
0/38

�

�

�

�

�

�

	

Detecting Invariants

Andreas Zeller + Andreas Gross
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/38

�

�

�

�

�

�

	

Exam

on Tuesday, 2003-02-18, 11:15 in lecture room 45/001 (here)

Written examination, duration: 90 minutes

Tools: course material, books, papers; no electronic devices

Final grade will be 20% exercises, 80% examination

Q & A lab on Friday, 2003-02-14

Register by e-mail to Holger Cleve 〈 cleve@cs.uni-sb.de 〉 until
Friday, 2003-02-15

2/38

�

�

�

�

�

�

	

Cause-Effect Chains

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

3/38

�

�

�

�

�

�

	

Reasoning Techniques

Deduction is reasoning from the general to the particular
e.g. from the program code (abstract) to the program run
(concrete)

Example: static program analysis

Induction is reasoning from the particular to the general
e.g. from multiple program runs to common properties

Example: anomaly detection by coverage

4/38

�

�

�

�

�

�

	

Invariants

An invariant is a property that holds for all correct program
runs.

int result = a / b; // b != 0
int day of month; // 1 ≤ day of month ≤ 12

Invariants. . .

• can be checked at run-time (assertions)

• can be verified statically

• are typically required for a correct execution

• are seldom explicitly specified

5/38

�

�

�

�

�

�

	

Invariants (2)

Possible uses of invariants:

Refactoring. Eliminate unused variables (e.g. invariants
temp == a)

Modification. Make sure modifications do not affect the
invariants.

Debugging. Report invariant violations; detect abnormal
invariants.

6/38

�

�

�

�

�

�

	

Sources of Invariants

Programmer. Rely on specified assertions and comments.

✔ Invariants are directly accessible

✘ Invariants are seldom specified

Static Analysis. Deduce invariants from source.

✔ Invariants are correct.

✘ All limits of static analysis: obscure code, pointers, . . .

Dynamic Detection. Induce invariants from program runs.

✔ automatic, efficient, only based on observation

✘ invariants hold only for observed runs.

7/38

�

�

�

�

�

�

	

Invariant Detection Tools

Daikon helps in refactoring, modification and debugging

• Determines invariants

• Written by Michael Ernst et al. (1998)

• C++, Java, Lisp and other languages

• analyzed up to ∼ 13.000 lines of code

Diduce (Dynamic Invariant Detection ∪ Checking Engine)

• Determines invariant violations

• Written by Sudheendra Hangal and Monica S. Lam (2001)

• Java bytecode

• analyzed > 30.000 lines of code

8/38

�

�

�

�

�

�

	

How Daikon Works

Instrument
Code

Execute
Program

Original
Program

Instrumented
Program

Test Suite

Trace
File

Detect
Invariants

Given
Invariants

Likely
Invariants

User

9/38

�

�

�

�

�

�

	

Step 1: Instrument Code

Daikon instruments the code to trace and check variables.

Example—sample.c becomes sample.cc (C++ code):

static void shell_sort(DaikonSmartPointer<int> a, int size)
{

DaikonAddressValidator<sizeof(int)> daikon_validate_address_1(&size);
daikon_output_to_dtrace("std.shell_sort(int *;int;)void:::ENTER\n");
daikon_output_pointer("a", a);
daikon_output_smartpointer_ints("a[]", a);
daikon_output_int("size", int(size));
int i = 0;
DaikonAddressValidator<sizeof(int)> daikon_validate_address_2(&i);
int j = 0;
DaikonAddressValidator<sizeof(int)> daikon_validate_address_3(&j);

do {
...

} while (h != 1);
daikon_output_to_dtrace("std.shell_sort(int *;int;)void:::EXIT1\n");
...

}

10/38

�

�

�

�

�

�

	

Step 2: Execute Program

We compile the instrumented program and execute it using a
given large test suite:

$./sample-daikon 1 2 3
fatal: at sample.c line 17: attempted to access

index 3 of a 3-length array
(max legal index is 2)

$

Okay—we fix it first :–)

$ export DTRACEAPPEND=1
$./sample-daikon 1 2 3
$./sample-daikon 4 5 6

11/38

�

�

�

�

�

�

	

Step 3: Run Daikon

Daikon generates invariants for the sample program:

$ java -classpath daikon.jar \
daikon.Daikon sample.decls sample.dtrace -o sample.inv

Daikon version 2.3.13, released July 17, 2002;
http://pag.lcs.mit.edu/daikon.
Reading declaration files .
Reading data trace files .
Read 1 declaration file, 0 spinfo files, 1 dtrace file

12/38

�

�

�

�

�

�

	

Invariants in main

std.main(int;char **;):::ENTER
argc == size(argv[])-1
argc == 4
size(argv[]) == 5
argv[argc..] == [null]
argv[argc..] elements == null
argv[argc+1..] == []

std.main(int;char **;):::EXIT2
argv[] == orig(argv[])
return == 0
argv[orig(argc)..] == [null]
argv[orig(argc)..] elements == null
argv[orig(argc)+1..] == []

