Automated Debugging

Software Engineering Chair November 26, 2008

Project 2: Comparing Coverage

In this project, you write tools that collect and compare the coverage of multiple program
runs in order to detect anomalies. Your task is to implement those tools and to apply
them to two programs:

e The middle! program and its test runs as described in the book. Contrast the
failing run with the passing runs. Where does coverage information point to as
the reason for the failure?

e The XMLProc parser from Project 12. The XMLData archive® contains a number
of passing and failing test inputs. For each of the three failing test inputs, compare
their coverage with the coverage obtained from the passing test inputs. Where does
coverage information point to as the reasons for the failures?

Obtaining Coverage (30% of the points)

Create a tool that obtains coverage of a given program run on a given input. The main
file of your tool should be called get_coverage.py and it should be callable as follows:

python get_coverage.py OUTPUT_FILE PROGRAM [ARGS]

QUTPUT_FILE is the name of the file to write coverage information to. PROGRAM is the
program to be executed and ARGS are optional arguments to be passed to the program.
Two sample calls to obtain coverage of the middle.py program* and the XMLProc
parser, respectively, look as follows:

python get_coverage.py middle.cov middle.py 2 1 3
python get_coverage.py xmlproc.cov xmlproc/xpcmd.py input.xml

The output file should be a text file containing information about all the lines in the
analyzed program that were executed, with each line in the following format:

RELATIVE_FILE_NAME:LINE_NUMBER

where RELATIVE_FILE_NAME is the path to the file relative to the directory, from which
your tool was called. Sample output snippet for the first of the above calls looks as
follows:

"http://www.st.cs.uni-saarland.de/whyprogramsfail /code/middle/middle.py
2http:/ /www.st.cs.uni-saarland.de/whyprogramsfail /code /xmlproc-0.70a.zip
3http://www.st.cs.uni-saarland.de/whyprogramsfail /code/XMLdata.zip
4See the book “Why Programs Fail”, section 11.2



middle.py:21
middle.py:22
middle.py:23

Sample output snippet for the second of the above calls looks as follows:

xmlproc/outputters.py:6
xmlproc/xml/__init__.py:1
xmlproc/xml/parsers/__init__.py:1
xmlproc/xml/parsers/xmlproc/__init__.py:1
xmlproc/xml/parsers/xmlproc/charconv.py:103

Be sure not to include information about lines executed in the external libraries used
by the program being analyzed (i.e., ignore all source files that do not lie within the
directory structure of the program being analyzed).

Comparing Coverage (35% of the points)

Create a tool that compares coverage of multiple passing and failing runs. The main file
of your tool should be called diff_coverage.py and it should be callable as follows:

python diff_coverage.py PASSING_SET FAILING_SET OUTPUT_FILE

where PASSING_SET is the name of the file that contains information about passing
runs, FATLING_SET is the name of the file that contains information about failing runs
(in both those cases, the files should contain filenames of coverage files, look below for
an example), and OUTPUT_FILE is the name of the file to write the coverage comparison
to. A sample call to compare coverage of the passing and failing runs of the middle
program could look as follows:

python diff_coverage.py middle_p.txt middle_f.txt diff.txt
with the file middle_p.txt having the following content:

middle_pl.cov
middle_p2.cov
middle_p3.cov

and the file middle_f.txt having the following content:

middle_f1.cov
middle_f2.cov

The output file should be a text file containing information about all the lines covered
during one of the runs, as specified by the .cov files listed in the input files. Each line
in the output file should have the following format:

RELATIVE_FILE_NAME:LINE_NUMBER : TESTS / FAILING



where RELATIVE_FILE_NAME and LINE_NUMBER identify the covered line (see previous
section), TESTS is the percentage of test cases that covered this line (e.g, if there are in
total 5 test cases (i.e., coverage files, as in the example above, 3 passing and 2 failing),
and 2 test cases (any, passing or failing) covered the line, then this number will be 40%),
and FAILING is the percentage of failing test cases that covered this line (e.g, if there
were 2 test cases that covered this line and 1 of them was a failing one, then this number
will be 50%). All numbers should always be rounded towards minus infinity (this is
default Python behavior when dividing two integers). Sample output snippet for the
call shown above could look as follows:

middle.py:11 : 60% / 66%
middle.py:13 : 20% / 0%
middle.py:14 : 20% / OYs
middle.py:18 : 100% / 40%

Graphical Coverage Comparison (15% of the points)

Extend your tool that compares coverage (diff_coverage.py) to output a coverage.html
file with coverage information given in the style of the Tarantula tool (see Jones, Har-
rold, and Stasko, “Visualization of Test Information to Assist Fault Localization” (ICSE
2002)5 for details on how to color the output; see figures 3 and 4 for examples). You
should output each line (covered or not) of every source file covered. If the line was not
covered at all, use some neutral color, like gray. Remember to escape special HTML
characters when outputting the lines!

