
Andreas Zeller

Fixing the Defect

Oral Exams

• Tentative dates announced this week

• Dates will be fixed end of week

• Each exam will take 25 minutes

• No aids allowed besides brain and mouth

2

Next Tuesday

• Lecture starts at 9am

3

1

2

3

Next Thursday

• Will end with Q&A session

4

Andreas Zeller

Fixing the Defect

6

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

4

5

6

Techniques

7

Infections
e.g. a failed assertion

Causes
e.g. a[2] = 0

causes the failure

Anomalies
e.g. f() executed
only in failing run

Code smells
e.g. uninitialized variable

Dependences
e.g. a[2] comes from a[0]

How do we integrate
these techniques?

All Techniques

8

✘ t

Dependencies

9

✘
!

! !

!
!

!
!

!
!

!

!

! !

t

7

8

9

✘

Observation

10

! !

!
!

!
!

!
!

!

!

! !

!✘
t

✘

Observation

11

! !

!
!

!
!

!
!

!

!

! !

✘
t

✘

Assertion

12

! !

!
!

!
!

!
!

!

!

! !

✘

✔

✔

t

10

11

12

✘

Assertion

13

! !

!
!

!
!

!
!

!

!

✘

✔

✔

t

✘

Anomaly

14

! !

!
!

!
!

!
!

!

!

✘

✔

✔ ✘

t

✘

Anomaly

15

! !

!
!

!
!

!

!

!

✘

✔

✔ ✘

t

13

14

15

✘

Cause Transition

16

! !

!
!

!
!

!

!

!

✘

✔

✔ ✘

✔

✘

t

✘

The Defect

17

! !

!
!

!

!

!

✘

✔

✔ ✘

✔

✘

t

18

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
ure

16

17

18

Validating the Defect

Any element of the infection chain must be

• infected – i.e., have an incorrect value

• a failure cause – i.e., changing it causes the
failure to no longer occur

Demonstrate by experiments and observation

19

Is the Error a Cause?

20

a = compute_value();
printf("a = %d\n", a);

a = 0

Is the Cause an Error?

21

balance[account] = 0.0;
for (int i = 0; i < n; i++)
 balance[account] += deposit[i]

// account 123 is wrong - fix it
if (account == 123)
 balance[123] += 45.67

19

20

21

static void shell_sort(int a[], int size)
{
 int i, j;
 int h = 1;
 do {
 h = h * 3 + 1;
 } while (h <= size);
 do {
 h /= 3;

 {
 int v = a[i];
 for (j = i; j >= h && a[j - h] > v; j -= h)
 a[j] = a[j - h];
 if (i != j)
 a[j] = v;
 }
 } while (h != 1);
}

 for (i = h; i < size; i++) for (i = h; i < size - 1; i++)

22

“Ignorant Surgery”

Validating Causality

• In principle, we must show causality for
each element of the infection chain

• However, a successful correction
retrospectively validates causality:

• Since the failure has gone, we have
proven that the defect caused the failure

• Yet, we must not fall into ignorant surgery

23

Think before you code

24

Before applying a fix, you must understand

• how your code change will break the
infection chain, and

• how this will make the failure (as well as
other failures) no longer occur

In fact, you have a theory about the defect

To tell whether something
is an error means to have a
correction in mind - but
these examples are not
corrections, they just fix
the problem at hand.

22

23

24

☠Find the defect by guessing:

• Scatter debugging statements everywhere

• Try changing code until something works

• Don’t back up old versions of the code

• Don’t bother understanding what the
program should do

The Devil’s Guide
to Debugging

25

The Devil’s Guide
to Debugging (2)

26

Don’t waste time understanding the problem.

• Most problems are trivial, anyway.☠
The Devil’s Guide
to Debugging (3)

27

☠Use the most obvious fix.

• Just fix what you see:

x = compute(y)
// compute(17) is wrong – fix it
if (y == 17)
 x = 25.15

Why bother going into compute()?

25

26

27

Correcting the Defect

28

Homework

29

Does the failure no longer occur?

• If the failure is still there, this should

• leave you astonished

• cause self-doubt + deep soul-searching

• happen rarely

• Note that there may be a second cause

Homework (2)

30

Did the correction introduce new problems?

• Have corrections peer-reviewed

• Have a regression test to detect
unintended changes in behavior

• Check each correction individually

Correcting the code can be
a great moment. After
having reproduced
the failure, observed the
execution, carefully tracked
back the
infection chain, and having
gained complete
understanding of what was
going on---all this has
prepared us for this very
moment, the actual
correcting of the code.
(And there was much
rejoicing.)

28

29

30

Homework (3)

31

Was the same mistake made elsewhere?

• Check for other defects caused by the
same mistake

• Other code of the same developer

• Code involving the same APIs

Homework (4)

32

Did I commit the change?

• Be sure to commit your change to

• the version control system

• the bug tracking system

Workarounds

Correcting the defect may be impossible:

• Unable to change

• Risks

• Design flaw

A workaround solves the problem at hand –
but mark it as a temporary solution

33

31

32

33

The Blues

34

Where’s the next open problem?

35

Concepts
To isolate the infection chain, transitively
work backwards along the infection origins.

To find the most likely origins, focus on

• failing assertions

• causes in state, code, and input

• anomalies

• code smells

36

Concepts (2)

To correct the defect, wait until you have a
theory about how the failure came to be

Check that the correction solves the
problem and does not introduce new ones

To avoid introducing new problems, use
code review and regression tests

34

35

36

37

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

37

