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Detecting Invariants

Andreas Zeller + Andreas Gross
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken



1/38

�

�

�

�

�

�

	

Exam

on Tuesday, 2003-02-18, 11:15 in lecture room 45/001 (here)

Written examination, duration: 90 minutes

Tools: course material, books, papers; no electronic devices

Final grade will be 20% exercises, 80% examination

Q & A lab on Friday, 2003-02-14

Register by e-mail to Holger Cleve 〈 cleve@cs.uni-sb.de 〉 until
Friday, 2003-02-15
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Cause-Effect Chains
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Reasoning Techniques

Deduction is reasoning from the general to the particular
e.g. from the program code (abstract) to the program run
(concrete)

Example: static program analysis

Induction is reasoning from the particular to the general
e.g. from multiple program runs to common properties

Example: anomaly detection by coverage



4/38

�

�

�

�

�

�

	

Invariants

An invariant is a property that holds for all correct program
runs.

int result = a / b; // b != 0
int day of month; // 1 ≤ day of month ≤ 12

Invariants. . .

• can be checked at run-time (assertions)

• can be verified statically

• are typically required for a correct execution

• are seldom explicitly specified
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Invariants (2)

Possible uses of invariants:

Refactoring. Eliminate unused variables (e.g. invariants
temp == a)

Modification. Make sure modifications do not affect the
invariants.

Debugging. Report invariant violations; detect abnormal
invariants.
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Sources of Invariants

Programmer. Rely on specified assertions and comments.

✔ Invariants are directly accessible

✘ Invariants are seldom specified

Static Analysis. Deduce invariants from source.

✔ Invariants are correct.

✘ All limits of static analysis: obscure code, pointers, . . .

Dynamic Detection. Induce invariants from program runs.

✔ automatic, efficient, only based on observation

✘ invariants hold only for observed runs.
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Invariant Detection Tools

Daikon helps in refactoring, modification and debugging

• Determines invariants

• Written by Michael Ernst et al. (1998)

• C++, Java, Lisp and other languages

• analyzed up to ∼ 13.000 lines of code

Diduce (Dynamic Invariant Detection ∪ Checking Engine)

• Determines invariant violations

• Written by Sudheendra Hangal and Monica S. Lam (2001)

• Java bytecode

• analyzed > 30.000 lines of code
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How Daikon Works
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Step 1: Instrument Code

Daikon instruments the code to trace and check variables.

Example—sample.c becomes sample.cc (C++ code):

static void shell_sort(DaikonSmartPointer<int> a, int size)
{

DaikonAddressValidator<sizeof(int)> daikon_validate_address_1(&size);
daikon_output_to_dtrace("std.shell_sort(int *;int;)void:::ENTER\n");
daikon_output_pointer("a", a);
daikon_output_smartpointer_ints("a[]", a);
daikon_output_int("size", int(size));
int i = 0;
DaikonAddressValidator<sizeof(int)> daikon_validate_address_2(&i);
int j = 0;
DaikonAddressValidator<sizeof(int)> daikon_validate_address_3(&j);

do {
...

} while (h != 1);
daikon_output_to_dtrace("std.shell_sort(int *;int;)void:::EXIT1\n");
...

}
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Step 2: Execute Program

We compile the instrumented program and execute it using a
given large test suite:

$ ./sample-daikon 1 2 3
fatal: at sample.c line 17: attempted to access

index 3 of a 3-length array
(max legal index is 2)

$

Okay—we fix it first :–)

$ export DTRACEAPPEND=1
$ ./sample-daikon 1 2 3
$ ./sample-daikon 4 5 6
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Step 3: Run Daikon

Daikon generates invariants for the sample program:

$ java -classpath daikon.jar \
daikon.Daikon sample.decls sample.dtrace -o sample.inv

