
Andreas Zeller

Isolating
Cause-Effect Chains

2

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

bug.c

3

What is the cause
of this failure?

1

2

What do we do now?

3

4

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

5

Tracing Infections

✘

• For every infection, we must find the earlier
infection that causes it.

• Program analysis tells us possible causes

6

Tracing Infections

✘

4

5

6

Real Code

• Opaque – e.g. third-party code

• Parallel – threads and processes

• Distributed – across multiple machines

• Dynamic – e.g. reflection in Java

• Multilingual – say, Python + C + SQL

7

Obscure Code

8

struct foo {
	 int tp, len;
	 union {
	 char c[1];
	 int i[1];
 struct foo *p[1];
}}

tp len c[0] c[1] c[2] …tp len i[0] i[1]tp len p[0]

Isolating Input

9

Input

✔

Input

✘

Difference
causes
failure

7

And even if we know
everything, there still is
code which is almost
impossible to analyze. In
C, for instance, only the
programmer knows how
memory is structured;
there is no general way for
static analysis to find this
out

8

In the last lecture, we have
seen delta debugging on
input.

9

10

✘

Isolating States

✘

Variables

t

✘

Variables

✔

Difference
causes
failure

Comparing States

11

• What is a program state, anyway?

• How can we compare states?

• How can we narrow down differences?

12

A Sample Program

sample 9 8 7$
Output: 7 8 9

sample 11 14$
Output: 0 11

Where is the defect
which causes this failure?

Now let’s take a deeper
view. If a program is a
succession of states, can’t
we treat each state as an
input to the remainder of
the run?

10

11

Let’s look at a simpler
example first.

12

13

int main(int argc, char *argv[])
{
 int *a;

 // Input array
 a = (int *)malloc((argc - 1) * sizeof(int));
 for (int i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 // Sort array
 shell_sort(a, argc);

 // Output array
 printf("Output: ");
 for (int i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);
 return 0;
}

A sample state

• We can access the entire state via the
debugger:

1. List all base variables

2. Expand all references…

3. …until a fixpoint is found

14

Sample States

15

13/28

!

"

#

$

%

&

'

Sample States

At the beginning of shell_sort , we obtain these states:

Variable Value
in r! in r"

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NIL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r! in r"

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

This state difference is both effect (of the input) as well as
cause (for the failure).

at shell_sort()

13

14

15

Narrowing State Diffs

16

16/28

!

"

#

$

%

&

'

Narrowing Down State

Delta Debugging narrows down failure-inducing state changes:

! = δ is applied, " = δ is not applied

a′[0] a[0] a′[1] a[1] a′[2] a[2] argc argv[1] argv[2] argv[3] i size Output Test
1 " " " " " " " " " " " " 7 8 9 !

2 ! ! ! ! ! ! ! ! ! ! ! ! 0 11 "

3 ! ! ! ! ! ! " " " " " " 0 11 14 "

4 ! ! ! " " " " " " " " " 7 11 14
5 " " " ! ! ! " " " " " " 0 9 14 "

6 " " " ! " " " " " " " " 7 9 14
7 " " " " ! ! " " " " " " 0 8 9 "

8 " " " " ! " " " " " " " 0 8 9 "

Result !

Conclusion: a′[2] being 0 (instead of 7) causes the failure.

17

18

16

Since this worked so well,
we built a debugging
server.

17

18

Complex State

19

• Accessing the state as a table is not enough:

• References are not handled

• Aliases are not handled

• We need a richer representation

A Memory Graph

20

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

21

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

19

20

21

22

Memory Graph Edge Operation
+apply(name:string=""): string

Vertex
+value: string
+type: string
+address: void *

0..*

0..* 1

2

0..*

root

1

1

Structure

<root> 0x1234 7
p *()

Construction

23

• Start with <root> node and base variables

• Base variables are on the stack and at fixed
locations

• Expand all references, checking for aliases…

• …until all accessible variables are unfolded

Unfolding Memory

• Any variable: make new node

• Structures: unfold all members

• Arrays: unfold all elements

• Pointers: unfold object being pointed to

• Does p point to something? And how many?

24

22

23

24

<Root>

0

i

10

j

0

h

0x8049880

a

3

size

0x8049880

a

2

i

3

argc

0xbffff7a4

argv

[...]

(()[0] @ 3) (()[0] @ 3)

[...]

(()[0] @ 4)

11

()[0]

14

()[1]

0

()[2]

0xbffff8e7

()[0]

0xbffff90e

()[1]

0xbffff911

()[2]

0x0

()[3]

"sample"

()[0..]

"11"

()[0..]

"14"

()[0..]

Comparing States

25

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

passing run

failing run

Comparing States

26

• Basic idea: compute common subgraph

• Any node that is not part of the common
subgraph becomes a difference

• Applying a difference means to create or
delete nodes – and adjust references

• All this is done within GDB

Applying Diffs

27

21/28

!

"

#

$

%

&

'

Structural Differences

Igor can compute structural graph differences:
δ15 creates a variable, δ20 deletes another

r!

r" ()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

δ20

" δ20

"

()->next ()->nextlist

14 18 22

()->next

15

()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

25

26

27

28

29

Sane stateInfected state

Causes in State

The difference
causes GCC to crash!

30

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

State of the GNU compiler
(GCC)
42991 vertices
44290 edges - and 1 is
wrong :-)
An actual GCC execution has
millions of these states.

28

29

30

31

Search in Space

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

Tests executed

Delta Debugging Log

cpass
cfail

32

Search in Space

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

Tests executed

Delta Debugging Log

cpass
cfail

first_loop_store_insn→fld[1].rtx→fld[1].rtx→
fld[3].rtx→fld[1].rtx→code == PLUS

33

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

31

32

33

34

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

<PLUS node>

35

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

36

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

link→fld[0].rtx→fld[0].rtx == link

34

35

36

Passing runFailing run

t

<PLUS node>

<Tree cycle>

<PLUS node>

Search in Time

37

38

Dow
nlo

ad
 at

AskI
go

r.o
rg

39

Capturing State
for Python programs

if __name__ == "__main__":

 ...
 sys.settrace(tracer)

def tracer(frame, event, arg):
 dump_stack(frame)
 return tracer

37

38

39

40

Capturing State
for Python programs

def dump_stack(frame):
 while frame is not None:
 dump_frame(frame)
 frame = frame.f_back

def dump_frame(frame):
 locals = frame.f_locals
 globals = frame.f_globals
 print locals, globals

41

Manipulating State
for Python programs

def dump_frame(frame):
 locals = frame.f_locals
 locals['a'] = 42

equivalent to assignment
“a = 42” in frame

Caveats

42

Python frame objects are translated back to
internal frames only after tracer() has returned:

• Frames can be inspected at any time, but
changed only in tracer()

• Output of variables during tracer() may
inhibit their translation at return

40

41

42

43

Open Issues

• How do we capture an accurate state?

• How do we ensure the cause is valid?

• Where does a state end?

• What is the cost?

• When do we compare states? (next lecture)

44

Concepts

Delta Debugging on program states isolates
a cause-effect chain through the run

Use memory graphs to extract and compare
program states

Demanding, yet effective technique

45

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

43

44

45

