
0/25

�

�

�

�

�

�

	

Detecting Anomalies

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/25

�

�

�

�

�

�

	

Cause-Effect Chains

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

2/25

�

�

�

�

�

�

	

Where to search?

We can easily isolate infectuous data (automatically) . . .

• Tracing Origins

• Cause-Effect Chains

. . . and we can isolate the infections themselves (manually)

• Querying Events and Data

• Assertions

But where do we start with the search?

3/25

�

�

�

�

�

�

	

Focusing on Anomalies

Basic idea:

Start search where something abnormal happens!

How do we know what’s normal and what’s abnormal?

We use induction—reasoning from the particular to the
general:

• Start with a multitude of program runs (= testcases).

• Determine properties that are common to all (or most) runs.

4/25

�

�

�

�

�

�

	

What’s abnormal?

Suppose we have a multitude of passing runs and determine
their normal properties.

Now we examine runs which fail the test.

Obviously, any such run differs from a single passing run at
many places—just like any two runs differ.

However, focusing on the properties that deviate from all
normal runs is likely to show failure causes.

5/25

�

�

�

�

�

�

	

Detecting Anomalies in a Nutshell

1. Separate runs into passing and failing

2. Determine normal properties of all passing runs.

3. For any failing run, find out which properties deviate from
these normal properties.

4. Focus on these in the later search.

We’ll explore two techniques:

• Detecting anomalies in covered statements

• Detecting anomalies in invariants

6/25

�

�

�

�

�

�

	

Detecting Coverage

Basic issue: A good test suite should execute all statements of
the executed program.

(This is a minimal criterion; a better criterion would be to
execute all branches, or all loops at least once, or. . .)

Realized by instrumenting the code.

7/25

�

�

�

�

�

�

	

Example: middle.c

// Return the middle of x, y, z
int middle(int x, int y, int z) {

int m = z;
if (y < z) {

if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)

m = y;
else if (x > z)

m = x;
}
return m;

}

8/25

�

�

�

�

�

�

	

Example: middle.c (2)

// Test driver
int main(int arc, char *argv[])
{

int x = atoi(argv[1]);
int y = atoi(argv[2]);
int z = atoi(argv[3]);
int m = middle(x, y, z);
printf("middle: %d\n", m);
return 0;

}

$ gcc -o middle middle.c
$./middle 3 3 5
middle: 3
$./middle 2 1 3
middle: 1
$

9/25

�

�

�

�

�

�

	

Instrumenting middle.c

The compiler (GCC) can insert special instrumentation code
into the executable:

$ gcc -g -fprofile-arcs -ftest-coverage -o middle \
middle.c

This results in

• extra .bb and .bbg files created at compile time. These
files map basic blocks and transition arcs to source code.

• extra .da files being created at execution. This file
summarizes the coverage of transition arcs in all runs.

10/25

�

�

�

�

�

�

	

Instrumenting middle.c (2)

Executing middle summarizes the runs in a .da file:

$ rm *.da
$ ls
middle middle.bb middle.bbg middle.c
$./middle 3 3 5
middle: 3
$./middle 2 1 3
middle: 1
$ ls
middle middle.bb middle.bbg middle.c middle.da
$

11/25

�

�

�

�

�

�

	

Obtaining Coverage

gcov maps the recorded coverage to source code:

$ gcov middle.c
76.19% of 21 source lines executed in file middle.c
Creating middle.c.gcov.
$

That’s not enough coverage yet—let’s see if we can improve:

$./middle 3 2 1
middle: 2
$ gcov middle.c
85.71% of 21 source lines executed in file middle.c
Creating middle.c.gcov.
$

12/25

�

�

�

�

�

�

	

The middle.c.gcov file

int middle(int x, int y, int z)
3 int m = z;
3 if (y < z)
2 if (x < y)

m = y;
2 else if (x < z)
2 m = y;
2 else
1 if (x > y)
1 m = y;

else if (x > z)
m = x;

3
3 return m;
3

######: Code that was not executed so far

13/25

�

�

�

�

�

�

	

Coverage Anomaly

•, •: covered statements 3 1 3 5 5 2
3 2 2 5 3 1

int middle(int x, int y, int z) { 5 3 1 5 4 3
int m = z; • • • • • •
if (y < z) { • • • • • •

if (x < y) • • •
m = y; •

else if (x < z) • • •
m = y; • •

} else { • • •
if (x > y) •

m = y; •
else if (x > z)

m = x;
}
return m; • • • • • •

} ✔ ✔ ✔ ✔ ✔ ✘

14/25

�

�

�

�

�

�

	

Discrete Visualization

Basic idea: differentiate

• Code executed only in failing runs
⇒ “Code that is highly suspect”

• Code executed in passing and failing runs
⇒ “Code that is ambiguous”

• Code executed only in passing runs
⇒ “Code that is probably correct”

15/25

�

�

�

�

�

�

	

Discrete Visualization (2)

