
0/36

�

�

�

�

�

�

	

Isolating Cause-Effect Chains II

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/36

�

�

�

�

�

�

	

The Process in a Nutshell

Failing Run

Passing Run

()->next
2220

2/36

�

�

�

�

�

�

	

Memory Graphs

Let G = (V , E, root) be a memory graph containing a set V of
vertices, a set E of edges, and a dedicated vertex root.

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

3/36

�

�

�

�

�

�

	

Vertices

Each vertex v ∈ V has the form v = (val, tp,addr), standing
for a value val of type tp at memory address addr.

As an example, the C declaration

int i = 42;

results in a vertex vi = (42, int,0x1234), where 0x1234 is the
(hypothetical) memory address of i.

4/36

�

�

�

�

�

�

	

Edges

Each edge e ∈ E has the form e = (v1, v2,op), where v1, v2 ∈ V
are the related vertices. The operation op is used in
constructing the expression of a vertex.

Example:

struct foo { int val; } f = {47};

results in two vertices
vf = ({. . . }, struct foo,0x5678) and
vf.val = (47, int,0x9abc), as well as an edge
ef.val = (vf , vf.val,opf.val) from vf to vf.val

{...} 47
().valf

<Root>

5/36

�

�

�

�

�

�

	

Root

A memory graph contains a dedicated vertex root ∈ V that
references all base variables of the program. Each vertex in the
memory graph is accessible from root.

Example:

int i = 42;
struct foo { int val; } f = {47};

i and f are base variables; thus, the graph contains the edges
ei = (root, vi,opi) and ef = (root, vf ,opf).

6/36

�

�

�

�

�

�

	

Operations

Edge operations construct the name of descendants from their
parent’s name.

In an edge e = (v1, v2,op), each operation op is a function that
takes the expression of v1 to construct the expression of v2.

We denote functions by λx.B—a function that has a formal
parameter x and a body B.

In our examples, B is simply a string containing x; applying
the function returns B where x is replaced by the function
argument.

7/36

�

�

�

�

�

�

	

Operations (2)

Example:

int i = 42;
struct foo { int val; } f = {47};

Operations on edges leading from root to base variables
initially set the name; so opi = λx."i" and opf = λx."f" hold.

Deeper vertices are constructed based on the name of their
parents.

Example: opf.val = λx."x.val"
“to access the name of the descendant, one must append
".val" to the name of its parent”.

8/36

�

�

�

�

�

�

	

Operations (3)

In visualizations, the operation body is shown as edge label.
The formal parameter is replaced by "()" (formally: the label
is op("()")).

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

9/36

�

�

�

�

�

�

	

Names

The function name constructs a name for a vertex v using the
operations on the path from v to the root vertex.

name(v) =

op
(
name(v′)

)
if ∃(v′, v,op) ∈ E

"" otherwise (root vertex)

Example—a name for vf.val:

name(vf.val) = opf.val(name(vf))
= opf.val(opf (""))
= opf.val("f")
= "f.val"

A vertex can have multiple names (“aliasing”).

10/36

�

�

�

�

�

�

	

Unfolding Memory Graphs

1. Let unfold(parent,op, G) be a procedure (sketched below)
that takes the name of a parent expression parent and an
operation op and unfolds the element op(parent), adding
new edges and vertices to the memory graph G.

2. Initialize V = {root} and E = ∅.

3. For each base variable name in the program, invoke
unfold(root, λx."name").

11/36

�

�

�

�

�

�

	

Unfolding Aliases

Let (V , E, root) = G be the members of G, let expr = op(parent) be the expression

to unfold, let tp be the type of expr, and let addr be its address.

If V already has a vertex v′ at the same address and with the
same type (formally,
∃v′ = (val′, tp′,addr′) ∈ V · tp = tp′ ∧ addr = addr′), do not
unfold expr again; however, insert an edge (parent, v′,op) to
the existing vertex.

