
0/28

�

�

�

�

�

�

	

Isolating Cause-Effect Chains

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/28

�

�

�

�

�

�

	

GCC Revisited

Consider the following C program:

double bug(double z[], int n) {
int i, j;
i = 0;
for (j = 0; j < n; j++) {
i = i + j + 1;
z[i] = z[i] ∗ (z[0] + 1.0);

}
return z[n];

}

bug.c causes the GNU compiler (GCC) to crash:

linux$ gcc-2.95.2 -O bug.c
gcc: Internal error: program cc1 got fatal signal 11
linux$ _

2/28

�

�

�

�

�

�

	

Why does GCC crash?

We want to determine the cause of the GCC crash:

The cause of any event (“effect”) is a preceding event
without which the effect would not have occurred.

— Microsoft Encarta

To prove causality, we must show experimentally that

1. the effect occurs when the cause occurs

2. the effect does not occur when the cause does not occur.

In our case, the effect is GCC crashing.
The cause must be something variable – e.g. the GCC input.

3/28

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . }. . . } ✘
...

19 . . . z[i] = z[i]∗ (z[0]+ 1.0); . . . ✘
18 . . . z[i] = z[i]∗ (z[0]+ 1.0); . . . ✔

...

+ 1.0 is the failure cause – after only 19 tests (≈ 2 seconds)

4/28

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

4/28

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

4/28

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

4/28

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

4/28

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

✘+1.0

To fix the bug, we must break this cause-effect chain.

5/28

�

�

�

�

�

�

	

Following Origins

Using program analysis, one can follow how effects propagate
across the program states.

Requirement: Complete Knowledge about the entire code and
its semantics ⇒ good for small, closed programs.

But: real programs are opaque, parallel, distributed, dynamic,
multilingual – or simply obscure:

struct foo {
int tp, len;
union {
char c[1];
int i[1];
double d[1];

}
}

// Allocate string
int len = 200;
int bytes = len + 2 * sizeof(int);
foo *x = (foo *)malloc(bytes);
x->tp = STRING;
x->len = len;
strncpy(x->c, "Some string", len);

6/28

�

�

�

�

�

�

	

Small Cause, Large Effect

Effects accumulate during execution:

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

✘+1.0

This happens in static as well as in dynamic analysis.

7/28

�

�

�

�

�

�

	

Scientific Techniques

The techniques we discussed so far can be classified into three
groups:

Deduction from the program code to the actual run.

Example: Static program analysis

Observation of the actual run; comparison of observed state
vs. expected state

Example: Debuggers, assertions, queries, dynamic program
analysis

Experimentation to validate and narrow down causes

Example: Delta Debugging (on input, code, schedule)

8/28

�

�

�

�

�

�

	

Scientific Techniques (2)

Let us recall the causality example:

a = compute value();
printf("a = %d\n", a); // prints "a = 0"

Deduction (static analysis) tells us that a comes from
compute value().

Observation (debugger) tells us that a is not zero.

Experimentation (debugger?) can tell us that

• whatever we change the value of a to, “a = 0” is printed;

• if we change the format to %f, the proper value of a is
printed.

9/28

�

�

�

�

�

�

	

Delta Debugging on States

Obviously, a variable value is a cause if we can change it to a
value such that the effect no longer occurs.

But which value should we choose?

Basic idea of delta debugging: Use an alternate run—a value
that comes from a run where the effect does not occur.

10/28

�

�

�

�

�

�

	

Delta Debugging on States (2)

Within each state, narrow down the difference between a sane
state and a failure-inducing state—just like we narrow down
the difference between a sane input and a failure-inducing
input.

...

Narrowing Differences
in Program Input

Narrowing Differences
in State 1

Narrowing Differences
in State n

Input 1

Input 2

Input m

.

.

.

 m variables

n program states

.

.

.

Narrowing Differences
in State 2

.

.

.

Variable 1

Variable 2

Variable m

.

.

.

Variable 1

Variable 2

Variable m

Variable 1

Variable 2

Variable m

Each program state thus becomes an input for the remainder
of the run.

11/28

�

�

�

�

�

�

	

Sample Revisited

Recall the sample program:

$ sample 9 8 7
Output: 7 8 9
$ sample 11 14
Output: 0 11
$

12/28

�

�

�

�

�

�

	

Accessing States

Using a debugger (GDB), we can easily access the sample state:

$ gdb sample
(gdb) break shell sort
(gdb) run 7 8 9
Breakpoint 1, shell_sort (a=0x8049838, size=4)

at sample.c:9
(gdb) info args
a = (int *) 0x8049838
size = 4
(gdb) info locals
i = 1073834752
j = 1074077312
h = 1961
(gdb)

13/28

�

�

�

�

�

�

	

Sample States

At the beginning of shell sort, we obtain these states:

Variable Value
in r✔ in r✘

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NIL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r✔ in r✘

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

This state difference is both effect (of the input) as well as
cause (for the failure).

