
0/50

�

�

�

�

�

�

	

The Scientific Method

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken



1/50

�

�

�

�

�

�

	

www.askigor.org

Submit buggy program
⇓

Specify invocations
⇓

Push button
⇓

Get diagnosis
by e-mail



2/50

�

�

�

�

�

�

	

Guessing Causes

Some people are very good at guessing causes:

• look at code

• point finger at screen

• and tell you: “Did you try X?”.

You try X—and voilà! The failure is gone.

Such intuition comes from experience with earlier errors.



3/50

�

�

�

�

�

�

	

Alternatives to Intuition

Intuition is a concept that is hard to grasp.

Sought: a method to find failure causes that

• does not require a priori knowledge

• works in a systematic and reproducible fashion

Enter the scientific method!



4/50

�

�

�

�

�

�

	

The Scientific Method

Scientific Method: A general pattern of how to find a theory
that explains (and predicts) some aspect of the universe.

1. Observe some aspect of the universe.

2. Invent a tentative description, called a hypothesis, that is
consistent with what you have observed.

3. Use the hypothesis to make predictions.

4. Test those predictions by experiments or further
observations and modify the hypothesis.

5. Repeat steps 3 and 4 until there are no discrepancies
between hypothesis and experiment and/or observation.

Eventually, the hypothesis thus becomes a theory.



5/50

�

�

�

�

�

�

	

The Scientific Method of Debugging

In the debugging context, the scientific method looks like this:

1. Observe a failure.

2. Invent a hypothesis as to the failure cause that is consistent
with the observations and the necessary conditions.

3. Use the hypothesis to make predictions.

4. Test the hypothesis by experiments or further observations
and modify the hypothesis.

5. Repeat steps 3 and 4 until you found the actual cause.

But: What is a cause?
And: How do we know a cause is a cause?



6/50

�

�

�

�

�

�

	

Causes and Effects

A cause is an event preceding another event without which the
event in question (the effect) would not have occurred.

A defect causes the failure if the failure would not have
occurred without the defect.

Debugging = search for a defect that causes the failure;
Debugging = search for causality.



7/50

�

�

�

�

�

�

	

Causes and Effects (2)

In natural and social sciences, causality is often hard to
establish. Just think about common disputes such as

• Did usage of the butterfly ballot in West Palm Beach cause
George W. Bush to be president of the United States?

• Did drugs cause the death of Elvis Presley?

• Does human production of carbon dioxide cause global
warming?

To determine whether these are actually causes, formally, we
would have to repeat history without the cause in question.

Consequence: speculation, confusion—and conspiracy theory.



8/50

�

�

�

�

�

�

	

Causes and Effects (3)

Computer science is different from natural science.

We can

• easily repeat program runs over and over,

• change the circumstances of the execution as desired, and

• observe the effects.

Given the right means, the program execution is under total
control and totally deterministic.

Debugging is the only scientific discipline which can claim
dealing with actual causality.



9/50

�

�

�

�

�

�

	

Establishing Failure Causes

a = compute value();
printf("a = %d\n", a);

This code, when executed, prints a = 0 on the console.

Why does this happen?



10/50

�

�

�

�

�

�

	

Establishing Failure Causes (2)

a = compute value();
printf("a = %d\n", a);

We set up a first hypothesis:

a being zero is the cause for a = 0 being printed.



11/50

�

�

�

�

�

�

	

Establishing Failure Causes (3)

a = compute value();
a = 1; // New code
printf("a = %d\n", a);

In this experiment, a = 0 is still being printed.
The hypothesis is disproven.

We set up a new hypothesis:

a = 0 is being printed regardless of the value of a.



12/50

�

�

�

�

�

�

	

Establishing Failure Causes (4)

It turns out that a is declared as double:

double a;
...
a = compute value();
a = 1;
printf("a = %d\n", a);

Consequence: a mismatch between the format and the type.

New hypothesis:

The format "%d" is the cause for a = 0 being printed.



13/50

�

�

�

�

�

�

	

Establishing Failure Causes (5)

A proper format for floating-point values in printf is "%f".

