
0/52

�

�

�

�

�

�

	

Simplifying Test Cases

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/52

�

�

�

�

�

�

	

Causes and Alternate Worlds

2/52

�

�

�

�

�

�

	

Divide and Conquer

Divide and conquer (from latin “divide et impera”):
The basic principle of reducing a large problem into
smaller subproblems.

General pattern:

• Start with some initial difference (= initial cause)

• Decompose this difference into smaller differences

• Test the resulting hypotheses to see whether the smaller
differences are more specific failure causes.

3/52

�

�

�

�

�

�

	

The Initial Difference

✘

✔

Failing World

Passing World

Initial Difference
= Initial Cause

4/52

�

�

�

�

�

�

	

Setting up an Alternate World

✘

✔

Failing World

Passing World

Alternate World

5/52

�

�

�

�

�

�

	

Testing the Alternate World

✘

✔

Failing World

Passing World

✘
Alternate World

6/52

�

�

�

�

�

�

	

Narrowing the Difference

✘

✔

Failing World

Passing World

✘
Reduced Difference
= more specific cause

Alternate World

7/52

�

�

�

�

�

�

	

Alternate Test Outcome

✘

✔

Failing World

Passing World

✔
Alternate World

8/52

�

�

�

�

�

�

	

Narrowing the Difference

✘

✔

Failing World

Passing World

✔

Reduced Difference
= more specific cause

Alternate World

9/52

�

�

�

�

�

�

	

The Narrowing Process

✘

✔

✘

✔

Alternate World

✘

✔

✔

✘

✔

✘

Reduced difference
= more specific cause

Reduced difference
= more specific cause

Failing World

Passing World

Initial Difference
= Initial Cause

Set up
hypothesis

1.

Hypothesis
confirmed

2a. Hypothesis
rejected

2b.

Repeat
as needed

3.
Repeat
as needed

3.

or

10/52

�

�

�

�

�

�

	

Mozilla Crashes when Printing

After reproducing a failure comes simplifying the test case
⇒ reduce a test case to relevant details only.

Example —Mozilla bug #24735, reported by
anantk@yahoo.com:

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to
.50 (I use the file /var/tmp/netscape.ps)

-> Once it’s done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

What is relevant in this problem report?

11/52

�

�

�

�

�

�

	

The Mozilla Input
<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows
95">Windows 95<OPTION VALUE="Windows 98">Windows 98<OPTION VALUE="Windows
ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System
7.5">Mac System 7.5<OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1<OPTION
VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac
System 9.x<OPTION VALUE="MacOS X">MacOS X<OPTION VALUE="Linux">Linux<OPTION
VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION
VALUE="HP-UX">HP-UX<OPTION VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION VALUE="OSF/1">OSF/1<OPTION
VALUE="Solaris">Solaris<OPTION VALUE="SunOS">SunOS<OPTION
VALUE="other">other</SELECT>

</td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>

</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION
VALUE="major">major<OPTION VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION
VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

12/52

�

�

�

�

�

�

	

Why Simplifying?

First of all: simplified test cases can pinpoint failure causes.

Besides that:

A simplified test case is easier to communicate. Is it
relevant that the margins be set to .50? If the failure
occurs nonetheless, we can leave away this detail.

A simplified test case facilitates debugging. A smaller HTML
input leads to a simpler program state.

Simplified test cases identify duplicate problem reports. If
we know that some specific HTML tag causes printing to
fail, we can search for this HTML tag in other problem
reports, marking them as duplicates.

13/52

�

�

�

�

�

�

	

The Gecko BugAThon

Idea—Volunteers help the Mozilla programmers by creating
simplified test cases:

Start removing HTML markup, CSS rules, and lines of
JavaScript from the page. Start by removing the parts of
the page that seem unrelated to the bug. Every few
minutes, check the page to make sure it still reproduces
the bug.

