
0/45

�

�

�

�

�

�

	

Understanding the Program Run

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/45

�

�

�

�

�

�

	

Isolating Failure Causes

So far, we have seen how to isolate causes in the environment
of the program:

Input

Output

Program
Execution

✘

✘

Erroneous
code

Observer sees failure

We treated the program as a black box, though!

2/45

�

�

�

�

�

�

	

What we’d like to see

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

3/45

�

�

�

�

�

�

	

Today’s Topics

Examining Program Execution. How do we know which parts
of the program were executed?

Examining Program State. How do we access and examine
particular program states?

Isolating a Specific State. Spatial focusing—across the
program state.

Isolating the Infection. Temporal focusing—across the
program execution.

4/45

�

�

�

�

�

�

	

Examining Program Execution

Basic Question: What was executed?

Simplest pattern of all: LOG EXECUTION

Basic idea:

• Insert log statements at specific places in the progras

• As soon as log statement is reached, output is generated

• Examine sum of logs to see

– what was executed

– and what was not executed.

5/45

�

�

�

�

�

�

	

The No-Op test Program

Simple program test.c is supposed to print the n first
primes, with n being the argument:

int main(int argc, char *argv[])
{

int number of primes;
number of primes = atoi(argv[1]);
print primes(number of primes);

}

Observation—The program does not print anything:

$ test 27
$

6/45

�

�

�

�

�

�

	

The No-Op test Program (2)

Hypothesis: The main function was not executed.

int main(int argc, char *argv[])
{

int number of primes;
printf("main() was called!\n");
number of primes = atoi(argv[1]);
print primes(number of primes);

}

Outcome—main was not executed (confirmation)

$ test 27
$

test invokes the system command, not our program!

7/45

�

�

�

�

�

�

	

Logging Data

While we’re logging the location, we might as well log the
current state:

int main(int argc, char *argv[])
{

int number of primes;
number of primes = atoi(argv[1]);
printf("main(): number of primes = %d\n",

number of primes);
print primes(number of primes);
printf("main(): returning\n")

}

Logging is the easiest and most common debugging technique!

8/45

�

�

�

�

�

�

	

Logging in Practice

Use standard formats. This

• applies to events (“prefix each line with time”)

• applies to data (“output all dates in Y-M-D format”)

• is best achieved by using dedicated logging functions.

Make logging optional. For efficiency, logging is typically
turned off in production code.

Allow for variable granularity. Depending on the problem
you are working on, it may be helpful to focus on specific
levels of detail.

9/45

�

�

�

�

�

�

	

Simple Macros for Logging

We use

LOG(("number_of_primes = %d", number_of_primes))

to get

number_of_primes = 3

Definition:

#define LOG(args) printf args

In practice: dedicated logging function instead of printf

10/45

�

�

�

�

�

�

	

Extra Logging Information

We use

LOG(("number_of_primes = %d", number_of_primes))

to get

main.c:3: number_of_primes = 3

Definition:

#define LOG(args) \
printf("%s:%d: ", __FILE__, __LINE__), \
printf args, \
printf("\n")

This scheme can easily be extended to log date/time, etc.

11/45

�

�

�

�

�

�

	

Optional Logging

We turn logging off at compile time
using the NDEBUG (“No Debugging”) macro

$ gcc -DNDEBUG -o mytest test.c

Definition:

#ifndef NDEBUG
#define LOG(args) 〈as before〉
#else
#define LOG(args)
#endif

If NDEBUG is set, LOG(args) compiles to a no-op

12/45

�

�

�

�

�

�

	

Logging Granularity

We turn logging on and off at runtime
using a LOG FILES environment variable:

$ LOG FILES="main.c debug-*.c" mytest

Definition:

#define LOG(args) \
do we log this(__FILE__) && \

(printf("%s:%d: ", __FILE__, __LINE__), \
printf args, \
printf("\n"))

Complex macro definitions can easily be turned into an
appropriate function.

13/45

�

�

�

�

�

�

	

Lots of Logs

Problem: Lots and lots of logging code can easily
clutter the “real” program code.