14/28

�

�

�

�

�

�

	

State Deltas

Variable Value
in r✔ in r✘

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NIL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r✔ in r✘

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

We define a set of deltas δi, each changing variable i:

∆ = c✘ − c✔ = c✘ = {δargc, δargv[1], δargv[2], δargv[3], δsize,
δi, δa[0], δa[1], δa[2], δa′[0], δa′[1], δa′[2]}

15/28

�

�

�

�

�

�

	

Altering State

Using a debugger (GDB), we can easily change states:

$ gdb sample
(gdb) break shell sort
(gdb) run 7 8 9
Breakpoint 1, shell_sort (a=0x8049838, size=4)

at sample.c:9
(gdb) print a[0]
$1 = 7
(gdb) set variable a[0] = 1
(gdb) continue
Continuing.
1 8 9

Program exited normally.
(gdb)

16/28

�

�

�

�

�

�

	

Narrowing Down State

Delta Debugging narrows down failure-inducing state changes:

� = δ is applied, � = δ is not applied

a′[0] a[0] a′[1] a[1] a′[2] a[2] argc argv[1] argv[2] argv[3] i size Output Test
1 � � � � � � � � � � � � 7 8 9 ✔

2 � � � � � � � � � � � � 0 11 ✘

3 � � � � � � � � � � � � 0 11 14 ✘

4 � � � � � � � � � � � � 7 11 14
5 � � � � � � � � � � � � 0 9 14 ✘

6 � � � � � � � � � � � � 7 9 14
7 � � � � � � � � � � � � 0 8 9 ✘

8 � � � � � � � � � � � � 0 8 9 ✘

Result �

Conclusion: a′[2] being 0 (instead of 7) causes the failure.

17/28

�

�

�

�

�

�

	

A Simple Demo

(HOWCOME demonstrator at
http://www.st.cs.uni-sb.de/dd/)

http://www.st.cs.uni-saarland.de/dd/

18/28

�

�

�

�

�

�

	

Relevant State Differences

Can we apply this technique to more complex states, too?

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4
5 32 74 15 0x81fc4a0 ✔

Consequence: determine and apply structural differences!

19/28

�

�

�

�

�

�

	

Memory Graphs

Basic idea: represent references (pointers) by edges in a graph.

Example – sample memory graph:

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

20/28

�

�

�

�

�

�

	

The GCC Memory Graph

42991 vertices
44290 edges

21/28

�

�

�

�

�

�

	

Structural Differences

HOWCOME can compute structural graph differences:
δ15 creates a variable, δ20 deletes another

r✔

r✘
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

δ15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

δ20

y δ20

y

()->next ()->nextlist

14 18 22
()->next

15

()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

22/28

�

�

�

�

�

�

	

The Process in a Nutshell

Failing Run

Passing Run

22/28

�

�

�

�

�

�

	

The Process in a Nutshell

Failing Run

Passing Run

22/28

�

�

�

�

�

�

	

The Process in a Nutshell

Failing Run

Passing Run

()->next
2220

23/28

�

�

�

�

�

�

	

Relevant State Differences

HOWCOME examines the state of cc1 in combine instructions:
871 nodes (= variables) are different

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

�

Tests executed

Delta Debugging Log

cpass
cfail

Only one variable causes the failure:

$m = (struct rtx def *)malloc(12)
$m->code = PLUS
first loop store insn->fld[1]...rtx = $m

24/28

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).
Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,
variable link→fld[0].rtx→fld[0].rtx is now link.

4. Execution ends.
Since variable link→fld[0].rtx→fld[0].rtx was link,
the program now terminates with a SIGSEGV signal.
The program fails.

Total running time: 6 seconds (+ 90 minutes of GDB overhead)

25/28

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

How do we determine relevant events?
Why focus on, say, combine instructions?

Today: Start with backtrace of failing run
Future: Focus on anomalies + transitions; user interaction

How do we know a failure is the failure?
Can’t our changes just induce new failures?

Today: Outcome is “original” only if backtraces match
Future: Also match output, time, code coverage

And finally: When does this actually work?

26/28

�

�

�

�

�

�

	

www.askigor.org

Submit buggy program
⇓

Specify invocations
⇓

Click on “Debug it”
⇓

Diagnosis comes
via e-mail

Up and running
since 2002-10-25

27/28

�

�

�

�

�

�

	

Concepts

✏ Applying delta debugging on program states leads to much
higher precision than “classical” analysis.

✏ Memory graphs allow representing and comparing complex
program states.

✏ Delta debugging requires a passing run as reference.

✏ Next lecture:

• Extraction and comparison of memory graphs

• Narrowing down infection sites

• Limits and Drawbacks

28/28

�

�

�

�

�

�

	

References

• Andreas Zeller, Isolating Cause-Effect Chains from
Computer Programs, Proc. FSE 2002, pp. 1–10 (2002)
http://www.st.cs.uni-sb.de/papers/fse2002/

• —, earlier version, unpublished (includes sample example),
http://www.st.cs.uni-sb.de/papers/icse2002/

• HOWCOME demonstrator,
http://www.st.cs.uni-sb.de/dd/

• Delta Debugging Web Site,
http://www.st.cs.uni-sb.de/dd/

• AskIgor Web Site, http://www.askigor.org/

http://www.st.cs.uni-saarland.de/papers/fse2002/
http://www.st.cs.uni-saarland.de/papers/icse2002/
http://www.st.cs.uni-saarland.de/dd/
http://www.st.cs.uni-saarland.de/dd/
http://www.askigor.org/

	GCC Revisited
	Why does GCC crash?
	Isolating Failure Causes
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	Following Origins
	Small Cause, Large Effect
	Scientific Techniques
	Scientific Techniques (2)
	Delta Debugging on States
	Delta Debugging on States (2)
	Sample Revisited
	Accessing States
	Sample States
	State Deltas
	Altering State
	Narrowing Down State
	A Simple Demo
	Relevant State Differences
	Memory Graphs
	The GCC Memory Graph
	Structural Differences
	The Process in a Nutshell
	The Process in a Nutshell
	The Process in a Nutshell
	Relevant State Differences
	The GCC Cause-Effect Chain
	Challenges
	www.askigor.org
	Concepts
	References

