
0/36

�

�

�

�

�

�

	

Isolating Failure Causes

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/36

�

�

�

�

�

�

	

Causes and Alternate Worlds

2/36

�

�

�

�

�

�

	

The Narrowing Process

✘

✔

✘

✔

Alternate World

✘

✔

✔

✘

✔

✘

Reduced difference
= more specific cause

Reduced difference
= more specific cause

Failing World

Passing World

Initial Difference
= Initial Cause

Set up
hypothesis

1.

Hypothesis
confirmed

2a. Hypothesis
rejected

2b.

Repeat
as needed

3.
Repeat
as needed

3.

or

3/36

�

�

�

�

�

�

	

Simplifying HTML Input

Idea: Apply Divide and Conquer to simplify HTML pages

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘
62 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 ✘

...
75 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
76 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
77 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔

...
90 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✘

Simplified bug report: Printing <SELECT> crashes.

4/36

�

�

�

�

�

�

	

Simplifying vs. Isolating

Problem: To simplify the entire input can be expensive

Alternative approach: We do not simplify the entire input, but
the difference with respect to a working input.

Simplifying
✘

⇓
⇓
⇓

✘

✔

Isolating
✘

⇓
✘

✔

⇑
✔

Larger context – but fewer tests and smaller causes

5/36

�

�

�

�

�

�

	

Isolating a HTML difference

Mozilla input Test
1 <SELECT NAME="priority" MULTIPLE SIZE=7> ✘

2 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
3 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔

4 <SELECT NAME="priority" MULTIPLE SIZE=7> ✘

5 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
6 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
7 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔

Isolated difference: the “<” in “<SELECT>”.

Isolating requires 7 tests, simplifying 26.

6/36

�

�

�

�

�

�

	

Simplification vs. Isolation

Simplification

• make each part of the simplified test case relevant

• removing any part makes the failure go away

Isolation

• find one relevant part of the test case

• removing this particular part makes the failure go away

Both simplification and isolation can be handled by delta
debugging.

7/36

�

�

�

�

�

�

	

Recalling ddmin

ddmin(c✘) = ddmin′(c✘,2) where

ddmin′(c′✘, n) =

ddmin′(∇i,max(n− 1,2)) if ∃i ∈ {1, . . . , n}
·test(∇i) = ✘

ddmin′(c′✘,min(2n, |c✘|)) if 2n < |c✘|
c′✘ otherwise

with c′✘ = ∆1 ∪∆2 ∪ · · · ∪∆n,∇i = c′✘ \∆i, and

∀∆i,∆j ·∆i ∩∆j = ∅∧ |∆i| ≈ |∆j|.
The ddmin algorithm must be extended to compute
differences.

8/36

�

�

�

�

�

�

	

A new Algorithm

Let us try to formalize our issues.

Again, we have c✔, c✘, C, etc. as defined for ddmin.

Our goal is to find two sets c′✔ and c′✘ such that

• ∅ = c✔ ⊆ c′✔ ⊂ c′✘ ⊆ c✘ holds and

• the difference ∆ = c′✘ − c′✔ is 1-minimal.

∆ is 1-minimal if

∀δi ∈ ∆ · test
(
c′✔ ∪ {δi}

)
≠ ✔∧ test

(
c′✘ − {δi}

)
≠ ✘

holds.

9/36

�

�

�

�

�

�

	

Extending ddmin

We must extend ddmin such that it works
on two sets at a time:

• The failing test case c′✘ which is to be minimized
(initially, c′✘ = c✘ holds), and

• The passing test case c′✔ which is to be maximized
(initially, c′✔ = c✔ = ∅ holds).

10/36

�

�

�

�

�

�

	

A Binary Search Approach

Basic idea:

• We split the difference ∆ = c′✘ − c′✔ into two subsets∆1 and ∆2.∆ = ∆1 ∪∆2, ∆1 ∩∆2 = ∅, and |∆1| ≈ |∆2| holds.

• We test two configurations:

– c′✘ \∆1 = c′✔ ∪∆2 and

– c′✘ \∆2 = c′✔ ∪∆1

11/36

�

�

�

�

�

�

	

Possible Outcomes

Starting with c′✔ = c✔, c′✘ = c✘; ∆ = c′✘ − c′✔ = ∆1 ∪∆2.