Delete logging code when debugging is finished.
Problem: When do we know that debugging is finished?

Use a debugger instead.
Problem: Have to recreate everything every time.

Encapsulate logging within an aspect.
An aspect is a separate syntactical entity that can be
interwoven with the program (i.e. it is optional).

14/45

�

�

�

�

�

�

	

Logging with Aspects

Aspects give very elegant ways to handle logging:

public aspect Tracer {
pointcut allMethods():

call(public * Article.*(..));
before(): allMethods() {

System.out.println ("Entering " +
thisJoinPoint);

}
after(): allMethods() {

System.out.println ("Leaving " +
thisJoinPoint);

}
}

15/45

�

�

�

�

�

�

	

Even better Logging

Current trends in logging:

Insert logging code automatically (just as with a tracing
aspect)

Visualize log results (rather than simply printing them)

Search for patterns (such as “this sequence of function calls
occurs n times”)—and deviations

16/45

�

�

�

�

�

�

	

Tracing with Jinsight

http://www.research.ibm.com/jinsight/

17/45

�

�

�

�

�

�

	

Persistent vs. Transient Logging

Logging has an advantage and a disadvantage:

✔ Logging is compiled within the program

✘ Logging is compiled within the program

If I want a more transient approach, I use a debugger instead.

18/45

�

�

�

�

�

�

	

Basic Debugger Facilities

A debugger allows to

• Start your program, specifying anything that might affect
its behavior.

• Make your program stop on specified conditions.

• Examine what has happened when your program has
stopped.

• Change things in your program, so you can experiment
with correcting the effects of one bug and go on to learn
about another.

Source: gdb(1) manual page

19/45

�

�

�

�

�

�

	

Examining Program Execution

How do we know which parts of the program were executed?

A breakpoint makes the program stop as soon as it reaches a
specific location.

$ gdb sample
(gdb) break main
Breakpoint 1 in main
(gdb)

The program will stop as soon as main is reached
(formally: the program counter (PC) is main)

20/45

�

�

�

�

�

�

	

Breakpoints in Detail

Formally, a breakpoint defines a predicate on the program
state—the program stops as soon as the predicate holds.

A predicate like “the current PC is main” is easy to check:

• If the program is stored in RAM, we can replace the
instruction at main with a break instruction (when the
breakpoint is reached, the original instruction is restored)

• Many processors have debugging registers which interrupt
execution as soon as the PC is equal to a registered value

Many debuggers support only simple breakpoints “the PC is x”.

21/45

�

�

�

�

�

�

	

Breakpoints and Watchpoints

Some debuggers provide additional predicates—especially
predicates on data.

A GDB watchpoint will interrupt the program as soon as a
specific variable changes its value:

(gdb) watch a
Hardware watchpoint 1: a
(gdb) continue
Old value = (int *) 0xbffff518
New value = (int *) 0x8049850
(gdb)

22/45

�

�

�

�

�

�

	

Watchpoints in Detail

Watchpoints can be arbitrarily complex:

(gdb) watch f(x) != 42

will stop as soon as f(x) changes its value

Watchpoints can simulate breakpoints:

(gdb) watch $pc != main

will stop as soon as the program counter reaches main

No support for “is called by”, “within” or other useful
predicates from aspect-oriented programming :–(

23/45

�

�

�

�

�

�

	

Watchpoints in Detail (2)

Watchpoints are typically expensive:

• Some processors have debugging data registers which
interrupt execution as soon as the value at the registered
address changes its value.

This is efficient, but works only for simple values (and the
program counter).

• If no such registers exist, or if the watched expression
must be computed, the debugger must inquire the data
after each single instruction, reducing speed to 1/1000.

24/45

�

�

�

�

�

�

	

Conditional Breakpoints

Conditional breakpoints allow users to check predicates only
at specific locations—i.e. when the PC reaches a certain value.

(gdb) break print_primes if n_primes == 2
Breakpoint 1 at print_primes
(gdb)

The program will stop if
the PC is print primes and n primes is 2.

