Oral Exams

® Tentative dates announced this week
® Dates will be fixed end of week
® Each exam will take 25 minutes

® No aids allowed besides brain and mouth

Next Tuesday

® | ecture starts at 9am

Next Thursday

® Will end with Q&A session

e Defect

reas Zeller

From Defect to Failure

. The programmer creates a
defect — an error in the code. [Variables

Q.

. When executed, the defect e
creates an infection — an :I:[EE:I
error in the state. :

Loy

. The infection propagates. T H

. The infection causes a failure.

This infection chain must be
traced back — and broken.

Techniques

bendences

How do we integrate
] comes from a[0]

these techniques?

Causes
.. f()"executed eg.a[2] =0
only in failing run causes the failure

Dependencies
--ll------

Observation

Assertion

P2 P P T O) R e
[R ! - v e
i o i 0 i s i i

Cause Transition

The Traffic Principle

rack the problem

eproduce
utomate
ind Origins
ocus
solate

ure

Validating the Defect

Any element of the infection chain must be
® infected — i.e., have an incorrect value

® a failure cause — i.e., changing it causes the
failure to no longer occur

Demonstrate by experiments and observation

Is the Error a Cause?

= compute_value();
pRinEEG s K ni

Is the Cause an Error?

balance[account] = 0.0;
for. (antaia= il e ain s
balance[account] += deposit[i]

// account 123 1is wrong - fix it
i £ Caccount.—=2123)
balance[123] += 45.67

To tell whether something
static void shell_sort(int a[], int size) i n rror m n r] \"4

{ rrection in mind -

Nty

idgt{h P “I S L1 Ij—Sﬁj—a—M—s—ah X m I re th
h=h*3=+1; dondaabad 20 | rr ion h | fix

hile (h <= si]
iow{l e (h <= size) r] r I m r] N

n /= 3¢
for (i = h; i < size;-i3$)i++)

{

int v = a[i]l;

for (j =1i; j >=h & alj - h] > v; j -= h)
aljl = alj - hl;

iy @ U=)
alil = v;

Ch 1= 1);

Validating Causality

® |n principle, we must show causality for
each element of the infection chain

® However, a successful correction
retrospectively validates causality:

® Since the failure has gone, we have
proven that the defect caused the failure

® Yet, we must not fall into ignorant surgery

Think before you code

Before applying a fix, you must understand

® how your code change will break the

infection chain, and

® how this will make the failure (as well as
other failures) no longer occur

In fact, you have a theory about the defect

The Devil’s Guide
to Debugging

Find the defect by guessing:
® Scatter debugging statements everywhere
® Try changing code until something works
® Don’t back up old versions of the code

® Don’t bother understanding what the
program should do

The Devil’s Guide
to Debugging (2)

Don’t waste time understanding the problem.

® Most problems are trivial, anyway.

The Devil’s Guide
to Debugging (3)

Use the most obvious fix.

® Just fix what you see:

x = compute(y)
// compute(l7) is wrong - fix it
if (y == I'®

X =g46.15

Why bother going into compute()?

Correcting the code can be

: . - X a great moment. After
Correctl,n,g;t,‘_‘; e-Dere having reproduced

»
‘
".04:'

the failure, observed the
execution, carefully tracked
back the
infection chain, and having
gained complete
understanding of what was
going on—--all this has
prepared us for this very
moment, the actual
correcting of the code.

28 (And there was much

Homework

Does the failure no longer occur?
® If the failure is still there, this should
® |eave you astonished
® cause self-doubt + deep soul-searching
® happen rarely

® Note that there may be a second cause

Homework (2)

Did the correction introduce new problems?
® Have corrections peer-reviewed

® Have a regression test to detect
unintended changes in behavior

® Check each correction individually

Homework (3)

Was the same mistake made elsewhere?

® Check for other defects caused by the
same mistake

® Other code of the same developer

® Code involving the same APIs

Homework (4)

Did | commit the change?
® Be sure to commit your change to
® the version control system

® the bug tracking system

Workarounds

Correcting the defect may be impossible:
® Unable to change
® Risks
® Design flaw

A workaround solves the problem at hand —
but mark it as a temporary solution

The Blues

Where’s the next open problem?

Concepts

* To isolate the infection chain, transitively
work backwards along the infection origins.

* To find the most likely origins, focus on
* failing assertions
® causes in state, code, and input
* anomalies

e code smells

Concepts (2)

* To correct the defect, wait until you have a
theory about how the failure came to be

* Check that the correction solves the
problem and does not introduce new ones

* To avoid introducing new problems, use
code review and regression tests

