
Automated Debugging

Software Engineering Chair December 18, 2008

Project 3: Detecting Anomalies

In this project, you will write a tool that collects invariants during a program run and
reports violations of the invariants learned. Your task is to implement the tool and apply
it to the XMLProc parser from Project 11. The parser comes with a failing test input
demo/urls.xml. Apply your tool to the run of XMLProc on that input. Do invariant
violations help in discovering the cause of the failure? If so, which ones?

Collecting Invariants and Reporting Violations (60% of the points)

Overview

Create a tool that collects invariants from a a given program run on a given input, and
at the same time reports all violations of the invariants learned. You will implement a
simplified version of the DIDUCE tool (see Hangal and Lam, “Tracking Down Software
Bugs Using Automatic Anomaly Detection” (ICSE 2002)2). The main file of your tool
should be called pyduce.py and it should be callable as follows:

python pyduce.py PROGRAM [ARGS]

PROGRAM is the program to be executed and ARGS are optional arguments to be passed
to the program. A sample call to analyze invariants of the XMLProc parser looks as
follows:

python pyduce.py xmlproc/xpcmd.py input.xml

Your tool should output invariants’ violations (more on that below).

Tracing Program Run

For a given program and its arguments, your tool should run the program on those
arguments and trace3 all lines executed in the given program. Take care not to trace
lines executed in the external libraries used by the program being analyzed (i.e., ignore all
lines located in source files that do not lie within the directory structure of the program
being analyzed). For each traced line, your tool should update invariants associated
with all local variables4.

1http://www.st.cs.uni-saarland.de/whyprogramsfail/code/xmlproc-0.70a.zip
2http://suif.stanford.edu/papers/Diduce.pdf
3use Python’s sys.settrace function for this
4You can access those via the frame parameter of the tracing function you will create

1



Updating Invariants

Invariants should be associated with combinations of variables and source code locations
where these are accessible. More precisely, instead of keeping track of invariants of the
form “x is always between 2 and 5” your tool should keep track invariants of the form “x
is always between 2 and 4 in file tooldir/main.py at line 8” and “x is always between
3 and 5 in file tooldir/main.py at line 9”.

An invariant for each variable and a location in the source code where it is accessible
is represented by two integer values V and M . V is the initial value first encountered
for this variable at this place (it should be set only once). M is a mask representing a
range of values (the ith bit is 0 if a difference was found in the ith bit, and 1 if the same
value has always been observed for that bit). Formally, if the first value of a variable is
W , then M := ¬0 and V := W hold. With each new encountered value W ′5, the mask
M becomes M := M ∧ ¬(W ′ ⊗ V ), where ⊗ is the exclusive-or operation.

The following is an example. If some variable i is first encountered at some location
with a value of 16, then V = 16 = 1000 (in binary representation) holds (M is initially
¬0 = 111116). If i is later encountered at the same location with a value of 18, V is still
unchanged, but in M the second bit is cleared because the difference between V and 18
is the second bit. Thus, M becomes 11101.

Your tool should keep track of invariants for all booleans, integers, longs and instances
of classes. In order for this to be possible, you must first convert each variable to an
integer (such that the representation based on V and M described above is applicable).
For booleans and integers this is straightforward—just use int(x) where x is the value.
For longs you should take a hashcode of the value (using Python’s built-in hash function),
and for instances of classes you should take the hashcode of the class (not the instance!).
This way all values are represented as integers.

Reporting Invariants’ Violations

Your tool should report every change of an invariant. On each invariant update, it should
check if the mask M remains the same or if it needs to be changed (i.e., the current
invariant has been violated and it needs to be relaxed). If M needs to be changed, this
should be reported in the standard output. A sample output snippet looks like this:

Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:650
Old invariant: sum == 0
New invariant: 0 <= sum <= 64

Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:646
Old invariant: 48 <= char <= 52
New invariant: 32 <= char <= 117

You can extract the ranges from V and M by manipulating and combining those values
in an appropriate way.

5at the same location in the source code!
6actually, for a 32-bit integer there would be 32 1’s, but we’ll stick to 5 for simplicity

2



Collecting Invariants for Call Sites (20% of the points)

Extend your tool such that it collects invariants for callees’ arguments at call sites. This
should allow your tool to represent invariants of the form “The argument x is always
between 10 and 15 at call to foo in file tooldir/main.py at line 85”. You can extend
the tracing function to handle calls, but take care to differentiate between the caller
and the callee: the tracing function gets informed about the call not at the call site,
but where the callee starts. It is your job to find an appropriate way to associate the
arguments with the call site and not the callee.

Filtering Invariants’ Violations (20% of the points)

Hangal and Lam in their paper introduce the notion of an invariant confidence. Im-
plement this notion in your tool and only output invariant violations that result in a
confidence changing by more than a given threshold (this should be a constant value
in your source code). Your output should now contain the confidence drop given as an
information about a violation, for example:

Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:622
Violation confidence drop: 1

Old invariant: pos == 3
New invariant: 3 <= pos <= 55

Invariant violated at xmlproc/xml/parsers/xmlproc/xmlutils.py:623
Violation confidence drop: 3

Old invariant: start == 2
New invariant: 2 <= start <= 54

Which threshold value do you find most effective? How many invariants’ violations
remain after you apply the filtering? Are these enough to discover the reason for the
failure in the XMLProc parser run on the demo/urls.xml file?

Submission

Submit your solution as a .zip file to wasylkowski@cs.uni-saarland.de with [Project 3]
in the subject. Provide your full name and matriculation number in the body of the
email. Be sure to adhere exactly to the input and output specification as given above.
Include the answers to the questions stated in the assignment in the body of the email.
If you have any questions or need clarification regarding the assignment, send an e-mail
to wasylkowski@cs.uni-saarland.de.

The deadline is 2009-01-09 23:59.

3




