Isolating
Cause-EffectiGhains

bug.c

double bug(double z[], int n) {
G B} S e [

P
foruGie=Osiacan st

i =aiicaiibarll .

kil it Gz [0l sty
Fe

return z[n];

What do we do now?

From Defect to Failure

. The programmer creates a | |
defect — an error in the code.

. When executed, the defect
creates an infection — an
error in the state.

. The infection propagates.
. The infection causes a failure.

This infection chain must be
traced back — and broken.

Tracing Infections

® For every infection, we must find the earlier
infection that causes it.

® Program analysis tells us possible causes

Real Code

Opaque — e.g. third-party code

Parallel — threads and processes
Distributed — across multiple machines
Dynamic — e.g. reflection in Java

Multilingual — say, Python + C + SQL

And even if we know

Ob Cod everything, there still is
scure Lodae code which is almost
impossible to analyze. In
struct foo { C, for instance, only the
ﬂﬂfoﬁp% Leo: programmer knows how
s il memory is structured,
o i[1]; there is no general way for
struct foo *p[1]; static analysis to find this
Iy out

| len | pl0]

In the last lecture, we have
seen delta debugging on

Isolating Input input.

Difference
causes
failure

Now let’s take a deeper

view. If a program is a

Isolating States on of .
we tr h n
in he remainder of

Varlables Vanables mc.“! t h e r u n ?

A&W E

o) Difference)

causes

EC."’ i failure rc.“'! i

Comparing States

® VWhat is a program state, anyway?

® How can we compare states!?

® How can we narrow down differences?

Let’s look at a simpler

example first,

A Sample Program

$ sample 9 8 7

Dutpiik s Z..8.9

$ sample 11 14

Dukptaad.1.

Where is the defect

which causes this failure?

int main(int argc, char *argv[])

{

int *a;
// Input array
a = (int *)malloc(Cargc - 1) * sizeof(int));
for (int i = @; i < argc - 1; i++)
al[i] = atoiCargv[i + 11);

// Sort array
shell_sort(a, argc);

// Output array

printf("Output: ");

for (int i = @; i < argc - 1; i++)
printf("%d ", a[il);

printf("\n");

free(a);
return 0;

A sample state

® \We can access the entire state via the
debugger:

|. List all base variables
2. Expand all references...

3. ...until a fixpoint is found

Sample States

Variable Value Variable

inr, in 7y,

argc 4 5 i
argv[0] | "./sample" | "./sample" al0]
argv[1] | "9" "11" all]
argv([2] | "8" 14" al2]
argv[3] | "7" 0x0 (NIL) al3]
l/

1073834752 | 1073834752 a'[0]
1074077312 | 1074077312 a'[1]
1961 1961 a'l2]
4 3 a'[3]

at shell_sort()

Narrowing State Diffs

B = ¢ is applied, [1 =6 is not applied

a’101al0]a’ (1] all] a’[2] al2] argc argvil] argvi2] argvi3] i size Output Test
1 1789

[J

00

00

00

OO

00

00O

EEE_ B EHNE[]

Since this worked so well,

we built a debugging

server.

Complex State

® Accessing the state as a table is not enough:
® References are not handled
® Aliases are not handled

® We need a richer representation

A Memory Graph

1073834752 ‘]0740773]2] ‘ 1961 | ‘0}(8099358‘ ‘ 4 ‘ |0x8099ae8| ‘ 3 | ‘0xbffff5a4

00031 0[0.4]
[
o1 /o0l | o121 0r31 0[o] o[l | 021 0r31 0[4]
| 9 | ‘ 8 | ‘ 7 | ‘ 1961 ‘ ‘f)xbffﬂ7la| ‘0xbffft749| ‘()xbfffﬂ4c| |0xbffff74f| ‘ 0x0 |
0[0.] 0[0.] 0l0.] 0[0.]

[| [[] [7]

20

<Root>
i 1/ size\\j i argc argy
b1 0x8099ae8 ‘ 4 0x8099ae8 3 4 Oxbffff5a4
0[0..3] 0[0..3] 0[0..4]
‘ [
0[2]\‘()[3] Mu 0L2!
] 8 7 1961 Oxbffff71a Oxbffff749 Oxbffff74c
010.] 010.] 010.]
‘ ' Jsample” ‘ 9" ‘ v ||,

Structure

Memory Graph % Operation
-

T 0 +apply(name:string=""): string

2]

Vertex
*.|+value: string
+type: string
+address: void *

<root>

Construction

® Start with <root> node and base variables

® Base variables are on the stack and at fixed
locations

® Expand all references, checking for aliases...