Daikon version 2.3.13, released July 17, 2002;
http://pag.lcs.mit.edu/daikon.
Reading declaration files .
Reading data trace files .
Read 1 declaration file, 0 spinfo files, 1 dtrace file
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Invariants in main

std.main(int;char **;):::ENTER
argc == size(argv[])-1
argc == 4
size(argv[]) == 5
argv[argc..] == [null]
argv[argc..] elements == null
argv[argc+1..] == []

std.main(int;char **;):::EXIT2
argv[] == orig(argv[])
return == 0
argv[orig(argc)..] == [null]
argv[orig(argc)..] elements == null
argv[orig(argc)+1..] == []
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Invariants in shell sort

std.shell_sort(int *;int;):::ENTER
size == size(a[])
a[] one of [1, 2, 3], [4, 5, 6]
size == 3

std.shell_sort(int *;int;):::EXIT1
a[] == orig(a[])
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Daikon’s Invariant Algorithm

The set invariants holds the currently valid invariants

for each execution step:
for each variable at execution step:

if ¬exist invariants[variable]:
invariants[variable] = 〈daikon invariants〉

for each invariant in invariants[variable]:
if value(variable) violates invariant:

invariants[variable] -= invariant
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Possible Invariants

Variable Invariants compare at most three variables; like

x = 6; x ∈ 2, 5, -30
x < y; y = 5 * x + 10;
z = 4 * x + 12 * y + 3;
z = fn(x, y)

Sequence Invariants like A subsequence B; A < B

Object Invariants like

string.content[string.length] = ’\0’;
node.left.value ≤ node.right.value
this.next.last = this
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Daikon in Action

(from The Science of Programming)
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Enhancing Relevance

How can we make the invariants as relevant as possible?

• Dealing with Polymorphism

• Derived Values

• Eliminate Redundant Invariants

• Trustable Invariants

• Verifying Correctness
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Dealing with Polymorphism

Problem: Comparing polymorphic variables (e.g. superclasses)

Solution: Let x be a polymorphic variable, e.g. object x

1. Find invariant for type of x,
e.g. x != null => x.type == int

2. If invariant holds, replace object x by int x

3. Search invariants

Effect: More invariants are found.
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Derived Values

Problem: Some relevant values are not found in variables:

• the size of an array, size(a)

• borderline values, a[0], a[size(a) - 1]

Solution: Insert new variables when instrumenting code

• int size a = size(a);

• int extremals a = {a[0], a[size(a) - 1]}

Effect: More invariants are found.
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Derived Values (2)

Derived values created by Daikon include:

for a sequence S: size(S), S[0], S[1],
S[size(S) - 1], S[size(S) - 2]

for a numeric sequence S: sum(S), min(S), max(S)

for a sequence S and an integer i:
S[i], S[i - 1], S[0..i], S[0..i - 1]

for methods: number of method calls
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Eliminate Redundant Invariants

Problem: Let A,B be invariants. If A⇒ B holds, we don’t have
to know about B:

• A: 4 ≤ x ≤ 15

• B: x 6= 0

Solution 1: Check for redundancies before output

Solution 2: Do not create redundant derived values like

• first element(a[0..12]) = first element(a[0..5])

Effect: Less invariants.
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Trustable Invariants

Problem: Found invariant −15 ≤ x ≤ 15, x 6= 0

1000 test runs, but statement was executed only 4 times

Is x 6= 0 just a random effect?

Solution: Determine probability of non-random event:

1−
(

1− 1
|(−15)− 15|

)4

≈ 0.13

If probability is greater than threshold ⇒ show invariant

Also: always show the number of events that support the
invariant (4)

Effect: Higher trust in invariants.
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Verifying Correctness

Problem: Finite number of test runs ⇒ invariants are not
proven to hold for all runs

Solution: Verify invariants with static analysis

Effect: Provably correct invariants
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Daikon’s Efficiency

Daikon’s run time costs depend on

• i given invariants—O(i)

• v variables per execution step—up to a triple per
invariant—O(v3)

• t test cases (program runs)—O(t)

• p places in the program to be instrumented—O(p)

Overall run time: O(i× v3 × t × p)
This limits the size of programs to be analyzed!
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Invariants as Anomalies

Basic approach:

• Determine invariants for a set of passing runs

• Determine invariant violations for a set of failing runs

• Focus on violations when searching for failure causes.