Nearest Neighbour (10% of the points)

Extend your tool for comparing coverage (diff_coverage.py) such that it accepts only
one failing run, picks the passing run with the most similar coverage, and compares only
against this run. For details, see Renieris and Reiss, “Fault Localization with Nearest
Neighbor Queries” (ASE 2002)%, especially section 3.2 describing the distance function
to be used. Add a switch to your tool that allows it to use this method, as follows:

python diff_coverage.py —nn PASSING_SET FAILING_SET OUTPUT_FILE

If the switch -nn is present, you can assume that FAILING_SET contains only one file-
name, with the coverage of the failing run.

Your tool should output on the standard output the name of the file with the nearest
passing run that it uses, for example:

Nearest passing run: middle_p2.cov

Shttp://pleuma.cc.gatech.edu/aristotle/Publications/Papers /icse02.pdf
Shttp:/ /www.cs.brown.edu/people/er/papers/renieris-ase2003.pdf



In case there is more than one nearest passing run (i.e., there are several passing runs
with the same distance from the failing run), pick the one that was listed first in the
PASSING_SET file.

Is this technique more effective in pinpointing the failure cause, as compared to the
normal coverage comparison?

Call/Location Sequences (10% of the points)

Write two additional tools: get_sequences.py that obtains sequences of calls/locations
of a given program run on a given input, and diff_sequences.py that compares those
sequences. For details, see Dallmeier, Lindig, and Zeller, “Lightweight Defect Localiza-
tion for Java” (ECOOP 2005)"; however, do not implement the exact method from this
paper.

get_sequences.py should be callable as follows:

python get_sequences.py [-stmt|-call] WINDOW_SIZE OUTPUT_FILE PROGRAM [ARGS]

WINDOW_SIZE is the size of the window to be used (see the paper above for details).
OUTPUT_FILE is the name of the file to output the results to. PROGRAM is the program to
be executed and ARGS are optional arguments to be passed to the program. The switch
-stmt should result in your tool obtaining sequences of locations and the switch -call
should result in your tool obtaining sequences of calls. You can assume that one and
only of those switches will always be present.

The output file should have the following format:

SEQ_1_ELEMENT_1
SEQ_1_ELEMENT_2

SEQ_1_ELEMENT _n
<empty line>
SEQ_2_ELEMENT_1

SEQ_2_ELEMENT_n
<empty line>
SEQ_m_ELEMENT_1

SEQ_m_ELEMENT_n
<empty line>

Here we have m sequences, each having size n. Each SEQ_x_* is one sequence obtained by
your tool. Empty lines serve as separators between sequences. Sample output snippet
for the call using -stmt switch with window size 2 looks as follows (notice that the path
to the file is given relative to the directory from where get_sequences.py was invoked,
just like for get_coverage):

"http://www.st.cs.uni-sb.de/papers/d1z2004/



xmlproc/xpcmd.py:8
xmlproc/xpcmd. py: 28

xmlproc/xpcmd.py: 28
xmlproc/xpcmd.py: 32

xmlproc/xpcmd. py:32
xmlproc/outputters.py:4

Sample output snippet for the call using -call switch with window size 3 looks as
follows (notice that each output line consists of the location of the function being called
and its name—in some cases this is <module>, an internal Python name, and in other
cases this is the name of the class [not instance!] being created, as in the case of
ConverterDatabase):

xmlproc/xml/parsers/xmlproc/xmlapp.py:9:<module>
xmlproc/xml/parsers/xmlproc/xmlutils.py:3:<module>
xmlproc/xml/parsers/xmlproc/charconv.py:8:<module>

xmlproc/xml/parsers/xmlproc/xmlutils.py:3:<module>
xmlproc/xml/parsers/xmlproc/charconv.py:8:<module>
xmlproc/xml/parsers/xmlproc/charconv.py:103:ConverterDatabase

xmlproc/xml/parsers/xmlproc/charconv.py:8:<module>
xmlproc/xml/parsers/xmlproc/charconv.py:103:ConverterDatabase
xmlproc/xml/parsers/xmlproc/charconv.py:107:__init__

diff_sequences.py should be callable as follows
python diff_sequences.py PASSING_SEQS FAILING_SEQS OUTPUT_FILE

PASSING_SEQS is the name of the file with the sequences obtained from a passing run
(using get_sequences.py). FAILING_SEQS is the name of the file with the sequences
obtained from a failing run (again using get_sequences.py). OUTPUT_FILE is the name
of the file to put the difference between the two sets to. This file should have the
same format as the output file produced by get_sequences.py and it should contain
all sequences present in the failing set, but absent from the passing set.

How effective is this technique for both locations and calls sequences? Which kind
of location and which length do you find most effective?

Submission

Submit your solution as a .zip file to wasylkowski@st.cs.uni-sb.de with [Project 2]

in the subject. Provide your full name and matriculation number in the body of the

email. Be sure to adhere exactly to the input and output specification as given above.
The deadline is 2008-12-19 23:59.