Example:

struct foo f; int *p1; int *p2; p1 = p2 = &f;

If f has already been unfolded, we do not need to unfold its
aliases *p1 and *p2. However, we insert edges from p1 and p2
to f.

12/36

�

�

�

�

�

�

	

Unfolding Records

Let (V , E, root) = G be the members of G, let expr = op(parent) be the expression

to unfold, let tp be the type of expr, and let addr be its address.

If expr is a record containing n members m1,m2, . . . ,mn, add
a vertex v = ({. . . }, tp,addr) to V , and an edge (parent, v,op)
to E.

For each mi ∈ {m1,m2, . . . ,mn}, invoke
unfold(expr, λx."x.mi", G), unfolding the record members.

13/36

�

�

�

�

�

�

	

Unfolding Arrays

Let (V , E, root) = G be the members of G, let expr = op(parent) be the expression

to unfold, let tp be the type of expr, and let addr be its address.

If expr is an array containing n members
m[0],m[1], . . . ,m[n− 1], add a vertex v = ([. . .], tp,addr)
to V , and an edge (parent, v,op) to E.

For each i ∈ {0,1, . . . , n}, invoke unfold(expr, λx."x[i]", G),
unfolding the array elements.

14/36

�

�

�

�

�

�

	

Unfolding Pointers

Let (V , E, root) = G be the members of G, let expr = op(parent) be the expression

to unfold, let tp be the type of expr, and let addr be its address.

If expr is a pointer with address value val, add a vertex
v = (val, tp,addr) to V , and an edge (parent, v,op) to E.

Invoke unfold(expr, λx."*(x)", G), unfolding the element
expr points to (assuming that ∗p is the dereferenced
pointer p),

15/36

�

�

�

�

�

�

	

Unfolding Values

Let (V , E, root) = G be the members of G, let expr = op(parent) be the expression

to unfold, let tp be the type of expr, and let addr be its address.

If expr contains an atomic value val, add a vertex
v = (val, tp,addr) to V , and an edge (parent, v,op) to E.

16/36

�

�

�

�

�

�

	

What does P point to?

In C, uninitialized pointers can contain arbitrary addresses. A
pointer referencing invalid or uninitialized memory can quickly
introduce lots of garbage into the memory graph.

To distinguish valid from invalid pointers, we use a
memory map consisting of memory areas like

• stack frames

• heap areas requested via the malloc function

• known variables in static memory

A pointer is valid only if it points within a known area.

17/36

�

�

�

�

�

�

	

Sample Memory Map

Static area
[0x080480f4 - 0x0804982c] (5944 bytes) static
[0x08048718 - 0x08048726] (14 bytes) static .rodata
[0x08049728 - 0x08049734] (12 bytes) static .data
[0x08049774 - 0x08049814] (160 bytes) static .dynamic
[0x08049814 - 0x0804982c] (24 bytes) static .bss

Stack area
[0xbffff464 - 0xc0000000] (2972 bytes) stack
[0xbffff464 - 0xbffff48c] (40 bytes) stack frame #0
[0xbffff48c - 0xbffff4bc] (48 bytes) stack frame #1
[0xbffff4bc - 0xbffff4f8] (60 bytes) stack frame #2
[0xbffff4f8 - 0xc0000000] (2824 bytes) args+env

Heap area
[0x0804982c - 0x0804984c] (32 bytes) malloc
[0x08049838 - 0x0804984c] (20 bytes) malloc

18/36

�

�

�

�

�

�

	

Dynamic Arrays

In C, one can allocate arrays of arbitrary size on the heap via
the malloc function.

While the base address of the array is typically stored in a
pointer, C offers no means to find out how many elements
were actually allocated.

Basic idea: use the memory map; the referred elements cannot
extend beyond area boundaries.

Example—we know that an array lies within a memory area of
1000 bytes. The array cannot be longer than 1000 bytes.