Due to the PC checking, this can again be implemented
efficiently.

25/45

�

�

�

�

�

�

	

Conditional Breakpoints (2)

Conditional breakpoints can be used to realize assertions
on-the-fly:

Rather than writing

int foo() {
assert (a > 0);
...

one could set a breakpoint

(gdb) break foo if a <= 0
(gdb)

These assertions on-the-fly are transient
(not sure whether this is a good thing...)

26/45

�

�

�

�

�

�

	

Breakpoints and Predicates

Overview of breakpoint commands:

Type GDB Command Predicate
Breakpoint break location PC = location
Watchpoint watch expr expr changes
Cond. bp break location if expr PC = location∧ expr

The debugger also automatically stops the program

• on user interrupts (Ctrl+C)

• if it receives a fatal signal

• if an uncaught exception is thrown

27/45

�

�

�

�

�

�

	

Examining the Stack

Among the first tasks to do when a program stops is to
examine the current backtrace—the stack of calling functions.

(gdb) run
Starting program: sample

Breakpoint 1, shell_sort (a=0x8049850, size=1)
at sample.c:9

9 int h = 1;
(gdb) where
#0 shell_sort (a=0x8049850, size=1) at sample.c:9
#1 main (argc=1, argv=0xbffff564) at sample.c:35
#2 __libc_start_main () from /lib/libc.so.6
(gdb)

28/45

�

�

�

�

�

�

	

Examining Program Data

Once a program has stopped, we can examine its data—in the
state where the program stopped.

All debuggers can print single variables:

(gdb) print a[0]
$1 = 0
(gdb)

Most debuggers also support expressions:

(gdb) print a[size - 1]
$2 = 0
(gdb)

29/45

�

�

�

�

�

�

	

Examining Program Data (2)

Some debuggers also support function calls:

(gdb) print main(argc, argv)
$3 = 0
(gdb)

Method invocations are also possible:

(gdb) print c1.operator==(c2)
$4 = false
(gdb)

If execution stops during the evaluation of the expression,
interesting things can happen :–)

30/45

�

�

�

�

�

�

	

Examining Program Data (2)

To access the variables of a calling function, one can navigate
through the backtrace:

(gdb) frame
#0 shell_sort (a=0x8049850, size=4) at sample.c:9
(gdb) info locals
i = 1073834752
j = 1074077312
h = 1961
(gdb) up
#1 0x8048647 in main (argc=4, argv=0xbffff544)

at sample.c:35
(gdb) info locals
a = (int *) 0x8049850
i = 3
(gdb)

31/45

�

�

�

�

�

�

	

Resuming Execution

After one is done examining the program state, one can
resume execution (until the next stopping condition is
reached):

(gdb) continue
Program exited normally.
(gdb)

Oops—obviously, we should have set another breakpoint!

32/45

�

�

�

�

�

�

	

Stepping through the Program

A common task is to execute the program until the next
statement is reached:

(gdb) run 7 8 9
Breakpoint 1, shell_sort (a=0x8049850, size=4)

at sample.c:9
9 int h = 1;
(gdb) step
11 h = h * 3 + 1;
(gdb) step
12 } while (h <= size);
(gdb)

33/45

�

�

�

�

�

�

	

Stepping through the Program (2)

Several commands are available to step:

step PC reaches next executed statement, maybe in different
function

next PC reaches next executed statement in same function or
current function returns

until PC reaches line greater than the current or current
function returns

finish current function returns

continue resume execution unconditionally

All these commands are realized using temporary breakpoints
at the appropriate locations.

34/45

�

�

�

�

�

�

	

Logging Data

Using a debugger, one can also log values automatically.

display variable prints variable with each GDB prompt.

