
0/27

�

�

�

�

�

�

	

Isolating Value Origins

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/27

�

�

�

�

�

�

	

Isolating Origins

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

2/27

�

�

�

�

�

�

	

Thinking Backwards

Besides temporal and spatial focusing, one can also trace back
the origin of an infection.

Something impossible occurred,
and the only solid information is that it really did occur.
So we must think backwards from the result
to discover the reasons.

— Brian W. Kernighan and Rob Pike,
THE PRACTICE OF PROGRAMMING

3/27

�

�

�

�

�

�

	

Dependencies

Consider the following piece of code:

if (p)
z = x * f(y);

Assume we find that z is infected (say, z = 0 holds).

These are the potential causes for z being zero:

• x may be zero

• f() may have returned zero

• p may be true (instead of false)

Hence, the value of z depends on the statements in which
these values have been set.

4/27

�

�

�

�

�

�

	

Program Slicing

Again, we’d like to automate this as much as possible.

Basic idea: Follow the dependencies through the program to
narrow down the set of potential value sources.

This pattern is called PROGRAM SLICING.

A program slice is a subset of the program’s statements.

We distinguish two kinds of program slices:

Backward slice The statements that may have affected a
specific variable

Forward slice The statements that may be affected by a
specific variable

5/27

�

�

�

�

�

�

	

Backward Slice

Backward slice: All statements that may have affected a
variable at a specific place in the program.

Program Backward slice for (mul, 13)

int main() {
int a, b, sum, mul;
sum = 0;
mul = 1;
a = read();
b = read();
while (a <= b) {

sum = sum + a;
mul = mul * a;
a = a + 1;

}
write(sum);
write(mul);

}

int main() {
int a, b, sum, mul;
sum = 0;
mul = 1;
a = read();
b = read();
while (a <= b) {

sum = sum + a;
mul = mul * a;
a = a + 1;

}

write(mul);
}

Main use: Where does this value come from?

6/27

�

�

�

�

�

�

	

Forward Slice

Forward slice: All statements that may be affected by a
variable at a specific place in the program.

Program Forward slice for (b, 6)

int main() {
int a, b, sum, mul;
sum = 0;
mul = 1;
a = read();
b = read();
while (a <= b) {

sum = sum + a;
mul = mul * a;
a = a + 1;

}
write(sum);
write(mul);

}

int main() {
int a, b, sum, mul;
sum = 0;
mul = 1;
a = read();
b = read();
while (a <= b) {

sum = sum + a;
mul = mul * a;
a = a + 1;

}
write(sum);
write(mul);

}

Main use: Where does this value go to?

7/27

�

�

�

�

�

�

	

Dependencies

The relationship between a program state at a specific
statement and the statements that may have caused it is called
a dependency.

There are two kind of dependencies:

Control dependency Some statement A is control dependent
on a statement B if A might affect if or how often B is
executed.

Data dependency Some statement A is data dependent on a
statement B if A assigns a value to a variable that is being
accessed in B.

Such dependencies are computed by program analysis.

8/27

�

�

�

�

�

�

	

Dependencies (2)

Consider the following piece of code:

if (p)
z = x * f(y);

What does z depend upon?

• z is control dependent on if (p)

• z is data dependent on the assignment(s) of x

• z is data dependent on the return value of f()

Program slicing collects these dependencies in a program
dependency graph.

9/27

�

�

�

�

�

�

	

Program Dependency Graph

13

12

7

1098

5

64

3

1
ENTRY

mul=1

a=read()

b=read()

while (a<=b)

write(sum)

a=a+1mul=mul*asum=sum+a

sum=0 write(mul)

Data dependency

Control dependency

1

10/27

�

�

�

�

�

�

	

Dependencies and Causes

Dependencies are only potential causes.

Let us extend the code somewhat:

x = 0;
if (p)

z = x * f(y);

Obviously, f() can no longer be a cause for x being zero,
because there is no alternate value that f() could return.

11/27

�

�

�

�

�

�

	

Dependencies and Causes (2)

What’s “obvious” depends on the smartness of the analysis:

q = !p; x = p && q;
if (p)

z = x * f(y);

“Obviously”, x is always zero—and hence, only p and x are
potential causes for z being zero.

It is obvious, too, though, that there are computational limits
on the dependencies we can compute.

12/27

�

�

�

�

�

�

	

Conservative Approximation

Program analysis methods are conservative, because they
conserve the program semantics:

In doubt, a program analysis tool will always produce a
dependency.