Pledges Reward
5 bugs invitation to the Gecko launch party

10 bugs the invitation, plus an attractive Gecko stuffed animal
12 bugs same, but animal autographed by the Father of Gecko
15 bugs the invitation, plus a Gecko T-shirt
17 bugs same, but T-shirt signed by the grateful engineer
20 bugs same, but T-shirt signed by the whole raptor team

14/52

�

�

�

�

�

�

	

Simplification Levels

Cutting away input can be done on three levels:

Lexical simplification. Cut away single characters or lines,
without any consideration of the syntax or semantics of the
input.

Syntactic simplification. Only cut away (HTML) substructures,
avoiding syntax errors. In most cases, the best
compromise.

Semantic simplification. Additionally, ensure cross-references
(links and targets) are all valid.

Mozilla is not picky about syntax ⇒ lexical simplification!

15/52

�

�

�

�

�

�

	

Simplifying HTML Input

Idea: Apply Divide and Conquer to simplify HTML pages

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘
62 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 ✘

...
75 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
76 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
77 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔

...
90 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✘

Simplified bug report: Printing <SELECT> crashes.

16/52

�

�

�

�

�

�

	

Delta Debugging

DELTA DEBUGGING: automates simplification of test cases

Basic idea:

• create subsets of failure-inducing circumstances
(to be precise: subsets of failure-inducing differences
between circumstances)

• test them automatically

• depending on the outcome,

– further refine the subset or

– try the next viable alternative.

17/52

�

�

�

�

�

�

	

Delta Debugging (2)

Like DIVIDE AND CONQUER, DELTA DEBUGGING is a very general
concept.

DELTA DEBUGGING can be used to isolate

• failure-inducing circumstances, especially program input
(see today and next lecture)

• failure-inducing thread schedules

• failure-inducing code changes

• Failure-inducing program states (later on)

18/52

�

�

�

�

�

�

	

Delta Debugging (3)

DELTA DEBUGGING has three building blocks:

An automated test, returning ✘ (“fail”) or ✔ (“pass”)
depending on whether the failure occurs or not—or
(“unresolved”).

In our concrete example, such a test would generate HTML
code and use CAPTURE AND REPLAY to instrument Mozilla.

A means to decompose the cause into smaller parts. In our
concrete example, we search for the failure cause in the
input; hence, we decompose the input.

A strategy on how and what to test. A simple, yet effective
simplification strategy is the one shown before: Start by
removing large chunks, increasing granularity as needed.

19/52

�

�

�

�

�

�

	

Delta Debugging (4)

DELTA DEBUGGING returns a 1-minimal test case
⇒ every single part of the simplified test case is relevant.

A simplified test case means the simplest possible web
page that still reproduces the bug. If you remove any
more characters from the file of the simplified test case,
you no longer see the bug.

Complexity ranges from logarithmic (best case) to quadratic
(worst case; pathologic)

20/52

�

�

�

�

�

�

	

Simplifying User Interaction

Let us recall the problem report:

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to
.50 (I use the file /var/tmp/netscape.ps)

-> Once it’s done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

Is setting the file name really relevant?
Do we have to set the margins to .50?

21/52

�

�

�

�

�

�

	

Simplifying User Interaction (2)

Basic idea:

• Record the user interaction with CAPTURE AND REPLAY

• Set up an automated test that replays subsequences of the
interaction

• Simplify the user interaction with DELTA DEBUGGING

22/52

�

�

�

�

�

�

	

Simplifying User Interaction (3)

1

10

100

0 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 X

-e
ve

nt
s

�

tests executed

tcmin log

MN events removed

23/52

�

�

�

�

�

�

	

Simplifying User Interaction (4)

Simplified User Interaction:

1. Press the P key while the Alt modifier key is held. (Invoke
the Print dialog.)

2. Press mouse button 1 on the Print button without a
modifier. (Arm the Print button.)

3. Release mouse button 1. (Start printing.)

Consequence: selecting Print to File, altering the default file
name, setting print margins is all irrelevant.

