Tracing Infections

® For every infection, we must find the earlier
infection that causes it.

® Which origin should we focus upon?

Tracing Infections




Focusing on Anomalies

® Examine origins and locations where
something abnormal happens

What’s normal?

® General idea: Use induction — reasoning
from the particular to the general

® Start with a multitude of runs

® Determine properties that are common
across all runs

What’s abnormal?

® Suppose we determine common properties
of all passing runs.

® Now we examine a run which fails the test.

® Any difference in properties correlates with
failure — and is likely to hint at failure causes




Detecting Anomalies

W /37
- R H 5

Properties Properties

Differences correlate with failure

Properties

that hold in all runs:
® “f() is always executed”

® “After open(), we eventually have close()”

Comparing Coverage

. Every failure is caused by an infection,
which in turn is caused by a defect

. The defect must be executed to start the
infection

. Code that is executed in failing runs only is
thus likely to cause the defect




The middle program

$ middle 3 3 5
middle: 3

$ middle 2 1 3

int main(int arc, char *argv[])
{
int x
int y
int z
int m

atoiCargv[1l]);
atoiCargv[2]);
atoiCargv[3]);
middle(x, y, z);

printf("middle: %d\n", m);

return 0;

int middle(int x, int y, int z) {
it m=7;
TRy ez
1E (i< )
Mes Vi
eliseid £ Gxa cuzs)
MgV
} else {
IEER EXESEVS)
m=y;
else if (x > z)
i = %
b

return m;




Obtaining Coverage

for C programs

Obtaining Coverage

for Python programs

b nae sl ——ataiimonaite
sys.settrace(tracer)
= sys.argv[1]
= sys.argv[2]
= sys.argv[3]
= middle(x, y, z)

print "middle:", m

Obtaining Coverage

for Python programs

def tracer(frame, event, arg):

code = frame.f_code

function = code.co_name

filename = code.co_filename

line = frame.f_lineno

print filename + ":" + "line + \
":" + function + "O:", \
event, arg

return tracer




Obtaining Coverage

for Python programs

$ ./middle.py 3 3 5
./mid
./mid
./mid
./mid
./mid
./middle.py:19:middle(): line None
./middle.py:26:middle(): line None
./middle.py:26:middle(): return 3
middle: 3

For remaining steps,
see new project

int middle(int x, int y, int z) {
Ulthe filh = 725
if (y <2) {
if (x <vy)
m=y,;
else if (x < 2)
m=y;
} else {
if (x>y)
m=y;
else if (x > 2)
mi=0xs

® &6 0 0 0 w N —

}

return m;

Discrete Coloring

executed only in failing runs
highly suspect

. executed in passing and failing runs
ambiguous

executed only in passing runs
likely correct




int middle(int x, int y, int z) {
InEmi=sz;
if (y <2) {
if (x <y)
m=y,;
else if (x < 2)
m=y;
} else {
if (x> y)
m=y;
else if (x > z)
m= Xx;

® & 0 0 0 Wi —

}

return m;

int middle(int x, int y, int z) {
int m= z;

if (y <z){

® &6 0 0 0 w N —

else if (x < 2)
m=y;

return m;

Continuous Coloring

executed only in failing runs

. passing and failing runs

executed only in passing runs




Hue

%passed(s)

h = h e e e A
ue(s) = red hue + %passed (s) + %failed(s)

X hue range

0% passed - 100% passed

Brightness

bright (s) = max(%passed (s),%failed(s))

rarely executed

¥
int middle(int x, int y, int z) {
intm=z;

if (y <2z) {

® & 0 0 0 Wi —

M X E——

return m;

Source: Jones et al., ICSE 2002




File
(O Default = Summary ) Passes (' Fails () Mixed ® Shaded ¥ 5 Lina: 3754

ine

Executions: 34 § 300
Passed: 5 / 267
Failed: 29 / 33

Source: Jones et al., ICSE 2002

Evaluation

How well does comparing coverage detect
anomalies?

® How green are the defects? (false negatives)

® How red are non-defects? (false positives)

Space

® 8000 lines of executable code
® |000 test suites with156—4700 test cases

® 20 defective versions with one defect each
(corrected in subsequent version)




Color distribution for Faulty Statements

8
£
5
£
g
|
[
z
£
§
<
°
4
8
s
2
H
2
]
3
5
S
o

Faulty Statements

I8 of 20 defects are
correctly classified in the
“reddest” portion of the

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Faulty Version

urce: Jones et al., ICSE 2002

Non-faulty Statements

The “reddest” portion is at
most 20% of the code

1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20
Faulty Versions

Source: Jones et al., ICSE 2002

Siemens Suite

® 7 C programs, 170-560 lines
® |32 variations with one defect each
e |08 all yellow (i.e., useless)

® | with one red statement (at the defect)

Source: Renieris and Reiss, ASE 2003




Nearest Neighbor

Nearest Neighbor

ﬁ

Compare with the single run
that has the most similar coverage

Locating Defects

‘O Nearest Neighbor ‘O Intersection
Renieris+Reiss (ASE 2003) Jones et al. (ICSE 2002)

% of failing tests
(9] ~ o
o (0] o

N
(O}

o

0 <I0 <20 <30 <40 <50 <60 <70 <80 <90 <100
% of executed source code to examine




Concepts

* Comparing coverage (or other features)
shows anomalies correlated with failure

* Nearest neighbor or sequences locate
errors more precisely than just coverage

* Models add extra program understanding

* Low overhead + simple to realize