Only if it can be proven that there is no way a statement might
influence the state, then there is no dependency.

q = !p; x = p && q;
if (p)

z = x * f(y);

z does not depend on a and b (unless f() would access them);
hence, there is no dependency to any assignments of a or b.

13/27

�

�

�

�

�

�

	

Conservative Approximation (2)

The produced dependencies are always approximations of the
full program behavior, as in points-to analysis:

T *p, *q, *r;
int main() {

p = new T;
f();
g(&p);
p = new T;
? = *p;

}

void f() {
q = new T;
g(&q);
r = new T;

}

void g(T **fp) {
T local;
if (...)

*fp = &local;
...

}

Simple approximation (faster): A pointer can point to
anything whose address is taken—p may point to all new T’s,
p, q and local (which thus all depend on p)

Smarter approximation (more precise): consider data flow
and control flow—pointer p points to the last new T.

14/27

�

�

�

�

�

�

	

Limits of Program Slicing

Since program analysis is approximative, the possible
influences multiply the further you move away from the
variable in question (“slicing is short-sighted”).

Nonetheless, there will always be a substantial amount of code
that cannot influence the variable in any (legal) way—which
means that debugging is considerably easened.

An open problem is complexity:

• associated program analysis is expensive if smart

• intraprocedural slicing is expensive if smart

15/27

�

�

�

�

�

�

	

Dynamic Slicing

One way to overcome the “short-sightedness” of program
slicing is to consider only one specific run (rather than all
possible runs)—for instance, the run we want to understand.

This is called dynamic (rather than static) slicing, because the
analysis executes the program in question.

Using a concrete run as reference, we can easily determine

• where pointers point to

• which statements where executed at all

• the sequence of executed statements

All this makes the program analysis more precise.

16/27

�

�

�

�

�

�

	

Static vs. Dynamic Slicing

Static slice for s Dynamic slice

n = read();
a = read();
x = 1;
b = a + x;
a = a + 1;
i = 1;
s = 0;
while (i <= n) {

if (b > 0)
if (a > 1)

x = 2;
s = s + x;
i = i + 1;

}
write(s);

n = read(); // 2
a = read(); // 0
x = 1;
b = a + x;
a = a + 1;
i = 1;
s = 0;
while (i <= n) {

if (b > 0)
if (a > 1)

x = 2;
s = s + x;
i = i + 1;

}
write(s);

17/27

�

�

�

�

�

�

	

Computing Dynamic Slices

Basic idea: Attach actual sources to every value

1. Compute a definition/use table which stores the defined
and used variable values.

2. Assign a dynamic slice to each value definition (initially
empty).

3. Execute the program.

4. Whenever a value is defined, assign its slice the union of all
used slices.

5. At the end of the execution, all definitions will be assigned
a slice that holds all value sources.

18/27

�

�

�

�

�

�

	

Def/Use Table

Code Def Use
n = read(); n
a = read(); a
x = 1; x
b = a + x; b a, x
a = a + 1; a a
i = 1; i
s = 0; s
while (i <= n) { p8 i, n

if (b > 0) p9 b, p8
if (a > 1) p10 a, p9

x = 2; x p10
s = s + x; s s, x, p8
i = i + 1; i i

}
write(s); o14 s

19/27

�

�

�

�

�

�

	

Computing the Slices

DynSlice(d) =
⋃
i
(
DynSlice(ui)∪ line(ui)

)
Code Def Use DynSlice
1 n = read(); n
2 a = read(); a
3 x = 1; x
4 b = a + x; b a, x 2, 3
5 a = a + 1; a a 2
6 i = 1; i
7 s = 0; s
8 while (i <= n) { p8 i, n 6, 1
9 if (b > 0) p9 b, p8 2, 3, 6, 1, 4, 8
10 if (a > 1) p10 a, p9 2, 3, 6, 1, 4, 8, 5, 9
12 s = s + x; s s, x, p8 6, 1, 7, 3, 8
13 i = i + 1; i i 6, 1, 8
8 while (i <= n) { p8 i, n 6, 1, 8, 13
9 if (b > 0) p9 b, p8 2, 3, 6, 1, 4, 8, 13
10 if (a > 1) p10 a, p9 2, 3, 6, 1, 4, 8, 5, 9, 13
12 s = s + x; s s, x, p8 6, 1, 7, 3, 8, 13, 12
13 i = i + 1; i i 6, 1, 8, 13
8 while (i <= n) { p8 i, n 6, 1, 8, 13
14 write(s); o14 s 6, 1, 7, 3, 8, 13, 12

20/27

�

�

�

�

�

�

	

Efficiency

Dynamic slicing (as presented here) is quite efficient:

• Case study: While a static slice contains 58% of the
statements, a dynamic slice cuts this down to 5%

• Set unions can be implemented with (nearly) constant
complexity

• Program execution is slowed down by instrumentation
(∼ 2–10 times slower)

21/27

�

�

�

�

�

�

	

What’s in a Slice?