Simplifed bug report:

Printing <SELECT> crashes.

24/52

�

�

�

�

�

�

	

Alternate Circumstances

The simplification concept can be easily extended to arbitrary
circumstances that determine a program run:

• If your program depends on a set of environment variables,
use DELTA DEBUGGING to simplify the environment to the
relevant settings.

• If your program reads in a file, you can use DELTA

DEBUGGING to simplify the file to the relevant contents.

• If your program relies on network interaction, and you can
set up CAPTURE AND REPLAY such that this network
interaction is reproduced, you can easily use DELTA

DEBUGGING to simplify failure-inducing network interaction.

25/52

�

�

�

�

�

�

	

Circumstances

Let us now give some formal definitions of Delta Debugging.

Let R denote the set of possible configurations of
circumstances that determine a program run.

Each r ∈ R determines a specific program run (hence the
name R), just as every HTML input determines a specific
Mozilla behavior.

In the same vein, each r ∈ R determines a specific test
outcome.

26/52

�

�

�

�

�

�

	

Tests

Our testing function takes a configuration r ∈ R and
determines the test outcome:

• The test succeeds (PASS, written here as ✔)

• The test has produced the failure it was intended to capture
(FAIL, written here as ✘)

• The test produced indeterminate results (UNRESOLVED,
written here as).

Definition 1 (rtest) The function rtest : R→ {✘,✔, }
determines for a program run r ∈ R whether some specific
failure occurs (✘) or not (✔) or whether the test is
unresolved ().

27/52

�

�

�

�

�

�

	

Differences between Runs

r✔ ∈ R and r✘ ∈ R stand for a passing run and the failing run,
respectively.

r✘ is the run whose circumstances are to be simplified.

Our aim: To find a minimal difference between r✔ and r✘—that
is, the actual failure cause.

Definition 2 (Change) A change δ is a mapping δ : R→R.
The set of changes is C = RR. The relevant change between
two runs r✔, r✘ ∈ R is a change δ ∈ C such that δ(r✔) = r✘.

28/52

�

�

�

�

�

�

	

Decomposing Differences

We assume that δ can be decomposed into smaller differences:

δ = δ1 ◦ δ2 ◦ · · · ◦ δn

Definition 3 (Composition of changes) The change
composition ◦ : C × C → C is defined as
(δi ◦ δj)(r) = δi

(
δj(r)

)
.

29/52

�

�

�

�

�

�

	

Identifying Runs by Differences

For convenience, we identify each test case by the set of
changes being applied to r✔.

That is, we define c✔ as the empty set c✔ = ∅ which identifies
the passing run r✔ (no changes applied).

The set of all changes c✘ = {δ1, δ2, . . . , δn} identifies the failing
run r✘ = (δ1 ◦ δ2 ◦ · · · ◦ δn)(r✔).

30/52

�

�

�

�

�

�

	

Testing by Differences

Test cases are related to program runs by means of the test
function, which applies the respective change set to r✔ and
tests the resulting run.

Definition 4 (test) The function test : 2c✘ → {✘,✔, } is defined
as follows: Let c ⊆ c✘ be a test case with c = {δ1, δ2, . . . , δn}.
Then, test(c) = rtest

(
(δ1 ◦ δ2 ◦ · · · ◦ δn)(r✔)

)
holds.

test(c✔) = rtest(r✔) = ✔ and
test(c✘) = rtest(δ(r✔)) = rtest(r✘) = ✘ hold.

31/52

�

�

�

�

�

�

	

Simplified Runs

Our issue: simplifying c✘ to a minimum.

First attempt—a global minimum:

Definition 5 (Global minimum) A set c ⊆ c✘ is called the global
minimum of c✘ if ∀c′ ⊆ c✘ ·

(
|c′| < |c| ⇒ test(c′) ≠ ✘

)
holds.

