Isolating Faj

An

Isolating Causes

Alternate world

Mixed world

Isolating Causes

—— <SELECT><guum=

How can we automate this?

- —

A

Simplifying Input

Simplifying

Failure Cause

v/

Isolating Input

Difference narrowed down

Isolating Input

=
Failure Cause

Isolating

)

Failure Cause

Finding Causes

Simplifying Isolating

* minimal input * minimal difference
* minimal context ® common context

Configuration

Circumstance

All circumstances
=0

Configuration ¢ < C

= 101,00, 001

“

Tests

Testing function

test(c) € {v/,X,?}

Initial configurations

test(c,)

=v
test(c,) = X

Minimal Difference

Goal: Subsets ¢, and ¢,

(i Cue G e s

Difference
Au=gcilucs

Difference is |-minimal

Vd; € A-test(c, U {6;}) # ¥V Atest(c, \ {6:}) # X

Isolatln

Fallure Cause

l
|

Algorithm Sketch

® Extend ddmin such that it works on two sets
at a time — c, and c,,

® Compute subsets
A A e N = A =Gl
® For each subset, test
® the addition ¢/ U A;

® the removal c,\ A;

Test Outcomes

most valuable outcomes

dd in a Nutshell

dd(c,,ce) = (c.,c;) A=c,\c, is |-minimal
ddteiici=ddilciac2)

ddilciaciini—

(@) i (A= 1

dd (c,\ A, cl,2) if 3i € {1.n} - test(c, \ A;) =V

dd (c.,c., U Ay, 2) if 3i € {1..n} - test(c, U A;) = X

dd (c, U Aj,cl,max(n —1,2)) elseif 3i € {1..n} - test(c, U A;) =
dd (c,,c.\ Aj,max(n —1,2)) elseif 3i € {1..n} - test(c, \ A;) = X
dd (c.,c.,min(2n, |A])) else if n < |A| (“increase granularity”)
(@ @?) otherwise

def dd(c_pass, c_fail):
ni=:2
while 1:
delta = listminus(c_fail, c_pass)
deltas = split(delta, n); offset = 0; j =0
while j < n:
i =(j + offset) ¥ n
next_c_pass = listunion(c_pass, deltas[i])
next_c_fail = listminus(c_fail, deltas[i])
if test(next_c_fail) == FAIL and n ==
c_fail = next_c_fail; n = 2; offset
elif test(next_c_fail) == PASS:
c_pass = next_c_fail; n = 2; offset
elif test(next_c_pass) == FAIL:
c_fail = next_c_pass; n = 2; offset =
elif test(next_c_fail) == FAIL:
c_fail = next_c_fail; n = max(n - 1, 2);
elif test(next_c_pass) == PASS:
c_pass = next_c_pass; n = max(n - 1, 2);
else:
G
if j >=n:
if n >= len(delta):
return (delta, c_pass, c_fail)
else:
n = min(len(delta), n * 2)

Properties

number of tests t — worst case:

t =|Al? +7|A] where A=c,\c,

number of tests t — best case
(no unresolved outcomes):

t <log,(A)

size of difference — no unresolved outcomes

ladegle=cl

Applications

Code

e Schedules

Isolating Input

4 Isolation: 5 tests
Failure Simplification: 48 tests

Code Changes

From: Brian Kahne <bkahne@ibmoto.com>
To: DDD Bug Report Address <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run command
correctly uses any prior command-line arguments, or
the value of "set args". However, when I switched to
GDB 4.17, this no longer worked: If I enteredarun
command in the console window, the prior command-
line options would be lost. [...]

Version Differences

New version

AY

Program fails Old version

Causes

What was Changed

$ diff -r gdb-4.16 gdb-4.17

diff -r gdb-4.16/COPYING gdb-4.17/COPYING
5¢5

< 675 Mass Ave, Cambridge, MA 02139, USA

> 59 Temple Place, Suite 330, Boston, MA ©02111-1307 USA
282c282
< Appendix: How to Apply These Terms to Your New Programs

> How to Apply These Terms to Your New Programs

...and so on for 178,200 lines (8,721 locations)

Challenges

® Granularity — within some large change,
only a few lines may be relevant

® Interference — some (later) changes rely on
other (earlier) changes

® Inconsistency — some changes may have to
be combined to produce testable code

Delta debugging handles all this

General Plan

® Decompose diff into changes per location
(= 8,721 individual changes)

® Apply subset of changes, using PATCH

® Reconstruct GDB; build errors mean
unresolved test outcome

® Test GDB and return outcome

Isolating Changes

Delta Debugging Log
100000
... with dd algorithm
L0000 T - .plus scope information
1000

Changes left

150
Tests executed

® Result after 98 tests (= | hour)

The Failure Cause

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278

< "Set arguments to give program being debugged when it is
started.\n

> "Set argument list to give program being debugged when
it is started.\n

® Documentation becomes GDB output

® DDD expects Arguments,
but GDB outputs Argument list

DChange

The File Constants.java uas added to
= [Strir

Optimizations

History — group changes by creation time
Reconstruction — cache several builds
Grouping — according to scope

Failure Resolution — scan error messages
for possibly missing changes

Thread Schedules

Schedule Thread A Thread B Schedule Thread A Thread B
open(".htpasswd") open(".htpasswd")
read(...) open(".htpasswd")
modify(...) read(...)
write(...)
close(...)

open(".htpasswd")

;w:gﬂ read(...)
modify(...) modify(...)
write(...) write(...)
close(...) close(...)

v

A’s updates get lost!

Record + Replay

recorded
schedule

record

x = 45
Yy = 39
z = 67

DEJAVU

replay replay
————— S I{{H -} —

The schedule difference causes the failure!

Differences

e We start with runs ¢ and X

» We determine the differences
A; between thread switches t;:
- t; occurs in ¢ at “time” 254
- t; occurs in X at “time” 278

- The difference
Ay = 1278 — 254] induces a
statement interval: the code
executed between “time”
254 and 278

- Same applies to t», t3, etc.

Isolating Differences

Isolating Differences

Dejavu replays
the generated
schedule

X

Test outcome

Example: Raytracer

Raytracer program from Spec JVM98 suite
Injected a simple race condition

Set up automated test + random schedules
Obtained passing and failing schedule

3,842,577,240 differences, each moving a
thread switch by 1 yield point (time unit)

Isolating Schedules

Delta Debugging Log
1e+14

no unresolved outcomes:
complexity is O(logz n)

25 30
Tests executed

The Failure Cause

25 public class Scene { ..

44 private static int ScenesLoaded = 0;

45 (more methods...)

81 private

int LoadScene(String filename) {

84 int OldScenesLoaded = Scenesloaded;

85 (more initializations...)

91 infile = new DataInputStream(..);

92 (more code...)

130 ScenesLoaded = OldScenesLoaded + 1;

131 System.out.printin("" +
SceneslLoaded + " scenes loaded

132

134

135

General Issues

How do we choose the alternate world?
How do we decompose the configuration?
How do we know a failure is the failure?
How do we disambiguate multiple causes?

How do | get to the defect?

Concepts

* To isolate failure causes automatically, use
® an automated test case
® a means to narrow down the difference
® a strategy for proceding.

* One possible strategy is Delta Debugging.

Concepts (2)

* Delta Debugging can isolate failure causes
® in the (general) input
® in the version history
® in thread schedules

* Every such cause implies a fix — but not
necessarily a correction.

