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Isolating
Cause-Effect Chains
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double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

bug.c
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What is the cause 
of this failure?

1

2

What do we do now?
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✘

1. The programmer creates a 
defect – an error in the code.

2. When executed, the defect 
creates an infection – an 
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be 
traced back – and broken.

t
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Tracing Infections

✘

• For every infection, we must find the earlier 
infection that causes it.

• Program analysis tells us possible causes
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Tracing Infections

✘

4

5
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Real Code 

• Opaque – e.g. third-party code

• Parallel – threads and processes

• Distributed – across multiple machines

• Dynamic – e.g. reflection in Java

• Multilingual – say, Python + C + SQL
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Obscure Code
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struct foo {
	 int tp, len;
	 union {
	     char        c[1];
	     int         i[1];
        struct foo *p[1];
}}

tp len c[0] c[1] c[2] …tp len i[0] i[1]tp len p[0]

Isolating Input

9

Input

✔

Input

✘

Difference
causes
failure
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And even if we know 
everything, there still is 
code which is almost 
impossible to analyze.  In 
C, for instance, only the 
programmer knows how 
memory is structured; 
there is no general way for 
static analysis to find this 
out
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In the last lecture, we have 
seen delta debugging on 
input.

9
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✘

Isolating States

✘

Variables

t

✘

Variables

✔

Difference
causes
failure

Comparing States 
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• What is a program state, anyway?

• How can we compare states?

• How can we narrow down differences?
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A Sample Program

sample 9 8 7$
Output: 7 8 9

sample 11 14$
Output: 0 11 

Where is the defect
which causes this failure?

Now let’s take a deeper 
view.  If a program is a 
succession of states, can’t 
we treat each state as an 
input to the remainder of 
the run?
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Let’s look at a simpler 
example first.

12
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int main(int argc, char *argv[])
{
    int *a;
    
    // Input array
    a = (int *)malloc((argc - 1) * sizeof(int));
    for (int i = 0; i < argc - 1; i++)
        a[i] = atoi(argv[i + 1]);

    // Sort array
    shell_sort(a, argc);

    // Output array
    printf("Output: ");
    for (int i = 0; i < argc - 1; i++)
        printf("%d ", a[i]);
    printf("\n");

    free(a);
    return 0;
}

A sample state

• We can access the entire state via the 
debugger:

1. List all base variables

2. Expand all references…

3. …until a fixpoint is found

14

Sample States
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Sample States

At the beginning of shell_sort , we obtain these states:

Variable Value
in r! in r"

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NIL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r! in r"

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

This state difference is both effect (of the input) as well as
cause (for the failure).

at shell_sort()
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Narrowing State Diffs
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16/28
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Narrowing Down State

Delta Debugging narrows down failure-inducing state changes:

! = δ is applied, " = δ is not applied

# a′[0] a[0] a′[1] a[1] a′[2] a[2] argc argv[1] argv[2] argv[3] i size Output Test
1 " " " " " " " " " " " " 7 8 9 !

2 ! ! ! ! ! ! ! ! ! ! ! ! 0 11 "

3 ! ! ! ! ! ! " " " " " " 0 11 14 "

4 ! ! ! " " " " " " " " " 7 11 14
5 " " " ! ! ! " " " " " " 0 9 14 "

6 " " " ! " " " " " " " " 7 9 14
7 " " " " ! ! " " " " " " 0 8 9 "

8 " " " " ! " " " " " " " 0 8 9 "

Result !

Conclusion: a′[2] being 0 (instead of 7) causes the failure.
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Since this worked so well, 
we built a debugging 
server.
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Complex State

19

• Accessing the state as a table is not enough:

• References are not handled

• Aliases are not handled

• We need a richer representation

A Memory Graph
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Memory Graph Edge Operation
+apply(name:string=""): string

Vertex
+value: string
+type: string
+address: void *

0..*

0..* 1

2

0..*

root

1

1

Structure

<root> 0x1234 7
p *()

Construction
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• Start with <root> node and base variables

• Base variables are on the stack and at fixed 
locations

• Expand all references, checking for aliases…

• …until all accessible variables are unfolded

Unfolding Memory

• Any variable: make new node

• Structures: unfold all members

• Arrays: unfold all elements

• Pointers: unfold object being pointed to

• Does p point to something?  And how many?

24
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Comparing States
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Comparing States
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• Basic idea: compute common subgraph

• Any node that is not part of the common 
subgraph becomes a difference

• Applying a difference means to create or 
delete nodes – and adjust references

• All this is done within GDB

Applying Diffs

27

21/28

!

"

#

$

%

&

'

Structural Differences

Igor can compute structural graph differences:
δ15 creates a variable, δ20 deletes another

r!

r" ()->next ()->nextlist
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14 18 22
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20
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δ20
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Sane stateInfected state

Causes in State

The difference
causes GCC to crash!

30

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

State of the GNU compiler 
(GCC)
42991 vertices
44290 edges - and 1 is 
wrong :-)
An actual GCC execution has 
millions of these states.
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Search in Space
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Delta Debugging Log

cpass
cfail
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Search in Space
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Tests executed

Delta Debugging Log

cpass
cfail

first_loop_store_insn→fld[1].rtx→fld[1].rtx→ 
fld[3].rtx→fld[1].rtx→code == PLUS
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Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?
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Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

<PLUS node>

35

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>
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Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

link→fld[0].rtx→fld[0].rtx == link
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Passing runFailing run

t

<PLUS node>

<Tree cycle>

<PLUS node>

Search in Time
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Capturing State
for Python programs

if __name__ == "__main__":
    
    ...
   sys.settrace(tracer)

def tracer(frame, event, arg):
    dump_stack(frame)
    return tracer
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Capturing State
for Python programs

def dump_stack(frame):
    while frame is not None:
        dump_frame(frame)
        frame = frame.f_back

def dump_frame(frame):
    locals = frame.f_locals
    globals = frame.f_globals
    print locals, globals

41

Manipulating State
for Python programs

def dump_frame(frame):
    locals = frame.f_locals
    locals['a'] = 42

equivalent to assignment
“a = 42” in frame

Caveats

42

Python frame objects are translated back to 
internal frames only after tracer() has returned:

• Frames can be inspected at any time, but 
changed only in tracer()

• Output of variables during tracer() may 
inhibit their translation at return

40
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Open Issues

• How do we capture an accurate state?

• How do we ensure the cause is valid?

• Where does a state end?

• What is the cost?

• When do we compare states? (next lecture)
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Concepts

Delta Debugging on program states isolates 
a cause-effect chain through the run

Use memory graphs to extract and compare 
program states

Demanding, yet effective technique
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This work is licensed under the Creative Commons Attribution License.  To view a copy of this license, visit
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