Test Outcome New c′✔ New c′✘
c′✘ \∆1 = c′✔ ∪∆2 ✘ c′✔ c′✘ \∆1

c′✘ \∆1 = c′✔ ∪∆2 ✔ c′✔ ∪∆2 c′✘
c′✘ \∆2 = c′✔ ∪∆1 ✘ c′✔ c′✘ \∆2

c′✘ \∆2 = c′✔ ∪∆1 ✔ c′✔ ∪∆1 c′✘

Classical binary search with O(log2 |∆|) tests.

12/36

�

�

�

�

�

�

	

The ddbin Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✔, c′✘ = ddbin(c✔, c✘) such that c✔ ⊆ c′✔ ⊆ c′✘ ⊆ c✘,
test(c′✔) = ✔, test(c′✘) = ✘

and each element of ∆ = c′✘ \ c′✔ is relevant for the failure.

Let ∆ = c′✘ \ c′✔ = ∆1 ∪∆2 in

ddbin(c✔, c✘) = ddbin′(c✔, c✘) where

ddbin′(c′✔, c′✘) =

(c′✔, c′✘) if |∆| = 1

ddbin′(c′✔, c′✔ ∪∆2) if test(c′✔ ∪∆2) = ✘

ddbin′(c′✘ \∆2, c′✘) if test(c′✘ \∆2) = ✔

ddbin′(c′✔, c′✔ ∪∆1) if test(c′✔ ∪∆1) = ✘

ddbin′(c′✘ \∆1, c′✘) if test(c′✘ \∆1) = ✔

(Note that c′✘ \∆1 = c′✔ ∪∆2 and c′✘ \∆2 = c′✔ ∪∆1 hold.)

Classical binary search!

13/36

�

�

�

�

�

�

	

ddbin on Mozilla input

Mozilla input Test
1 <SELECT NAME="priority" MULTIPLE SIZE=7> ✘

2 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
3 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔

4 <SELECT NAME="priority" MULTIPLE SIZE=7> ✘

5 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
6 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
7 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔

14/36

�

�

�

�

�

�

	

Unresolved Test Outcomes

Problem: ddbin does not handle unresolved test outcomes!

Step GCC input test
1 #define SIZE 20 . . . double mult(. . .) { . . . } ✘

2 #define SIZE 20 ✔

3 double mult(. . .) { . . . } ✘

4 double mult(. . .) { int i, j; i = 0; } ✔

5 double mult(. . .)
{

for(. . .) { . . . } . . .
}

15/36

�

�

�

�

�

�

	

Unresolved Test Outcomes (2)

The more we change some input which has
a resolved test outcome (✔ or ✘),

• the faster the progress in narrowing the difference, but

• the higher are the chances of unresolved outcomes ().

If we apply smaller changes to the input,

• the chance to get an unresolved outcome is smaller, but

• the progress is smaller, too!

We need a compromise between these two approaches!

16/36

�

�

�

�

�

�

	

Unresolved Test Outcomes (3)

Basic idea:

1. Start with few & large changes first

2. If all alternatives are unresolved, apply more & smaller
changes.

This is achieved by splitting the initial ∆ not into two subsets,
but into an increasing number of subsets—as in ddmin!

Thus, we have to merge the binary search of the ddbin
algorithm with the arbitrary number of subsets as in ddmin.

17/36

�

�

�

�

�

�

	

General Delta Debugging

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✔, c′✘ = dd(c✔, c✘) such that c✔ ⊆ c′✔ ⊆ c′✘ ⊆ c✘,
test(c′✔) = ✔, test(c′✘) = ✘

and each element of ∆ = c′✘ \ c′✔ is relevant for the failure.

Let ∆ = c′✘ \ c′✔ = ∆1 ∪ · · · ∪∆n in

dd(c✔, c✘) = dd′(c✔, c✘,2) where

dd′(c′✔, c′✘, n) =

dd′(c′✔, c′✔ ∪∆i,2) if ∃i · test(c′✔ ∪∆i) = ✘

dd′(c′✘ \∆i, c′✘,2) if ∃i · test(c′✘ \∆i) = ✔

dd′
(
c′✔ ∪∆i, c′✘,max(n− 1,2)

)
if ∃i · test(c′✔ ∪∆i) = ✔

dd′
(
c′✔, c′✘ \∆i,max(n− 1,2)

)
if ∃i · test(c′✘ \∆i) = ✘

dd′
(
c′✔, c′✘,min(2n, |∆|)) if 2n < |∆|

(c′✔, c′✘) otherwise

18/36

�

�

�

�

�

�

	

dd vs. ddbin vs. ddmin

dd is the most general of all Delta Debugging algorithms:

• If test returns ✔ for c✔ only, and in all other cases, then
dd is equivalent to ddmin.