19/36

�

�

�

�

�

�

	

Unions

In C, unions (also known as variant records) allow multiple
types to be stored at the same memory address. Keeping track
of the actual type is left to the discretion of the programmer.

Basic idea: disambiguate unions by weirdness—choose the
alternative with the least amount of

• invalid pointers

• invalid strings

• invalid enumeration elements

• unused memory

20/36

�

�

�

�

�

�

	

Unions (2)

Example:

union {
void *ptr; // 0xdeadbeef (invalid)
char str[4]; // "ı̈3

4-?"
int num; // 3735928559

} u;

u.ptr is weird (invalid)
u.str contains weird characters
u.num is the least weird alternative

21/36

�

�

�

�

�

�

	

All Things Considered

With all these heuristics, we eventually obtain quite accurate
memory maps:

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

However, tracking union and pointer assignments (rather than
guessing the most likely alternative) would be more accurate.

22/36

�

�

�

�

�

�

	

Comparing Memory Graphs

As a human, you can quickly grasp differences between small
graphs:

()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

To detect such differences automatically, though, requires
some graph operations.

23/36

�

�

�

�

�

�

	

Comparing Memory Graphs (2)

Basic idea: compute the maximum common subgraph—the
greatest possible matching between the two graphs. Formally:

1. Create the set of all pairs of vertices (v1, v2) with the same value and the
same type, one from each graph. Formally, v1 ∈ V1, v2 ∈ V2 and
val1 = val2 ∧ tp1 = tp2 holds where (val1, tp1,addr1) = v1 and
(val2, tp2,addr2) = v2.

2. Form the correspondence graph C whose nodes are the pairs from (1). Any
two vertex pairs v = (v1, v2) and v′ = (v′1, v′2) in C are connected if

• the operations of the edges (v1, v′1,op1) in G1 and (v2, v′2,op2) in G2 are
the same, i.e. op1 = op2, or

• neither (v1, v′1,op1) nor (v2, v′2,op2) exist.

3. The maximal common subgraph then corresponds to the maximum clique
in C—that is, a complete subgraph of C that is not contained in any other
complete subgraph.

Exponential in the worst case (= no labels, all contents are
equal); use heuristics as alternative.

24/36

�

�

�

�

�

�

	

Comparing Memory Graphs (3)

The common subgraph induces structural graph differences:
δ15 creates a variable, δ20 deletes another

r✔

r✘
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

δ15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

δ20

y δ20

y

()->next ()->nextlist

14 18 22
()->next

15

()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

25/36

�

�

�

�

�

�

	

External State

Memory graphs can easily model external state, simply by
adding appropriate operations.

File system. A file descriptor refers to a file with content and
attributes (e.g. name, attributes, . . .)

User interface. A window handle refers to a window with
content and attributes (e.g. title. size, position, . . .)

Internet. A URL refers to a document with content and even
more URLs. . .

Note that all “external” states are eventually read into “internal”
states; hence, getting and comparing such states may not be
required.

26/36

�

�

�

�

�

�

	

Limits of Delta Debugging

Delta Debugging has a number of potential drawbacks:

False Positives. What makes a failure a failure?

Local Minimum. Return first hit instead of the smallest.

State Artefacts. Results may not apply to original runs.

One Run. What do we do if we have only one run?

Isolate Infection. Result applies only on state, not on code.

27/36

�

�

�

�

�

�

	

False Positives

bool x = ...;
bool y = x;
// <= Access state here
if (x != y)

fail();
if (x && y)

fail();

Run x y

r✔ false false
r✘ true true

Tested r ′ false true

How do we distinguish the two fail() calls?

Approach: compare more state, e.g. backtraces

28/36

�

�

�

�

�

�

	

Local Minimum

bool x = read();
bool y = x;
// <= Access state here
if (x && y)

fail();

Run x y

r✔ false false
r✘ true true

Tested r ′ false true

Should Delta Debugging return x, y, or both?