We alter the format to this value:

a = compute value();
printf("a = %f\n", a);

Now, a = 1.0 is printed. The failure has gone.

Thus, we have a theory:

The format "%d" is the cause for a = 0 being printed.



14/50

�

�

�

�

�

�

	

Explicit Contrast

Our theory is yet imprecise:

The format "%d" is the cause for a = 0 being printed.

This theory does not state the alternate world.

A more precise statement about the failure cause is thus

The format "%d" (rather than "%f") is the cause
for a = 0 being printed.

This is called explicit contrast.



15/50

�

�

�

�

�

�

	

Explicit Contrast (2)

Why is explicit contrast important?

x = 0.0;
x = g();
return 1 / x; /* Division by zero */

Failure cause:

x is assigned the g() return value

But what’s the alternative?



16/50

�

�

�

�

�

�

	

Explicit Contrast (3)

Failure cause: “x is assigned the g() return value”

If we remove the assignment altogether, the program still fails:

x = 0.0;
/* x = g(); */
return 1 / x; /* Division by zero */

Precise cause with explicit contrast:

x is assigned the value of g() instead of f()

or

g() returns a zero value instead of a non-zero value



17/50

�

�

�

�

�

�

	

Changes vs. Fixes

Each cause carries a change:

The format "%d" (rather than "%f") is the cause
for a = 0 being printed.

This change (here: from "%d" to "%f") does make the failure
go away.

However, this change does not necessarily fix the problem
once and for all; its only purpose is to prove the cause.

While each fix is a change, not every change is a fix!



18/50

�

�

�

�

�

�

	

A Mastermind Game



19/50

�

�

�

�

�

�

	

Keep a Notebook

Robert M. Pirsig on motorcycle maintenance:

Everything gets written down, formally, so that you
know at all times where you are, where you’ve been,
where you’re going, and where you want to get.

In scientific work and electronics technology this is
necessary because otherwise the problems get so
complex you get lost in them and confused and forget
what you know and what you don’t know and have to
give up.

Real programs are typically much more complex than
motorcycles!



20/50

�

�

�

�

�

�

	

Keep a Notebook (2)

Your notes should include the following points:

1. the statement of the problem,

2. hypotheses as to the cause of the problem,

3. experiments designed to test each hypothesis,

4. predicted results of the experiments,

5. observed results of the experiments, and

6. conclusions from the results of the experiments.



21/50

�

�

�

�

�

�

	

Notebook Example

Problem statement

a = 0 is being printed, but a is not supposed to be zero.

Hypothesis #1 Variable a being zero is the cause for a = 0 being printed.

Experiment Set a to 1.

Predicted result a = 1 is being printed.

Observed result a = 0 is being printed.

Conclusion Hypothesis #1 is rejected.

Hypothesis #2 The format "%d" is the cause for a = 0 being printed.

Experiment Alter the format to "%f".

Predicted result a = 〈some non-zero value〉 is being printed.

Observed result (as predicted)

Conclusion Hypothesis #2 is confirmed.



22/50

�

�

�

�

�

�

	

More about Notebooks

• With a well-kept notebook, you can always quit work and
resume next morning.

• If you are a lazy writer, set up a form with entries like
“Predicted result”, “Observed result”, etc.

• After the problem has been fixed, it may be helpful to
archive the notes—in case a similar problem occurs.



23/50

�

�

�

�

�

�

	

State the Problem

Often, the mere act of stating a problem explicitly can help to
understand it.

One university center kept a Teddy bear near the help
desk. Students with mysterious bugs were required to
explain them to the bear before they could speak to a
human counselor. To the general surprise, several
problems could be fixed simply by stating them
explicitly.

(From Kernighan, The practice of programming)

tating a problem explicitly is the first step
in keeping a notebook!



24/50

�

�

�

�

�

�

	

Debug Quick and Dirty

If you want to fix problems without going into the hassle of
some defined process, you can debug quick and dirty:

1. Think hard about the problem

2. Fix it.

Don’t think about following any specific process. Just think
hard and solve the problem.

