
Andreas Zeller

Causes and Effects

2

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

bug.c

3

Where is the error
which causes this failure?

1

2

What do we do now?
We can follow Platon
and say: Hey, let’s just
verify this compiler,
let’s do more
abstraction, let’s do
more of the same.
(This is what I learned
in school: The state of
the art is bad, but if
only people would do
it our way, than the
world would be a
better place where all

3

4

Locating Errors
An error is a deviation from what is correct,
right, or true:

• Input (“The URL must be well-formed”)

• Variables (“link is zero”)

• Statements (“even(2) must return true”)

How do we know one of these is correct?

How can we say “The defect is here”?

// Get #years, #days since 1980
days = ...;
year = 1980;
while (days > 365) {
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366; year += 1;
 }
 }
 else {
 days -= 365; year += 1;
 }
}

6

Locating Causes
An aspect of the execution causes a failure
if it can be altered such that the failure
no longer occurs:

• Input (“11 14”)

• Variables (“argc = 2”)

• Statements (“Line 37”)

Note that a cause need not be an error!

4

http://www.aeroxp.org/2009/01/
lesson-on-infinite-loops/
http://www.youtube.com/watch?
v=fYTJ9v2vsaE

5

6

Causality

The notion of causality is deeply linked to
fundamental questions of philosophy:

• What is it that makes things happen?

• Can we predict the future from causes?

• If everything has a cause, what is the
ultimate cause of events in the past?

7

Aristotle
(384-322 BC)

8

Aristotle on Causality

Aristotle suggested four types of causes:

• The material of which things come

• The form which things have when they
are perfected

• The moving cause or actual agent

• The purpose or function of such things

9

7

8

9

Example
Creating a silver chalice for a
religious ceremony

• Material cause – the silver

• Formal cause – the design of
the chalice

• Efficient cause – the silversmith

• Final cause – the religious
ceremony

10

William of Ockham
(1288-1349)

11

Ockham on Causality

• The only way in which we can establish any
causal connection between one thing and
another is the observation that when one of
these occurs, the other also occurs at the same
time and at or near the same place.

• This is the only way to establish causality

12

10

11

12

David Hume
(1711-1776)

13

Hume on Causality

• When we see that two events always occur
together, we tend to form an expectation
that when the first occurs, the second will
soon follow.

• This constant conjunction and the
expectation thereof is all that we can know
of causation, and all that our idea of
causation can amount to.

14

Causality as Illusion

• Just because the sun has risen every day
since the beginning of the Earth does not
mean that it will rise again tomorrow.

• Bertrand Russell: “causation = superstition”

15

13

14

15

Counterfactuals

16

• We may define a cause to be an object
followed by another, and where all the
objects, similar to the first, are followed by
objects similar to the second. Or, in other
words, where, if the first object had not been,
the second never had existed. (Hume, 1748)

• Hume never explored this alternative

17

Alternate
world

Effect does not occur

Causality

Actual world

Effect does occur

Causes

18

bug.c
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✘

Hume also gave an
alternate definition of
causality, though - a
counterfactual one.
“Counterfactual”
means to reason
about the opposite of
the current fact (the
cause)

16

17

18

19

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
empty.c

20

Alternate
world

empty.c: GCC works fine

Causes as Differences

Actual world

bug.c: GCC crashes
Cause:
bug.c

More possible causes

21

GCC code invocation me

Linux electricity oxygen

19

20

21

David Lewis
(1941-2001)

22

Lewis on Causation

23

• C o→ E means “If C had been the case, E
would have been the case”

• C causes E if C o→ E and ¬C o→ ¬E hold.

• C o→ E holds if some C-world where E holds
is closer to the actual world than is any C-world
where E does not hold.

Possible Worlds

24

C o→ E holds if some C-world where E holds
is closer to the actual world than is any C-world
where E does not hold.

‣ A world with an alternate GCC input is
closer than a world without oxygen

‣ A world with GCC fixed may be closer than
a world with an alternate GCC input

22

23

24

25

Actual Causes

Actual cause

“The” cause (actual cause) is a minimal difference

26

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
Isolating Causes

27

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
Isolating Causes

25

26

27

28

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✘

29

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

Actual cause narrowed down

30

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
Isolating Causes

28

29

30

31

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✘

32

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

Actual cause of the GCC crash

33

Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?

31

32

33

34

Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?

“+ 1.0”

Search Space

35

The choice of an initial set of differences
determines the search space for causes:

• the input (data, configuration, …)

• the program state

• the program code

Sets a common context between worlds

Search Space

36

Input State Code

OS Compiler Processor

FBI E.T. Them!

34

35

36

Ockham’s Razor

37

• Whenever you have
competing theories for
how some effect comes
to be, pick the simplest.

Ockham’s Razor

38

In our context:

• Whenever you have the choice between
multiple causes, pick the one whose alternate
world is closer.

Search Space

39

close

far away

far out

Input State Code

OS Compiler Processor

FBI E.T. Them!

37

38

39

Hanlon’s Razor

40

• Never explain
by malice which
is adequately
explained by
stupidity

Verifying Causes

Do we know the configuration in .psharprc
causes the failure?

41

$./psharp db.p#
.psharprc: 37: no such interpreter
.psharprc: 37: bailing out
Segmentation fault

42

Causes and Effects

To prove causality, one must show that

• the effect occurs when the cause occurs

• the effect does not occur when the cause
does not.

This is the only way to prove causality

Napoleon, Goethe,
Richard Feinman,
Robert Heinlein

40

41

42

Verifying Causes

So it wasn’t the configuration after all

43

$ mv ~/.psharprc ~/.psharprc.orig
$./psharp db.p#
Segmentation fault

Verifying Causes

Avoid post hoc ergo propter hoc fallacies

44

$./psharp db.p#
.psharprc: 37: no such interpreter
.psharprc: 37: bailing out
Segmentation fault

Verifying Causes

45

a = compute_value();
printf("a = %d\n", a);

a = 0

43

44

45

Is variable a zero?

46

a = compute_value();
a = 1;
printf("a = %d\n", a);

a = 0

What’s going on?

47

double a;
a = compute_value();
a = 1;
printf("a = %d\n", a);

a = 0

What’s going on?

48

double a;
a = compute_value();
printf("a = %f\n", a);

a = 3.14…

46

47

48

What’s going on?

49

double a;
a = compute_value();
printf("a = %f\n", a);

We have isolated the format "%d"
as the actual failure cause

Preemption

50

Billy and Suzy throw rocks at a bottle. Suzy
throws first so that her rock arrives first and
shatters the glass. Without Suzy's throw,
Billy's throw would have shattered the bottle.

• Does Suzy’s throw cause the shattering?

Alteration

• C influences E if C can be altered to C’ such
that E’ occurs instead of E (Lewis; 1999)

• If Suzy had not thrown the stone, the bottle
would have shattered in a different manner

• Therefore, Suzy’s throw influenced and
caused the original shattering

51

49

50

51

What’s the Failure?

• Every failure has some aspects that we
consider relevant

• This choice influences the search for causes

• If the entire state of the program is part of
the failure, we get very detailed causes

• If just one aspect is relevant, we get simpler
causes – sometimes too simple

52

Concepts

53

A cause is an event preceding another
event (the effect) without which the effect
would not have occurred

A cause can be seen as a difference
between a world where the effect occurs
and a world where it does not

An actual cause means a minimal difference

54

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

52

53

54