(gdb) display a
a = 1
(gdb) next
a = 2
(gdb) next
a = 3
(gdb) continue
Breakpoint 1, shell_sort (a=0x8049850, size=4)

at sample.c:9
a = 4
(gdb)

35/45

�

�

�

�

�

�

	

Logging Data (2)

Alternate idea—associate breakpoint with commands

(gdb) break 16
Breakpoint 1 at file sample.c, line 16.
(gdb) commands
Type commands for when breakpoint 1 is hit,
one per line. End with a line saying just "end".
>print i
>cont
>end
(gdb)

36/45

�

�

�

�

�

�

	

Logging Data (3)

(gdb) run
Starting program: sample 7 8 9

Breakpoint 1 at sample.c:17
17 int v = a[i];
$1 = 1

Breakpoint 1 at sample.c:17
17 int v = a[i];
$2 = 2

Breakpoint 1 at sample.c:17
17 int v = a[i];
$3 = 3
...

37/45

�

�

�

�

�

�

	

Logging Data (4)

Nicer alternative, using silent and printf:

(gdb) commands 1
Type commands for when breakpoint 1 is hit,
one per line. End with a line saying just "end".
>silent
>printf "i = %d\n", i
>cont
>end
(gdb) run
Starting program: sample 7 8 9
i = 1
i = 2
i = 3
...

38/45

�

�

�

�

�

�

	

DDD—A Graphical User Interface

39/45

�

�

�

�

�

�

	

Logging vs. Debugger

Examining Program Execution.

• Logging: Close to the code, persistent

• Debugger: Tedious, interactive, but versatile

Examining Program State.

• Logging: Close to the code, persistent

• Debugger: Tedious, interactive, very versatile

40/45

�

�

�

�

�

�

	

Spatial and Temporal Focusing

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

41/45

�

�

�

�

�

�

	

Spatial focusing

Basic idea: Separate sane state (= as intended) from
infected state (= not as intended)

• Use logging (or a debugger) to access state

• Use assertions (or likewise debugger techniques) to
separate sane from infected state

42/45

�

�

�

�

�

�

	

Temporal focusing

Basic idea: identify the moment in time where the state
becomes infected

• Use logging (or a debugger) to access execution

• Use binary search to find out the moment in time where the
state first became infected

• Trace back possible origins of the infection

To be addressed in remainder of the course!

43/45

�

�

�

�

�

�

	

Concepts

✏ Logging is a simple technique to understand

• what was executed

• what states the program was in

✏ Programmers use or define dedicated logging facilities

✏ Aspects allow encapsulating logging in own syntactical
entities

44/45

�

�

�

�

�

�

	

Concepts (2)

✏ Debuggers allow a versatile and transient access to
execution and data

✏ The program can be stopped as soon as a specific
predicate holds (typically PC = location)

✏ In a stopped program, we can examine arbitrary data

✏ Assertions and logging can be added on the fly

45/45

�

�

�

�

�

�

	

Concepts (3)

✏ Spatial focusing means to separate the state into sane (= as
intended) and infected

✏ Temporal focusing means to isolate the moment in time
where the infection occurs

✏ All this must be (and can be) automated!

	Isolating Failure Causes
	What we'd like to see
	Today's Topics
	Examining Program Execution
	The No-Op test Program
	The No-Op test Program (2)
	Logging Data
	Logging in Practice
	Simple Macros for Logging
	Extra Logging Information
	Optional Logging
	Logging Granularity
	Lots of Logs
	Logging with Aspects
	Even better Logging
	Tracing with Jinsight
	Persistent vs. Transient Logging
	Basic Debugger Facilities
	Examining Program Execution
	Breakpoints in Detail
	Breakpoints and Watchpoints
	Watchpoints in Detail
	Watchpoints in Detail (2)
	Conditional Breakpoints
	Conditional Breakpoints (2)
	Breakpoints and Predicates
	Examining the Stack
	Examining Program Data
	Examining Program Data (2)
	Examining Program Data (2)
	Resuming Execution
	Stepping through the Program
	Stepping through the Program (2)
	Logging Data
	Logging Data (2)
	Logging Data (3)
	Logging Data (4)
	DDD---A Graphical User Interface
	Logging vs. Debugger
	Spatial and Temporal Focusing
	Spatial focusing
	Temporal focusing
	Concepts
	Concepts (2)
	Concepts (3)