Example:

• size = size(argc) - 1 holds in all passing runs, but

• size = size(argc) holds in all failing runs

⇒ focus on size as a possible infection!
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Checking Invariants with Diduce

Diduce = Dynamic Invariant Detection ∪ Checking Engine

• works during the execution of the program

• determines invariants on the fly

• detects invariant violations

• adapts invariants automatically

• built for efficiency



27/38

�

�

�

�

�

�

	

Training and Checking

Diduce works in two modes:

Training mode.
Goal: find possible invariants
Requires a test suite that is known to work

Checking mode.
Goal: find possible violations of invariants
Requires a failing test suite or a random test suite
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Training Mode

Instrument
Code

Execute
Program

Original
Program

Instrumented
Program

Test Suite

Found
Invariants
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Checking Mode

Instrument
Code

Execute
Program

Original
Program

Instrumented
Program

Test Suite

Found
Invariants

Invariant
Violations

User
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Instrumenting Code

Instrument execution steps.

• Read/write accesses on object

• Read/write accesses on static variable

• Method calls

Add code.

• Test invatiant with current values

• Report invariant violation

• Adapt invariant
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Diduce’s Invariant Algorithm

The set invariants holds the currently valid invariants

for each execution step:
for each variable at execution step:

if ¬exist invariants[variable]:
invariants[variable] = 〈constant〉

else:
if value(variable) violates invariants[variable]:

adjust invariants[variable]
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Diduce data structure

For each instrumented place in the program, store

• the number of times the place was executed, and

• the found value of the variable

• the difference between the old value and the new value

Values and differences are stored as pairs (int U, int M)

• U is the initial value found (convert if necessary)

• M is a bit vector; ith bit is 0 if a difference was found in the
ith bit
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Diduce Example

Code i Value Difference Invariant
U M U M

i = 10; 1010 1010 . . . 11111 0 . . . 11111 i = 10
i += 1; 1011 1010 . . . 11110 1 . . . 11110 10 ≤ i ≤ 11∧ |i′ − i| ≤ 1
i += 1; 1100 1010 . . . 11000 1 . . . 11110 8 ≤ i ≤ 15∧ |i′ − i| ≤ 1
i += 1; 1101 1010 . . . 11000 1 . . . 11110 8 ≤ i ≤ 15∧ |i′ − i| ≤ 1
i += 2; 1111 1010 . . . 11000 1 . . . 11100 8 ≤ i ≤ 15∧ |i′ − i| ≤ 3
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Diduce: Possible Invariants

Values.

• M = . . .1111 ⇒ variable is constant (or reference points
to same type)

• U −M ≤ x ≤ U +M
• If M = . . .1 ⇒ x is even

Differences.

• M = . . .1111 ⇒ variable is constant

• M ⇒ maximum difference

• Which bits are constant?
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Diduce: Costs

Diduce’s run time costs depend on

• v variables written per execution step O(v)

• t test cases (program runs)—O(t)

• p places in the program to be instrumented—O(p)

Overall run time: O(v × t × p)—a small constant overhead for
each writing operation

Space requirements: 3 words per expression

• 1 word per number of calls

• 2 words for variable value and difference
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Diduce vs. Daikon

✔ efficient

✔ invariants are computed during execution (integration in
debugging tool)

✘ smaller set of invariants (ranges and values)

✘ less precise invariants
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Concepts

✏ Given a sufficient large number of passing test runs, one
can effectively determine invariants that hold for all
observed test cases

✏ Checking failing test cases against trained invariants of
passing test cases can lead to data likely to induce a failure.

✏ Technique is easy to use; results are quite easy to interpret

✏ Increased precision (Daikon vs. Diduce) comes with higher
costs for execution and space

✏ The determined invariants hold for the observed test cases
only—not necessarily for all test cases.
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