® ___until all accessible variables are unfolded

Unfolding Memory

® Any variable: make new node

® Structures: unfold all members

® Arrays: unfold all elements

® Pointers: unfold object being pointed to

® Does p point to something? And how many?

Comparing States

00>

failing run

passing run

Comparing States

® Basic idea: compute common subgraph

® Any node that is not part of the common
subgraph becomes a difference

® Applying a difference means to create or
delete nodes — and adjust references

® All this is done within GDB

Applying Diffs

015 creates a variable, 8»¢ deletes another N

Causes in State

Sane state

The difference
causes GCC to crash!

Search in Space

Sane state

T = -

Mixed state

State of the GNU compiler
(GCO

42991 vertices

44290 edges - and 1 1is
wrong :-)

An actual GCC execution has
millions of these states.

Search in Space

Delta Debugging Log

15 20 25 30 35 40 45
Tests executed

Search in Space

first_lqop_store_insn—=fld[1].rtx—=fld[1].rtx—
f1d[3].rtx—fld[1].rtx—code == PLU$}

Search in Space

Sane state

‘
Mixed state

Search in Space

Sane state

<PLUS node>

Search in Time

Passing run

5o <PLUS node> «—

Search in Time

link—=f1d[@].rtx—f1d[@].rtx == link

Search in Time

Passing run

R @2l Askigor - Automated Debugging Service - Mozilla {Build 1D: 2002072204}
. Eile Edit Yiew Go Bookmarks Tools Window Help Debug Q&

QOO O Q £ O [htpwwnwaskigots | (G Seareh | 'SQ

Result date
=) \/ 2002-10-28 00:51:38 »| Gol
J'NJ\ Status = s

Igor has finished debugging your program.

4

This is what happens in your program when it is invoked as "cc1 -0 fail.i". (vor

1 Execution reaches line 4755 of toplev.c in main.
Since the program was invoked as "cc1 -0 fail.i"
local variable argv[2] is now "fail.i"
r

2 Execution reaches I|nE 470 Uf combine.c in combine_instructions.
Since argv[2] was "
variable first_loop_store_ Tnsn—>F1d[1]. rtx—>F1d[1]. rtx—>
f1d[3]. rtx—>F1d[1]. rtx now points to a new rtx_def

Execution reaches line 6761 of combine.c in if_then_else_cond.
Since first_loop_store_insn—>f1d[1].rtx—>f1d[1].rtx—>
f1d[3]. rtx—>f1d[1]. rtx pointed to a new rtx_def,
variable 1ink->f1d [0]. rtx->f1d[0]. rt= is now Tink

et
Execution ends.
Since 1ink=>f1d[0]. rtx—>f1d[0]. rtx was 1ink,
the program crashes with a SIGSEGY signal.
The program

Need more details? Select the effects you want to focus upon an;
Plain wrong? Please check the ploms as determined by Igor.
Any questions? See the Asklgor Forum!

@ &2 & [| bocument: Done (0.557 secs)

Capturing State

for Python programs

if __name.. == "__main._
sys.settrace(tracer)

def tracer(frame, event, arg):
dump_stack(frame)
return tracer

Capturing State

for Python programs

def dump_stack(frame):
while frame is not None:
dump_frame(frame)
frame = frame.f_back

def dump_frame(frame):
locals = frame.f_locals
globals = frame.f_globals
print locals, globals

Manipulating State

for Python programs

def dump_frame(frame):
locals = frame.f_locals
locals['a'] = 42

equivalent to assignment
“a =42"in frame

Caveats

Python frame objects are translated back to
internal frames only after tracer() has returned:

® Frames can be inspected at any time, but
changed only in tracer()

® Output of variables during tracer() may
inhibit their translation at return

Open Issues

® How do we capture an accurate state!
® How do we ensure the cause is valid?
® Where does a state end?

® What is the cost!?

® When do we compare states! (next lecture)

Concepts

* Delta Debugging on program states isolates
a cause-effect chain through the run

* Use memory graphs to extract and compare
program states

* Demanding, yet effective technique

