How Failures Come to be

Andreas Zeller

An F-16

(northern hemisphere)

An F-16

(southern hemisphere)

An F-16 fighter plane
on the northern
hemisphere.

Why the northern
hemisphere, you ask?

Because this is what
an F-16 on the
southern hemisphere
would look like.
(BTW, interesting
effect if you drop a
bomb :-)

From risks.digest,
volume 3, issue 44:

n Sinca +ha F_1A 1c n

From risks.digest,

F-16 Landing Gear volume 3, issue 44:
o One of the first

things the Air Force
test pilots tried on
an early F-16

was to tell the
computer to raise the
landing gear while
standing still on

the runway. Guess
what happened? Scratch
one F-16. (my friend

Retrieved by a
The First Bug technician from the

September 9, 1947 Har‘vqrd Mar'k II
machine on

September 9, 1947.
Qza\m\ 70 ?ﬂf\\(

Motiin celay Now on display at the
Smithsonian,

F" L3 B c.s¢ o bu eing found.
e B e Washington

e /i %JW shadst.

More Bugs

Das System konnte die Installation
S e e
Kicien Sie el DURCHSUHEN tn de Date
weitethin

auf den Datentrager
gentl(chIEREl b n gt
uf den Datentrager gl

ver
ul 1 wlllc inmer erst gepruft werden,
virklich entfernt werden kan

Sarioo Howdolfndi? Subscrive to paj

W Money M Spots M Life M Tech

Offbeat | inside News Buy a car - Eventtickets - Job search - Real estate - Shopp)

Report: Malaysian man hit with $218 trillion Related Advertising Links

Savings, Credit Cards, Loans
phone
o 0/2006 12:31 F E-mail | Save | Print |

Kodak Easyshare Printers

KUALA LUMPUR, Malaysia (AP) — A Malaysian man was speechless when he received a $218 trillion phone N .
nts for up to 50% less than other.
m

bill and was ordered to pay up within 10 days or face prosecution, a newspaper reported Monday. P

Yahaya Wahab said he disconnected his late father's phone line in January after he died and settied the 84
ringgit (523) bill, the New Straits Times reported.

Advertsement

But Telekom Malaysia later sent him a bill for 806,400,000,000,000.01 ringgit (5218 trillion) for recent telephone
calls along with orders to settie within 10 days or face legal proceedings, the newspaper reported.

It wasn't clear whether the bill was a mistake, or if Yahaya's father's phone line was used illegally after his death. AMERICAN EXPRESS IS READY

“Ifthe company wants to seek legal action as mentioned in the letter, I'm ready to face it” the paper quoted TO COMMIT UP TO

Yahaya as saying. "In fact, | cant waitto face it"

Yahaya, from northern Kedah state, received a notice from the company's debt-collection agency in earty April, .
the paper said. Yahaya said he nearly fainted when he saw the new bill FOR ONE BIG IDEA
TO BETTER OUR WORLD.
Government-linked Telekom Malaysia Bhd. is the country's largest telecommunications company.

A company official, who declined to be identified because she was not authorized to speak to the media, said
Telekom Malaysia was aware of Yahaya's case and would address it. She did not provide further details.

Copyright 2006 The Associated Press. All rights reserved. This material may not be published, broadcast,
rewritten or redistributed.

Facts on Debugging

Software bugs cost ~60 bln US$/yr in US
Improvements could reduce cost by 30

Validation (including debugging) can easily
take up to 50-75% of the development time

When debugging, some people are three
times as efficient than others

A Sample Program
$ sample 9 8 7
OuiEpuiksed 8.0

$ sample 11 14
Quikpritaad.1

How to Debug

(Sommerville 2004)

Design Repair Re-test

Locate error !
error repair error program

The Traffic Principle

rack the problem
eproduce
utomate

ind Origins

ocus

solate

orrect

The Traffic Principle

ind Origins
ocus
solate

From Defect to Failure

. The programmer creates a
defect — an error in the code. Variables

. When executed, the defect
creates an infection — an
error in the state.

. The infection propagates.
. The infection causes a failure.

This infection chain must be
traced back — and broken.

The Curse of Testing

) Variables

® Not every defect causes
a failure!

Testing can only show the
presence of errors — not

their absence.
(Dijkstra 1972)

Every failure can be
traced back to some
infection, and every
infection is caused by
some defect.

Debugging means to
relate a given failure to the
defect — and to remove
the defect.