Unfortunately, this requires testing all 2|c✘| subsets of c✘.

32/52

�

�

�

�

�

�

	

Simplified Runs (2)

Second attempt—each part is relevant on its own:

Definition 6 (1-minimal test case) A test case c ⊆ c✘ is
1-minimal if ∀δi ∈ c · test

(
c \ {δi}

)
≠ ✘ holds.

Generalization: n-minimality—any removal of at most n
changes makes the failure disappear.

33/52

�

�

�

�

�

�

	

Linear Simplification

Idea: remove one change at a time while failure persists.

Example: failure occurs if changes 5 and 7 are applied

34/52

�

�

�

�

�

�

	

Step Test case test
1 . 2 3 4 5 6 7 8 ✘

2 . . 3 4 5 6 7 8 ✘

3 . . . 4 5 6 7 8 ✘

4 5 6 7 8 ✘

5 6 7 8 ✔

6 5 . 7 8 ✘

7 5 . . 8 ✔

8 5 . 7 . ✘

9 7 . ✔

10 5 . . . ✔

Result 5 . 7 .

35/52

�

�

�

�

�

�

	

Linear Simplification

Formal definition:

ddlin(c✘) = ddlin′(c✘) where

ddlin′(c′✘) =

ddlin′(c′✘ \ {δi}) if ∃δi ∈ c′✘ · test
(
c′✘ \ {δi}

)
= ✘

c′✘ otherwise

Not effective enough—requires at least |c✘| tests!

36/52

�

�

�

�

�

�

	

Divide-and-Conquer Simplification

Basic idea: split changes into two halves;
if failure does not occur in either part, increase granularity

Step Test case test
1 5 6 7 8 ✘

2 7 8 ✔

3 5 6 . . ✔ Increase n = 4
4 6 7 8 ✔

5 5 . 7 8 ✘ Restart with n = 2
6 8 ✔

7 5 . 7 . ✘

8 7 . ✔

9 5 . . . ✔

Result 5 . 7 .

37/52

�

�

�

�

�

�

	

Divide-and-Conquer Simplification (2)

Formal definition:

ddmin(c✘) = ddmin′(c✘,2) where

ddmin′(c′✘, n) =

ddmin′(∇i,max(n− 1,2)) if ∃i ∈ {1, . . . , n}
·test(∇i) = ✘

ddmin′(c′✘,min(2n, |c✘|)) if 2n < |c✘|
c′✘ otherwise

with c′✘ = ∆1 ∪∆2 ∪ · · · ∪∆n,∇i = c′✘ \∆i, and

∀∆i,∆j ·∆i ∩∆j = ∅∧ |∆i| ≈ |∆j|.

38/52

�

�

�

�

�

�

	

Divide-and-Conquer Simplification (3)

Basic properties of ddmin:

Worst-case complexity is quadratic. Pathological example:
every complement is unresolved—except for the last.

Best-case complexity is logarithmic. If a small part of the
input induces the failure (like <SELECT> in the HTML input),
we’re set.

Important issue, though: We must avoid unresolved test
outcomes!

39/52

�

�

�

�

�

�

	

Simplifying GCC Input
#define SIZE 20

double mult(double z[], int n)
{

int i, j;

i = 0;
for (j = 0; j < n; j++) {
i = i + j + 1;
z[i] = z[i] ∗ (z[0] + 1.0);

}
return z[n];

}

void copy(double to[],
double from[], int count)

{
int n = (count + 7) / 8;
switch (count % 8) do {

case 0: *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;

} while (--n > 0);
return mult(to, 2);

}

int main(int argc, char *argv[])
{

double x[SIZE], y[SIZE];
double *px = x;

while (px < x + SIZE)
*px++ = (px− x)∗ (SIZE+ 1.0);

return copy(y , x, SIZE);
}

$ (ulimit -H -s 256; gcc -O bug.c)
gcc: Internal compiler error:
program cc1 got fatal signal 11

40/52

�

�

�

�

�

�

	

Simplifying GCC Input (2)

Step Configuration test
1 #define SIZE 20 . . . double mult(. . .) { . . . } ✘

2 #define SIZE 20 ✔

3 double mult(. . .) { . . . } ✘

4 double mult(. . .) { int i, j; i = 0; } ✔

5 double mult(. . .)
{

for(. . .) { . . . } . . .
}

...

