BeeNar iy oinPointVisitor.java
® LocalVariablelnstruction 0.500 RS For TR ST Al Auther Comment
® LocalvariableTag 0.484 15 3/28/03 1:S8 AM jhugunin Major changes in order to move to Eclipse-)DT 2.1 as a base
@ LocalVariableGen 1.4 vi_l 2/26/03 11:57 AM acolyer Ran "Organize imports” to remove redundant imports etc - [
(® BcelShadow 1.3 2/13/03 11:00 PM Jhugunin fixed Bug 30168: bad optimization of thisjoinPoint to this)oir|
@ Range 1.2 1/14/03 6:24 PM jhugunin fixed initial implementor for code written in 2002 to be just Iy
@ Shadow 1.1 V_1. 12/16/02 7:02 PM wisberg initial version £
® Compiler ————————————— CBEIC
® ThisjeinPointVisitor fixed Bug 30168: bad optimization of thisJoinPoint to thisjoinPointStaticPart
@ MethodDeclaration 0.217

Most risky locations 18

()
00
=
<
d=
o
©
o
<
d=
=]
Z
e}
[
0
o
o

X
&
<
1]
2
Rl
<
(%]
Q
v}
5
o
£

HOT FUNCTION ONLY AUTHORIZED

' | 29 PROGRAMMERS MAY
DONTTOUCH! <2 CHANGE FUNCTION

ROTCE
D?Mf‘éﬁ"@ DO NOT

PROGRAM @
S EE ON FRIDAYS!

Risk along the Week

B Moxzilla B Eclipse

What makes
changes risky?

= ([

® Past risk at the location

® The day of the week

® Properties of the code?

Risk = Complexity

® A |ocation is complex if it is risky to change

® Factual complexity measure — in contrast to
metrics like McCabe and related

® Risk of change allows for evaluation and
mining of metrics

Mining Metrics

Which features correlate with risk?

inheritance

Correlation specific to project — or universal

Requirements

® VWVell-kept version and bug databases
® Link between changes and problems
® Willingness to change

® Policy on how to handle sensitive data

Problem Tracking

When was the error discovered? How!?
Who!? What flight?

How was the error introduced? Why
wasn’t it caught?

How was the error corrected? Are there
similar errors?

What can we learn from previous errors?

The Process

Software error = an error in the process
Planning the software carefully in advance
Reducing risk at all stages

Keeping record of all activities

“Not even rocket science” — just standard
practice in engineering