Highlight code according to coverage 3 1 3 5 5 2
3 2 2 5 3 1

int middle(int x, int y, int z) { 5 3 1 5 4 3
int m = z; • • • • • •
if (y < z) { • • • • • •

if (x < y) • • •
m = y; •

else if (x < z) • • •
m = y; • •

} else { • • •
if (x > y) •

m = y; •
else if (x > z)

m = x;
}
return m; • • • • • •

} ✔ ✔ ✔ ✔ ✔ ✘

16/25

�

�

�

�

�

�

	

Continuous Visualization

Have hue express percentage of failed statements:

• 100% test cases executing this statement failed

• 66% test cases executing this statement failed

• 50% test cases executing this statement failed

• 0% test cases executing this statement failed

Have brightness express percentage of test cases:

• executed in 100% of all test cases

• executed in 66% of all test cases

• executed in 33% of all test cases

17/25

�

�

�

�

�

�

	

Continuous Visualization (2)

Highlight code according to coverage 3 1 3 5 5 2
3 2 2 5 3 1

int middle(int x, int y, int z) { 5 3 1 5 4 3
int m = z; • • • • • •
if (y < z) { • • • • • •

if (x < y) • • •
m = y; •

else if (x < z) • • •
m = y; • •

} else { • • •
if (x > y) •

m = y; •
else if (x > z)

m = x;
}
return m; • • • • • •

} ✔ ✔ ✔ ✔ ✔ ✘

18/25

�

�

�

�

�

�

	

The Tarantula Bug Finder

19/25

�

�

�

�

�

�

	

Significance of Coverage Anomaly

How well can comparing coverage detect anomalies?

False negatives. “How red are the defective statements?”

False positives. “How red are non-defective statements?”

Subject program: Space

• 8000 lines of executable code

• 1000 coverage-based test suites w/ 156–4700 test cases

• 20 defective versions w/ one defect each
(corrected in subsequent version)

20/25

�

�

�

�

�

�

	

How red are the defective statements?
%

 o
f

st
at

em
en

ts
 in

 c
ol

or
 p

ar
tit

io
ns

Program version including single fault (fault number)

2019181716151413121110987654321

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Almost all defective statements were correctly flagged as red.

21/25

�

�

�

�

�

�

	

How red are non-defective statements?
%

 o
f

st
at

em
en

ts
 in

 c
ol

or
 p

ar
tit

io
ns

20

Program version including single fault (fault number)

19181716151413121110987654321

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Up to 10% of non-defective statements (≈ 800 statements)
were incorrectly flagged as red.

22/25

�

�

�

�

�

�

	

Open Questions

• What is “the defective statement”? (The one that is to be
changed?)

• What does it mean if a non-defective statement is red?

• What does it mean if a defective statement is not red?

• How many test runs are required?

• Can we generate extra test runs by experimentation?

23/25

�

�

�

�

�

�

	

Interaction with cause-effect chains

How can we integrate anomaly detection into isolation of
origins and cause-effect chains?

Possible approach:

• Start with anomalies (i.e. red statements)

• Isolate origin of the statement being executed (i.e. the
if -condition that is once false and once true)

• Test whether an alternate condition would have altered the
outcome

• If outcome is altered, isolate the cause-effect chain of this
condition, focusing on earlier anomalies

Open research (hint, hint)!

24/25

�

�

�

�

�

�

	

Concepts

✏ Comparing the coverage of passing and failing test cases
can lead to statements likely to induce a failure.

✏ Technique is easy to use; results are easy to interpret

✏ Approach is based on heuristics (“likely to induce a failure”)

✏ Code that is always executed cannot be isolated (say, the
sample defect)

✏ Approach depends on availability of large test suites

25/25

�

�

�

�

�

�

	

References

• gcov—a test coverage program, in: Using the GNU
Compiler, http://gcc.gnu.org/onlinedocs/gcc/

• Tarantula: Fault Localization via Visualization,
http://www.cc.gatech.edu/aristotle/Tools/
tarantula/publications.html

http://gcc.gnu.org/onlinedocs/gcc/
http://www.cc.gatech.edu/aristotle/Tools/tarantula/publications.html
http://www.cc.gatech.edu/aristotle/Tools/tarantula/publications.html

	Cause-Effect Chains
	Where to search?
	Focusing on Anomalies
	What's abnormal?
	Detecting Anomalies in a Nutshell
	Detecting Coverage
	Example: middle.c
	Example: middle.c (2)
	Instrumenting middle.c
	Instrumenting middle.c (2)
	Obtaining Coverage
	The middle.c.gcov file
	Coverage Anomaly
	Discrete Visualization
	Discrete Visualization (2)
	Continuous Visualization
	Continuous Visualization (2)
	The Tarantula Bug Finder
	Significance of Coverage Anomaly
	How red are the defective statements?
	How red are non-defective statements?
	Open Questions
	Interaction with cause-effect chains
	Concepts
	References