13/38

�

�

�

�

�

�

	

Invariants in shell sort

std.shell_sort(int *;int;):::ENTER
size == size(a[])
a[] one of [1, 2, 3], [4, 5, 6]
size == 3

std.shell_sort(int *;int;):::EXIT1
a[] == orig(a[])

14/38

�

�

�

�

�

�

	

Daikon’s Invariant Algorithm

The set invariants holds the currently valid invariants

for each execution step:
for each variable at execution step:

if ¬exist invariants[variable]:
invariants[variable] = 〈daikon invariants〉

for each invariant in invariants[variable]:
if value(variable) violates invariant:

invariants[variable] -= invariant

15/38

�

�

�

�

�

�

	

Possible Invariants

Variable Invariants compare at most three variables; like

x = 6; x ∈ 2, 5, -30
x < y; y = 5 * x + 10;
z = 4 * x + 12 * y + 3;
z = fn(x, y)

Sequence Invariants like A subsequence B; A < B

Object Invariants like

string.content[string.length] = ’\0’;
node.left.value ≤ node.right.value
this.next.last = this

16/38

�

�

�

�

�

�

	

Daikon in Action

(from The Science of Programming)

17/38

�

�

�

�

�

�

	

Enhancing Relevance

How can we make the invariants as relevant as possible?

• Dealing with Polymorphism

• Derived Values

• Eliminate Redundant Invariants

• Trustable Invariants

• Verifying Correctness

18/38

�

�

�

�

�

�

	

Dealing with Polymorphism

Problem: Comparing polymorphic variables (e.g. superclasses)

Solution: Let x be a polymorphic variable, e.g. object x

1. Find invariant for type of x,
e.g. x != null => x.type == int

2. If invariant holds, replace object x by int x

3. Search invariants

Effect: More invariants are found.

19/38

�

�

�

�

�

�

	

Derived Values

Problem: Some relevant values are not found in variables:

• the size of an array, size(a)

• borderline values, a[0], a[size(a) - 1]

Solution: Insert new variables when instrumenting code

• int size a = size(a);

• int extremals a = {a[0], a[size(a) - 1]}

Effect: More invariants are found.

20/38

�

�

�

�

�

�

	

Derived Values (2)

Derived values created by Daikon include:

for a sequence S: size(S), S[0], S[1],
S[size(S) - 1], S[size(S) - 2]

for a numeric sequence S: sum(S), min(S), max(S)

for a sequence S and an integer i:
S[i], S[i - 1], S[0..i], S[0..i - 1]

for methods: number of method calls

21/38

�

�

�

�

�

�

	

Eliminate Redundant Invariants

Problem: Let A,B be invariants. If A⇒ B holds, we don’t have
to know about B:

• A: 4 ≤ x ≤ 15

• B: x 6= 0

Solution 1: Check for redundancies before output

Solution 2: Do not create redundant derived values like

• first element(a[0..12]) = first element(a[0..5])

Effect: Less invariants.

22/38

�

�

�

�

�

�

	

Trustable Invariants

Problem: Found invariant −15 ≤ x ≤ 15, x 6= 0

1000 test runs, but statement was executed only 4 times

Is x 6= 0 just a random effect?

Solution: Determine probability of non-random event:

1−
(

1− 1
|(−15)− 15|

)4

≈ 0.13

If probability is greater than threshold ⇒ show invariant

Also: always show the number of events that support the
invariant (4)

Effect: Higher trust in invariants.

23/38

�

�

�

�

�

�

	

Verifying Correctness

Problem: Finite number of test runs ⇒ invariants are not
proven to hold for all runs

Solution: Verify invariants with static analysis

Effect: Provably correct invariants

24/38

�

�

�

�

�

�

	

Daikon’s Efficiency

Daikon’s run time costs depend on

• i given invariants—O(i)

• v variables per execution step—up to a triple per
invariant—O(v3)

• t test cases (program runs)—O(t)

• p places in the program to be instrumented—O(p)

Overall run time: O(i× v3 × t × p)
This limits the size of programs to be analyzed!

25/38

�

�

�

�

�

�

	

Invariants as Anomalies

Basic approach:

• Determine invariants for a set of passing runs

• Determine invariant violations for a set of failing runs

• Focus on violations when searching for failure causes.

Example:

• size = size(argc) - 1 holds in all passing runs, but

• size = size(argc) holds in all failing runs

⇒ focus on size as a possible infection!

26/38

�

�

�

�

�

�

	

Checking Invariants with Diduce

Diduce = Dynamic Invariant Detection ∪ Checking Engine

• works during the execution of the program

• determines invariants on the fly

• detects invariant violations

• adapts invariants automatically

• built for efficiency

27/38

�

�

�

�

�

�

	

Training and Checking

Diduce works in two modes:

Training mode.
Goal: find possible invariants
Requires a test suite that is known to work

Checking mode.
Goal: find possible violations of invariants
Requires a failing test suite or a random test suite

28/38

�

�

�

�

�

�

	

Training Mode

Instrument
Code

Execute
Program

Original
Program

Instrumented
Program

Test Suite

Found
Invariants

29/38

�

�

�

�

�

�

	

Checking Mode

Instrument
Code

Execute
Program

Original
Program

Instrumented
Program

Test Suite

Found
Invariants

Invariant
Violations

User

30/38

�

�

�

�

�

�

	

Instrumenting Code

Instrument execution steps.