Minimal input found after 857 tests:

t(double z[], int)
{

int i,j; for(;;){i = i+j+1;z[i] = z[i]∗(z[0]+
0); }

}

41/52

�

�

�

�

�

�

	

The Curse of Lexical Simplification

wwwwwwwwwwwwwwwwwwwwwwwwwww�

714 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
714 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
715 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
716 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
717 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
718 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
719 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
720 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
721 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}
722 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}

...
...

733 t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];} ✘

42/52

�

�

�

�

�

�

	

Syntactical Simplification

Basic idea: Turn input into a syntax tree and replace subtrees
by (trivial) replacements

Example—Input z[i] = z[i] * (z[0] + 1.0)

43/52

�

�

�

�

�

�

	

=

[]
���

z i
����� �

*
���

[]
����� �

z i
� ��� ��� �

+
����� �

[]
� ��� �	� �

z 0
�	�	� ��� ��� �

1.0
� ��� �	� �

44/52

�

�

�

�

�

�

	

Syntactical Simplification (2)

Step Applied deltas Input Test
r✘ 1 1.2 2 2.1 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 z[i] = z[i] * (z[0] + 1.0) ✘
r✔ 〈empty〉 ✔

Granularity n = 2
1 . . 2 2.1 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 z = z[i] * (z[0] + 1.0) ✔
2 1 1.2 z[i] = 0 ✔

Granularity n = 4
3 . 1.2 2 2.1 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 〈infeasible〉
4 1 . 2 2.1 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 z[0] = z[i] * (z[0] + 1.0) ✔
5 1 1.2 . . . 2.2 2.2.1 2.2.1.2 2.2.2 〈infeasible〉
6 1 1.2 2 2.1 2.1.2 z[i] = z[i] * 0 ✔

Granularity n = 8
7 . 1.2 2 2.1 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 〈infeasible〉
8 1 . 2 2.1 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 z[0] = z[i] * (z[0] + 1.0) ✔
9 1 1.2 . 2.1 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 〈infeasible〉

10 1 1.2 2 . 2.1.2 2.2 2.2.1 2.2.1.2 2.2.2 〈infeasible〉
11 1 1.2 2 2.1 . 2.2 2.2.1 2.2.1.2 2.2.2 z[0] = z[0] * (z[0] + 1.0) ✔
12 1 1.2 2 2.1 2.1.2 . 2.2.1 2.2.1.2 2.2.2 〈infeasible〉
13 1 1.2 2 2.1 2.1.2 2.2 . . 2.2.2 z[0] = z[i] * (0 + 1.0)
14 1 1.2 2 2.1 2.1.2 2.2 2.2.1 2.2.1.2 . z[0] = z[i] * (z[0] + 0) ✔

45/52

�

�

�

�

�

�

	

Is it “the” Failure?

Problem: Our automated test must check whether the
occurring failure is the same as the original failure.

As an analogon, consider this example:

Billy and Suzy throw rocks at a bottle. Suzy throws first
so that her rock arrives first and shatters the glass.
Without Suzy’s throw, Billy’s throw would have shattered
the bottle.

What’s the cause of the bottle being shattered?

46/52

�

�

�

�

�

�

	

Is it “the” Failure? (2)

If Suzy had not thrown the rock, Billy’s throw would have
shattered the bottle anyway.

Following the definition of “cause”, Suzy’s throw would not be
the cause of the bottle being shattered, which is in contrast to
common sense.