A dynamic slice may not contain the erroneous statement:

Static slice for s Dynamic slice
n = read();
a = read();
x = 1;
b = a + x;
a = a + 1;
i = 1;
s = 0;
while (i <= n) {

if (b > 0)
if (a > 1)

x = 2;
s = s + x;
i = i + 1;

}
write(s);

n = read(); // 2
a = read(); // 0
x = 1;
b = a + x;
a = a + 1; // error?
i = 1;
s = 0;
while (i <= n) {

if (b > 0) // true
if (a > 1) // false

x = 2;
s = s + x;
i = i + 1;

}
write(s);

22/27

�

�

�

�

�

�

	

Dynamic vs. Relevant Slicing

A relevant slice includes conditional (static) dependencies:

Dynamic slice for s Relevant slice
n = read(); // 2
a = read(); // 0
x = 1;
b = a + x;
a = a + 1;
i = 1;
s = 0;
while (i <= n) {

if (b > 0) // true
if (a > 1) // false

x = 2;
s = s + x;
i = i + 1;

}
write(s);

n = read(); // 2
a = read(); // 0
x = 1;
b = a + x;
a = a + 1; // error may also be here...
i = 1;
s = 0;
while (i <= n) {

if (b > 0)
if (a > 1) // ... or here

x = 2;
s = s + x;
i = i + 1;

}
write(s);

Approach: include static dependencies for alternative control
flows (like (a > 1))

23/27

�

�

�

�

�

�

	

Slices and Erroneous Statements

The idea of relevant slices is certainly useful:

• Include all statements that in the slice that, if altered, may
change the variable value in question.

But this alteration must still preserve the original
definition/use!

If we allow arbitrary alterations (i.e. the statement can be
changed to anything else), then every statement can be a
cause for the variable value.

This is especially true for missing statements that can be
inserted anywhere.

Consequence: Slices need not include “the” error (but are
helpful in understanding how the error came to be!)

24/27

�

�

�

�

�

�

	

Dicing

Dynamic slices can be very useful if two program runs exist:

• A run where the failure occurs

• A run where the failure does not occur

Basic idea:

1. Compute the slice for the passing value

2. Compute the slice for the failing value

3. Examine the difference (the dice) between the two slices

The difference should contain all statements that influence
only the failing value—i.e. potentially erroneous statements.

25/27

�

�

�

�

�

�

	

Isolating Origins

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

26/27

�

�

�

�

�

�

	

Concepts

✏ A static slice contains all statements that may affect (or
may be affected by) a variable value at a specific statement.

✏ A dynamic slice is specific to a concrete program run.

✏ A relevant slice also includes control flow alternatives.

✏ A slice need not include the erroneous statement. . .

✏ . . . but is helpful in tracing down value origins.

✏ A dice is the difference between a passing and a failing
slice; it can pinpoint potentially erroneous statements.

27/27

�

�

�

�

�

�

	

References

• Frank Tip, A survey of program slicing techniques, Journal
of programming languages 3, 121–189 (1995).
http://citeseer.nj.nec.com/tip95survey.html

• T. Gyimóthy, Árpád Beszédes and Istvan Forgács, An
efficient relevant slicing method for debugging,
Proc. ESEC/FSE 99.
http://doi.acm.org/10.1145/318773.319248
(free access from .cs.uni-sb.de)

http://citeseer.nj.nec.com/tip95survey.html
http://doi.acm.org/10.1145/318773.319248

	Isolating Origins
	Thinking Backwards
	Dependencies
	Program Slicing
	Backward Slice
	Forward Slice
	Dependencies
	Dependencies (2)
	Program Dependency Graph
	Dependencies and Causes
	Dependencies and Causes (2)
	Conservative Approximation
	Conservative Approximation (2)
	Limits of Program Slicing
	Dynamic Slicing
	Static vs. Dynamic Slicing
	Computing Dynamic Slices
	Def/Use Table
	Computing the Slices
	Efficiency
	What's in a Slice?
	Dynamic vs. Relevant Slicing
	Slices and Erroneous Statements
	Dicing
	Isolating Origins
	Concepts
	References