Current approach is greedy: return first hit

29/36

�

�

�

�

�

�

	

State Artefacts

bool a, b, c, d;
// <= Access state here
if ((a && !b && c) || (c && d))

fail();

Run a b c d

r✔ false false false false
r✘ true true true true

Tested r ′✔ false false true false
Tested r ′✘ true false true false

The difference in a between r ′✔ and r ′✘ is failure-inducing. But
altering a alone in r✔ or r✘ does not change the outcome!

Possible approach—add more deltas until applicable to
original run

30/36

�

�

�

�

�

�

	

Working on a Single Run

What do we do if we have only one failing run?

Program Run

30/36

�

�

�

�

�

�

	

Working on a Single Run

What do we do if we have only one failing run?

Program Run

30/36

�

�

�

�

�

�

	

Working on a Single Run

What do we do if we have only one failing run?

Program Run

()->next
2220

Requires that

• the test be applicable on intermediate states

• the states be comparable (i.e. same local variables → same
backtrace → same program counter)

31/36

�

�

�

�

�

�

	

Single Run Example

Comparable states are typically obtained within loops:

while (1) {
process input();
if (input is bad())

fail();
}

// <= Access state here

Rather than fetching two complete runs r✔ and r✘, work on
two loop iterations—one where fail() is called and one
where fail() is not called.

Not realized yet!

32/36

�

�

�

�

�

�

	

Narrowing Down Infection Sites

Delta Debugging only narrows down the current state.

To narrow down the infection site, the programmer must still
assess the state into “sane” (✔) and “infected” (✘).

Example—Narrowing down GCC infection:

main if_then_else_condcombine_instructions

combine.c:1758
combine.c:4011

combine.c:4271

✔ ✔ ✔ ✘ ✘ ✘

Execution time

This temporal focusing can be done interactively!

33/36

�

�

�

�

�

�

	

How did this happen?

34/36

�

�

�

�

�

�

	

Master’s Thesis, Anyone?

35/36

�

�

�

�

�

�

	

Concepts

✏ Memory graphs allow representing and comparing complex
program states.

✏ Delta debugging has some open research questions:

• False Positives

• Local Minimum

• State Artefacts

• One Run

✏ Infection sites still must be narrowed down interactively

✏ Delta debugging functionality will soon be found in the top
programming environments

36/36

�

�

�

�

�

�

	

References

• Memory Graphs Web Site,
http://www.st.cs.uni-sb.de/memgraphs/

• T. Zimmermann, A. Zeller: Visualizing Memory Graphs,
Proc. “Software Visualization” LNCS 2269, pp. 191–204,
http://www.st.cs.uni-sb.de/papers/sv2001/

• Delta Debugging Web Site,
http://www.st.cs.uni-sb.de/dd/

• Eclipse Programming Environment,
http://www.eclipse.org/

http://www.st.cs.uni-saarland.de/memgraphs/
http://www.st.cs.uni-saarland.de/papers/sv2001/
http://www.st.cs.uni-saarland.de/dd/
http://www.eclipse.org/

	The Process in a Nutshell
	Memory Graphs
	Vertices
	Edges
	Root
	Operations
	Operations (2)
	Operations (3)
	Names
	Unfolding Memory Graphs
	Unfolding Aliases
	Unfolding Records
	Unfolding Arrays
	Unfolding Pointers
	Unfolding Values
	What does P point to?
	Sample Memory Map
	Dynamic Arrays
	Unions
	Unions (2)
	All Things Considered
	Comparing Memory Graphs
	Comparing Memory Graphs (2)
	Comparing Memory Graphs (3)
	External State
	Limits of Delta Debugging
	False Positives
	Local Minimum
	State Artefacts
	Working on a Single Run
	Working on a Single Run
	Working on a Single Run
	Single Run Example
	Narrowing Down Infection Sites
	How did this happen?
	Master's Thesis, Anyone?
	Concepts
	References

