
Automated Debugging

Software Engineering Chair February 11, 2009

Project 4: Cause-Effect Chains

In this project, you will write a tool that isolates failure-inducing program states. Your
task is to implement the tool and apply it to the XMLProc parser from Project 11.

Isolating Cause-Effect Chains (60% of the points)

Overview

Create a tool that isolates cause-effect chains by comparing a passing and a failing
program run. You will implement a simplified version of the HOWCOME tool (see
Zeller, “Isolating Cause-Effect Chains from Computer Programs” (ICSE 2002)2). The
main file of your tool should be called howcome.py and it should be callable as follows:

python howcome.py UNIT_TEST PASSING_TEST FAILING_TEST LOCATIONS_TXT

UNIT_TEST is the name of the test case class that contains the passing and failing tests
to be compared (see the Python’s unittest framework for details3). PASSING_TEST is
the name of a passing test from the unit test above and FAILING_TEST is the name of a
failing test from the unit test above. LOCATIONS_TXT is the name of the file containing
locations in the test runs at which the two program states should be compared and
failure-inducing state differences should be isolated. Each line in this file should have
the following format:

RELATIVE_FILE_NAME:LINE_NUMBER:EXECUTION_NUMBER

where RELATIVE_FILE_NAME is the path to the file relative to the directory, from which
your tool was called, LINE_NUMBER is the line number of the line, at which to isolate
the state differences, and EXECUTION_NUMBER is the number specifying, during which
execution of the given line to isolate the state differences.

A sample call to isolate the differences between two runs of the XMLProc parser
looks as follows:

python howcome.py XMLProcTests.TestXMLProc testPass testFail locs.txt

This means that there is an XMLProcTests.py file in the current directory and that
it contains a test case called TestXMLProc. This test case contains two test methods:
testPass and testFail. locs.txt specifies the locations, like in this example:

1http://www.st.cs.uni-saarland.de/whyprogramsfail/code/xmlproc-0.70a.zip
2http://www.st.cs.uni-saarland.de/papers/fse2002/p201-zeller.pdf
3http://docs.python.org/library/unittest.html

1



xmlproc/xml/parsers/xmlproc/xmlutils.py:185:1
xmlproc/xml/parsers/xmlproc/xmlproc.py:85:4

This locations file specifies that failure-inducing state differences should be isolated at
two points in time during the program executions:

• The first time the execution reaches the line 185 of the file
xmlproc/xml/parsers/xmlproc/xmlutils.py.

• The fourth time the execution reaches the line 85 of the file
xmlproc/xml/parsers/xmlproc/xmlproc.py.

Your tool should output the failure-inducing state differences on the standard output.
You have freedom in choosing the output format, but be sure to output all the locations
and their respective failure-inducing state differences (deltas) in a human-readable form.

Test Cases

Use your tool on the middle.py program to do the first steps and make sure everything
works as expected. The simplicity of this program should make debugging your tool
easier.

Apply your finished tool on the XMLProc parser from Project 1. Your test case
should contain two tests: one passing, with XMLProc being invoked on the input
<?m?><!DOCTYPEl PUBLIC""""><a>&#10;</a>, and one failing, with XMLProc being
invoked on the input <?m?><!DOCTYPEl PUBLIC""""><a>&#xa;</a>. Invoke XMLProc
using a similar approach to the one you used in the 1st Project. However, do not write
the inputs to files and call a parse_resource method, but rather use methods reset,
feed, and flush to pass a string to the XMLProc parser. This facilitates isolating
failure-inducing state differences. If you have trouble with this, ask your tutor for help.
Use the following locations file to isolate failure-inducing state differences in the two test
runs specified above:

xmlproc/xml/parsers/xmlproc/xmlutils.py:185:1
xmlproc/xml/parsers/xmlproc/xmlproc.py:85:4
xmlproc/xml/parsers/xmlproc/xmlproc.py:391:1
xmlproc/xml/parsers/xmlproc/xmlproc.py:400:1

What are the failure-inducing state differences? Are they helpful in locating the part of
the input that causes the defect? Are they helpful in locating the defect? If so, what is
the fix that will make the XMLProc parser work correctly on both of the inputs above?

Approaching the Problem

You can use the website http://www.whyprogramsfail.com/project3.php to guide
you in implementing the tool specified above, but be sure to take into account the
following things:

2



• Your tracing function should operate on specific lines, not functions. Moreover,
remember to take the execution number into account (see the specification of the
locations file above).

• To copy state, use the function copy.deepcopy. Only if the value to be copied is a
module or if this function raises an exception should you simply return the original
value without copying it. Be sure not to use copy.copy. Read the specification of
the copy.deepcopy function carefully: make sure you understand how to make it
treat aliases appropriately when copying many values in a row. If you have trouble
with this, ask your tutor for help.

• Make sure your tool works as specified above. Do not simply implement a debug
function to be called from outside. This also means that you do not have to provide
a README file.

• Do not implement any of the advanced methods described by the website.

• You do not have to run your tool on the test cases described by the website, but
keep in mind that it may help you make sure your tool works correctly.

Some parts of this project are tricky and can be difficult to get done right. Be sure
to start sufficiently early and contact your tutor if you are stuck somewhere during this
process.

Finding Compatible States (30% of the points)

Extend your tool such that it collects states at all locations during the executions of the
passing and failing test and discovers pairs of compatible states. Two states from differ-
ent runs are compatible if it is possible to apply isolating failure-inducing state differences
on them. More precisely, two states are compatible if their backtraces have the same
length and locations of all respective frames in the backtraces are identical. Your ex-
tended tool should be runnable just like the base version, but it should additionally look
for all pairs of compatible states and output them to the file compatible_states.txt.
Each line in this file should have the following format:

PASSING_RUN_LOCATION == FAILING_RUN_LOCATION

where both PASSING_RUN_LOCATION and FAILING_RUN_LOCATION are locations with the
same format as those in the locations file. Sample output snippet looks like this:

xmlproc/xml/parsers/xmlproc/xmlapp.py:146:1 == xmlproc/xml/parsers/xmlproc/xmlapp.py:146:1

xmlproc/xml/parsers/xmlproc/xmlapp.py:169:1 == xmlproc/xml/parsers/xmlproc/xmlapp.py:169:1

Identifying Cause Transitions (10% of the points)

How can compatible states calculated in the part above be used for automatic identi-
fication of cause transitions, as described in the paper of Cleve and Zeller, “Locating

3



Causes of Program Failures” (ICSE 2005)4? Sketch an algorithm for doing this. You do
not have to implement it.

Submission

Submit your solution as a .zip file to wasylkowski@cs.uni-saarland.de with [Project 4]
in the subject. Provide your full name and matriculation number in the body of the
email. Be sure to adhere exactly to the input and output specification as given above.
Include the answers to the questions stated in the assignment in the body of the email.
If you have any questions or need clarification regarding the assignment, send an e-mail
to wasylkowski@cs.uni-saarland.de.

The deadline is 2009-02-13 18:59.

4http://www.st.cs.uni-saarland.de/papers/icse2005/p88-cleve.pdf

4