47/52

�

�

�

�

�

�

	

Is it “the” Failure? (3)

Solution: take into account not only whether the effect occurs,
but also when and how.

Since Billy’s rock would have smashed the bottle at another
time—and probably, in some other way, too—, the effect
would have been different.

Hence, Suzy’s throw may not be the cause for the bottle being
shattered in general—but the throw is certainly the cause for
the bottle having been shattered just as we find it.

48/52

�

�

�

�

�

�

	

Is it “the” Failure? (4)

To compare the when and how of a failure, use a
backtrace—the current program counter and the stack of
calling functions at the moment of the failure.

When a failure occurs, the automated test can compare its
backtrace with the backtrace of the original failure.

Only if both are equal must the automated test return ✘;
otherwise, a different failure has occurred, and the automated
test must return .

49/52

�

�

�

�

�

�

	

Concepts

✏ DIVIDE AND CONQUER is useful to invent and modify
hypotheses about failure causes. Its main idea is to break
some initial (trivial) cause into smaller parts and to narrow
down the actual cause along the scientific method.

✏ Simplified test cases play an important role in debugging,
as they may pinpoint failure causes. They also make test
cases easier to communicate, they facilitate debugging,
and they identify duplicate problem reports.

✏ Simplification can be done on a lexical, on a syntactical,
and on a semantical level.

50/52

�

�

�

�

�

�

	

Concepts (2)

✏ DELTA DEBUGGING automates simplification of test cases by
systematically narrowing the difference between a passing
and a failing run.

✏ The result of a DELTA DEBUGGING run is a 1-minimal test
case in which every part is relevant for producing the
failure.

✏ DELTA DEBUGGING can be applied to arbitrary circumstances
besides program input, as long as they can be captured
and altered.

51/52

�

�

�

�

�

�

	

Concepts (3)

✏ The ddmin algorithm realizes a simple DIVIDE AND CONQUER

strategy for Delta Debugging.

✏ It has quadratic complexity in the worst (pathological) case,
and logarithmic complexity in the best case.

52/52

�

�

�

�

�

�

	

Concepts (4)

✏ The more knowledge about syntax and semantics of the
input goes into decomposition, the more efficient is the
simplification process.

✏ Syntactic simplification works on syntax trees rather than
on streams of characters; it avoids unresolved test
outcomes due to syntax errors.

✏ When checking a program run, be sure to compare the
when and how of the failure with the properties of the
original failure. This is best done by comparing the
backtrace.

	Causes and Alternate Worlds
	Divide and Conquer
	The Initial Difference
	Setting up an Alternate World
	Testing the Alternate World
	Narrowing the Difference
	Alternate Test Outcome
	Narrowing the Difference
	The Narrowing Process
	Mozilla Crashes when Printing
	The Mozilla Input
	Why Simplifying?
	The Gecko BugAThon
	Simplification Levels
	Simplifying HTML Input
	Delta Debugging
	Delta Debugging (2)
	Delta Debugging (3)
	Delta Debugging (4)
	Simplifying User Interaction
	Simplifying User Interaction (2)
	Simplifying User Interaction (3)
	Simplifying User Interaction (4)
	Alternate Circumstances
	Circumstances
	Tests
	Differences between Runs
	Decomposing Differences
	Identifying Runs by Differences
	Testing by Differences
	Simplified Runs
	Simplified Runs (2)
	Linear Simplification
	Linear Simplification
	Divide-and-Conquer Simplification
	Divide-and-Conquer Simplification (2)
	Divide-and-Conquer Simplification (3)
	Simplifying GCC Input
	Simplifying GCC Input (2)
	The Curse of Lexical Simplification
	Syntactical Simplification
	Syntactical Simplification (2)
	Is it ``the'' Failure?
	Is it ``the'' Failure? (2)
	Is it ``the'' Failure? (3)
	Is it ``the'' Failure? (4)
	Concepts
	Concepts (2)
	Concepts (3)
	Concepts (4)