• If test never returns , then dd is equivalent to ddbin (=
binary search)

Consequence 1: You only need to know about dd. Period.

Consequence 2: We must avoid unresolved test outcomes as
good as we can (e.g. by adding syntactic or semantic
knowledge, as in simplification)

19/36

�

�

�

�

�

�

	

Application: Code Changes

Date: Fri, 31 Jul 1998 15:11:05 -0500
From: Brian Kahne <bkahne@ibmoto.com>
To: DDD Bug Reports <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run command correctly
uses any prior command-line arguments, or the value of
"set args". However, when I switched to GDB 4.17, this
no longer worked: If I entered a run command in the
console window, the prior command-line options would be
lost. [...]

20/36

�

�

�

�

�

�

	

Yesterday, my Program Worked

✔ ⇒ ⇒ ·· · ⇒︸ ︷︷ ︸⇒ ✘

Yesterday n changes Today

Assumption: The failure is caused by one of the changes
between “yesterday” and “today”.

Goal: Finding and examining this failure-inducing change.

Procedure: Delta Debugging

21/36

�

�

�

�

�

�

	

Trouble Ahead

In case of GDB, we have an enormous change:

$ diff -r gdb-4.16 gdb-4.17
diff -r gdb-4.16/COPYING gdb-4.17/COPYING
5c5
< 675 Mass Ave, Cambridge, MA 02139, USA

> 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
282c282
< Appendix: How to Apply These Terms to Your New Programs

> How to Apply These Terms to Your New Programs
...

and so on for a total of 178,200 lines.

22/36

�

�

�

�

�

�

	

Trouble Ahead (2)

Large changes are not the only source of trouble:

✘ Granularity. A single logical change can affect thousands
of lines of code—but only a few lines may be responsible
for the failure.

Example: integration of large third-party changes

✘ Interference. There can be multiple failure-inducing
changes that cause the failure only when applied together.

Example: integration of parallel development lines

✘ Inconsistency. The generated configuration may be
inconsistent—we do not know whether the failure occurs.

Example: change conflict, construction failure, crash

All these are handled by delta debugging.

23/36

�

�

�

�

�

�

	

Isolating the GDB Change

DIFF split into 8721 changes; 370s/test on 400 MHz PC

1

10

100

1000

10000

100000

0 50 100 150 200 250 300

C
ha

ng
es

 le
ft

�

Tests executed

Delta Debugging Log

GDB with ddmin algorithm
... with dd algorithm

... plus scope information

The failure-inducing code change is:

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278
< "Set arguments to give program being debugged when it is started.\n\

> "Set argument list to give program being debugged when it is started.\n\

24/36

�

�

�

�

�

�

	

Application: Thread Schedules

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

✔

Thread
Switch

24/36

�

�

�

�

�

�

	

Application: Thread Schedules

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

✔

Thread
Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

✘

24/36

�

�

�

�

�

�

	

Application: Thread Schedules

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

✔

Thread
Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

✘
A’s updates

get lost!

Thread switches and schedules are nondeterministic:
Bugs are hard to reproduce and hard to isolate!

25/36

�

�

�

�

�

�

	

Recording and Replaying Runs

DEJAVU captures and replays program runs deterministically:

DEJAVU

recorded
schedule

record replay
x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

Allows simple reproduction of schedules and induced failures

26/36

�

�

�

�

�

�

	

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

✔ ✘

26/36

�

�

�

�

�

�

	

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

✔ ✘

The difference between schedules is relevant for the failure:
A small difference can pinpoint the failure cause

27/36

�

�

�

�

�

�

	

Finding Differences

✘✔

t1

t2

t3

• We start with runs ✔ and ✘

• We determine the differences∆i between thread switches ti:

– t1 occurs in ✔ at “time” 254

– t1 occurs in ✘ at “time” 278

– The difference∆1 = |278− 254| induces a
statement interval: the code
executed between “time”
254 and 278

– Same applies to t2, t3, etc.