• Read/write accesses on object

• Read/write accesses on static variable

• Method calls

Add code.

• Test invatiant with current values

• Report invariant violation

• Adapt invariant

31/38

�

�

�

�

�

�

	

Diduce’s Invariant Algorithm

The set invariants holds the currently valid invariants

for each execution step:
for each variable at execution step:

if ¬exist invariants[variable]:
invariants[variable] = 〈constant〉

else:
if value(variable) violates invariants[variable]:

adjust invariants[variable]

32/38

�

�

�

�

�

�

	

Diduce data structure

For each instrumented place in the program, store

• the number of times the place was executed, and

• the found value of the variable

• the difference between the old value and the new value

Values and differences are stored as pairs (int U, int M)

• U is the initial value found (convert if necessary)

• M is a bit vector; ith bit is 0 if a difference was found in the
ith bit

33/38

�

�

�

�

�

�

	

Diduce Example

Code i Value Difference Invariant
U M U M

i = 10; 1010 1010 . . . 11111 0 . . . 11111 i = 10
i += 1; 1011 1010 . . . 11110 1 . . . 11110 10 ≤ i ≤ 11∧ |i′ − i| ≤ 1
i += 1; 1100 1010 . . . 11000 1 . . . 11110 8 ≤ i ≤ 15∧ |i′ − i| ≤ 1
i += 1; 1101 1010 . . . 11000 1 . . . 11110 8 ≤ i ≤ 15∧ |i′ − i| ≤ 1
i += 2; 1111 1010 . . . 11000 1 . . . 11100 8 ≤ i ≤ 15∧ |i′ − i| ≤ 3

34/38

�

�

�

�

�

�

	

Diduce: Possible Invariants

Values.

• M = . . .1111 ⇒ variable is constant (or reference points
to same type)

• U −M ≤ x ≤ U +M
• If M = . . .1 ⇒ x is even

Differences.

• M = . . .1111 ⇒ variable is constant

• M ⇒ maximum difference

• Which bits are constant?

35/38

�

�

�

�

�

�

	

Diduce: Costs

Diduce’s run time costs depend on

• v variables written per execution step O(v)

• t test cases (program runs)—O(t)

• p places in the program to be instrumented—O(p)

Overall run time: O(v × t × p)—a small constant overhead for
each writing operation

Space requirements: 3 words per expression

• 1 word per number of calls

• 2 words for variable value and difference

36/38

�

�

�

�

�

�

	

Diduce vs. Daikon

✔ efficient

✔ invariants are computed during execution (integration in
debugging tool)

✘ smaller set of invariants (ranges and values)

✘ less precise invariants

37/38

�

�

�

�

�

�

	

Concepts

✏ Given a sufficient large number of passing test runs, one
can effectively determine invariants that hold for all
observed test cases

✏ Checking failing test cases against trained invariants of
passing test cases can lead to data likely to induce a failure.

✏ Technique is easy to use; results are quite easy to interpret

✏ Increased precision (Daikon vs. Diduce) comes with higher
costs for execution and space

✏ The determined invariants hold for the observed test cases
only—not necessarily for all test cases.

38/38

�

�

�

�

�

�

	

References

• Michael Ernst et al., The Daikon invariant detector,
http://pag.lcs.mit.edu/daikon/

• J. Sudheendra Hangal, Monica S. Lam, Tracking Down
Software Bugs using Automatic Anomaly Detection, Proc.
International Conference on Software Engineering, 2002.
http://suif.stanford.edu/papers/

http://pag.lcs.mit.edu/daikon/
http://suif.stanford.edu/papers/

	Exam
	Cause-Effect Chains
	Reasoning Techniques
	Invariants
	Invariants (2)
	Sources of Invariants
	Invariant Detection Tools
	How Daikon Works
	Step 1: Instrument Code
	Step 2: Execute Program
	Step 3: Run Daikon
	Invariants in main
	Invariants in shell_sort
	Daikon's Invariant Algorithm
	Possible Invariants
	Daikon in Action
	Enhancing Relevance
	Dealing with Polymorphism
	Derived Values
	Derived Values (2)
	Eliminate Redundant Invariants
	Trustable Invariants
	Verifying Correctness
	Daikon's Efficiency
	Invariants as Anomalies
	Checking Invariants with Diduce
	Training and Checking
	Training Mode
	Checking Mode
	Instrumenting Code
	Diduce's Invariant Algorithm
	Diduce data structure
	Diduce Example
	Diduce: Possible Invariants
	Diduce: Costs
	Diduce vs. Daikon
	Concepts
	References