Search in Space + Time

variables

The defect must be searched in
space and _time_

The Defect

variables

Search in Time

variables

Search in Time

variables

Search in Time

variables

S R S| O N OO (NN
e S X S

Search in Space

variables

il i s s o V]

Search in Space

variables

=

Search in Space

variables

4

A Program State

-

£3

State of the GNU
compiler (GCO)

42991 vertices

44290 edges - and 1 1is
wrong :-)

An actual GCC
execution has millions
of these states.

A Sample Program

$ sample 9 8 7
Outputs. 72.8.9

$ sample 11 14

int main(int argc, char *argv[])
{
int *a;
int 1i;
a = (int *)malloc(Cargc - 1) * sizeof(int));
for (i =0; i <argc - 1; i++)
al[i] = atoiCargv[i + 11);
shell_sort(a, argc);
printf("Output: ");
for (i1 =0; i <argc - 1; i++)
printf("%d ", a[il);
printf("\n");
free(a);

return 0;

Find Origins

The 0 printed is the
value of a[0]. Where
does it come from?

Basic idea: Track or
deduce

Separates relevant from
irrelevant values

We can trace back a[0]
to shell_sort

static void shell_sort(int a[], int size)
{
intasies e
int h = 1;
do {
= s 3 ek kg
} while (h <= size);
do {
/= 355
for (i = h; 1 < size; i++)

{

int v = a[i];

for (j =1i; j>=h & alj - h] > v; j -= h)
aljl = a[j - hl;

i @ U=)
alil = v;

Ch 1= 1);

Observing a Run

variables

argvargv a ES a
argc [0] [1] [O0] [1] [2] i size h a = malloc(...)

i=0

a[i] = atoi(argv[i + 1])
i++

a[i] = atoi(argv[i + 1])
i++

shell_sort(a, argc)

return 0

Specific Observation

static void shell_sort(int a[], int size)
{
fprintf(stderr, “At shell_sort”);
for (i = 0; i < size; i++)
fprintf(stderr, “a[%d] = %d\n”, i, a[il);
fprintf(stderr, “size = %d\n”, size);
e g 315 $ sample 11 14
int h = 1; af0] = 11

afl] = 14
al2]
size

Output: 0 11

The state is infected at the call of shell_sort!

FIXME: argv[@] should
be “sample”, not “11”

Fixing the Program

int main(int argc, char *argv[])
{

int *a;

int 1i;

a = (int *)malloc(Cargc - 1) * sizeof(int));
for (i =0; i <argc - 1; i++)
a[i] = atoiCargv[i + 11);

shell_sort(a, argc); 1); e
Output: 11 14

Finding Causes

Sane state

The difference
causes the failure

Search in Space

Sane state

Search in Time

Failing run Passing run

Transition from argc to a[2]

int main(int argc, char *argv[])
{

int *a;

// Input array
a = (int *)malloc(Cargc - 1) * sizeof(int));
for (int i = 0; 1 < argc - 1; i++)

a[i] = atoiCargv[i + 11);

// Sort array
shell_sort(a, argc); Should be argc - 1

// Output array

printf("Output: ");

for (int i = 0; 1 < argc - 1; i++)
printf("%d ", a[il);

printf("\n");

free(a);
return 0;

Askigor - Automated Debugging Service
el A Al| e ||+ | Arhup://www.askigor.org/ ~(Q-

ASK .‘\3 * [y_? Status “20‘0;-0‘3‘-12 10:30:54) (Go!
<)

Igor has finished debugging your program.

This is what happens in your program when it is invoked as "sample 11 14". (

1 Execution reaches line 35 of sample.c in main.
Since argc was 3,
local variable a[2] is now 0.

2 Execution reaches line 18 of sample.c in ;hel\ison for the 2nd time.
Since a[2] was 0,
local variable v is now @.

Execution reaches line 15 of sample.c in shell_sort for the 2nd time
Since vwas 0,
local variable a[@] is now 0.

Execution ends.

Since a[@] was 0,

the now contains "@".
The program

Need more details? Select the effects you want to focus upon and (re-debug it) (

Plain wrong? Please check the as determined by Igor.
Any questions? See the !

Concepts

* A failure comes to be in three stages:
|. The programmer creates a defect
2. The defect causes an infection

3. The infection causes a failure — an
externally visible error.

* Not every defect results in an infection, and
not every infection results in a failure.

Concepts (2)

* To debug a program, proceed in 7 steps:

rack the problem
eproduce
utomate

ind Origins

ocus

solate

orrect

Concepts (3)

* A variety of tools and techniques is
available to automate debugging:

® Program Slicing
Observing & Watching State
Asserting Invariants
Detecting Anomalies

Isolating Cause-Effect Chains