Our goal: Narrow down the difference such that only a small
relevant difference remains, pinpointing the root cause

28/36

�

�

�

�

�

�

	

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to ✔:

✘✔ ?

• The entire difference∆1 is applied

• Half of the difference∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated
schedule; an automated test checks if the failure occurs

29/36

�

�

�

�

�

�

	

The Isolation Process

Delta Debugging systematically narrows down the difference

✘✔ ?

✔ ✘

Dejavu replays
the generated
schedule

Test outcome

30/36

�

�

�

�

�

�

	

A Real Program

We examine Test #205 of the SPEC JVM98 Java test suite:
a raytracer program depicting a dinosaur

Program is single-threaded—the multi-threaded code is
commented out

To test our approach,

• we make the raytracer program multi-threaded again

• we introduce a simple race condition

• we implement an automated test that would check whether
the failure occurs or not

• we generate random schedules until we obtain both a
passing schedule (✔) and a failing schedule (✘)

31/36

�

�

�

�

�

�

	

Passing and Failing Schedule

We obtain two schedules with 3,842,577,240 differences,
each moving a thread switch by ±1 “time” unit

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(#

 y
ie

ld
 p

oi
nt

s)

�

Thread switches

Thread Schedules

Failing Schedule
Passing Schedule

32/36

�

�

�

�

�

�

	

Narrowing Down the Failure Cause

Delta Debugging isolates one single difference after 50 tests:

1e+11

1e+12

1e+13

1e+14

0 5 10 15 20 25 30 35 40 45 50

D
el

ta
s

�

Tests executed

Delta Debugging Log

cpass
cfail

33/36

�

�

�

�

�

�

	

The Root Cause of the Failure

25 public class Scene { ...
44 private static int ScenesLoaded = 0;
45 (more methods. . .)
81 private
82 int LoadScene(String filename) {
84 int OldScenesLoaded = ScenesLoaded;
85 (more initializations. . .)
91 infile = new DataInputStream(...);
92 (more code. . .)

130 ScenesLoaded = OldScenesLoaded + 1;
131 System.out.println("" +

ScenesLoaded + " scenes loaded.");
132 ...
134 }
135 ...
733 }

34/36

�

�

�

�

�

�

	

Consequence

Still, processor speed doubles almost every 18 months
(Moore’s Law).

Consequence: We can now afford approaches that were way
too expensive only a few years ago.

Currently, the computer spends 99.9% of its time just waiting
for the programmer to move the mouse.

We can exploit this to have

• Expensive program analysis

• Automated testing

• Automated debugging

35/36

�

�

�

�

�

�

	

Concepts

✏ In contrast to simplification, isolation finds only one
relevant part of the test case;
removing this particular part makes the failure go away

✏ Isolation is much more efficient than simplification.

36/36

�

�

�

�

�

�

	

Concepts (2)

✏ The general Delta Debugging algorithm dd extends ddmin
to isolate failure-inducing differences.

✏ dd becomes an efficient binary search as soon as there are
no unresolved test outcomes

✏ Delta Debugging can be applied to arbitrary circumstances
of the program run:

• Program input

• Program code

• Program environment (i.e., the thread schedule)

as long as there is an automated test and a passing
configuration to compare with.

	Causes and Alternate Worlds
	The Narrowing Process
	Simplifying HTML Input
	Simplifying vs. Isolating
	Isolating a HTML difference
	Simplification vs. Isolation
	Recalling ddmin
	A new Algorithm
	Extending ddmin
	A Binary Search Approach
	Possible Outcomes
	The ddbin Algorithm
	ddbin on Mozilla input
	Unresolved Test Outcomes
	Unresolved Test Outcomes (2)
	Unresolved Test Outcomes (3)
	General Delta Debugging
	dd vs. ddbin vs. ddmin
	Application: Code Changes
	Yesterday, my Program Worked
	Trouble Ahead
	Trouble Ahead (2)
	Isolating the GDB Change
	Application: Thread Schedules
	Application: Thread Schedules
	Application: Thread Schedules
	Recording and Replaying Runs
	Differences between Schedules
	Differences between Schedules
	Finding Differences
	Isolating Relevant Differences
	The Isolation Process
	A Real Program
	Passing and Failing Schedule
	Narrowing Down the Failure Cause
	The Root Cause of the Failure
	Consequence
	Concepts
	Concepts (2)