But do this for 10 minutes only—afterwards, go for the
scientific method!



25/50

�

�

�

�

�

�

	

Finding “the” Cause

Problem: As each cause implies a specific change, there’s an
infinity of causes:

• The format "%d" (rather than "%f") is the cause for a = 0
being printed.

• The printf statement as a whole (rather than the empty
statement) is the cause for a = 0 being printed.

• The whole program code is a cause, because we can rewrite
it from scratch such that it works.

How do we distinguish “the” cause from “a” cause?



26/50

�

�

�

�

�

�

	

The Closest Possible World

A world is said to be “closer” to the actual world than another
if it resembles the actual world more than the other does.

Idea: “The” cause or the actual cause should be a difference
between the actual world where the effect occurs and the
closest possible world where it would not.

The actual cause should thus be a minimal difference between
the two worlds.



27/50

�

�

�

�

�

�

	

The Closest Possible World (2)

The cause is a difference between the passing world and the
failing world:

The cause can be some part of the failing world (not present in
the passing world), or vice versa



28/50

�

�

�

�

�

�

	

The Closest Possible World (3)

The actual failure cause in . . .

• a program input is a minimal difference between

– the actual input (where the failure occurs) and

– the closest possible input that passes

• a program state is a minimal difference between

– the actual program state and

– the closest possible state that passes

• a program code is a minimal difference between

– the actual code and

– the closest possible code that passes.



29/50

�

�

�

�

�

�

	

Ockham’s Razor

Another consequence of the closest possible world: Whenever
we have the choice between two causes, we can pick the one
whose alternate world is closer.

Consequently, "%d" is “the” defect, but the printf statement
is not (altering just the format string is a smaller difference
than removing the printf statement).

This principle is known as Ockham’s Razor:

Whenever you have competing theories for how some effect
comes to be, pick the simplest.



30/50

�

�

�

�

�

�

	

Hanlon’s Razor

Hanlon’s Razor is a variant of Ockham’s Razor:

Never attribute to malice
that which is adequately explained by stupidity.

Useful for slicing away mysterious explanations about failures

operating system defects compiler defects
CPU malfunctions cosmic rays
virus attacks secret service bugs
alien invasions malicious professors



31/50

�

�

�

�

�

�

	

Necessary Conditions

Problem: We may have multiple closest possible worlds.

Example:

The format "%d" (rather than "%f") is the cause for a = 0
being printed.

Why not

a being declared as double (rather than int) is the cause for
a = 0 being printed.



32/50

�

�

�

�

�

�

	

Necessary Conditions (2)

Solution—impose a necessary condition:

a is supposed to be a floating-point value;
its declaration is correct.

Thus, we must now seek the closest possible code in which

• a is declared as double and

• the failure no longer occurs.

In our example: the code where the format string is fixed.



33/50

�

�

�

�

�

�

	

Necessary Conditions (3)

We may also impose the condition that a is supposed to be
declared as double, but printed as an integer value.

This implies a new failure cause:

The printf argument being a (rather than (int)a) is the
cause for a = 0 being printed.

The original cause (the format string) would violate the
imposed condition.

Necessary conditions thus allow us to focus the search.



34/50

�

�

�

�

�

�

	

Necessary Conditions (4)

In general, necessary conditions define a common context:

This common context must be a subset of all examined worlds.



35/50

�

�

�

�

�

�

	

What is necessary?

Actually, a lot:

• The program is executed

• The computer is up and running

• The computer has electrical power

• We have no cosmic ray source close

• Magic does not apply

• All natural laws hold

All this is part of the common context.



36/50

�

�

�

�

�

�

	

Short Summary

We know

• how to organize the debugging process (“Scientific
Method”)

• how to define a cause

• how to define an actual cause (“closest possible world”)

• how to set up necessary conditions.

But how do we find an actual cause?

Enter divide and conquer!



37/50

�

�

�

�

�

�

	

Divide and Conquer

Divide and conquer (from latin “divide et impera”):
The basic principle of reducing a large problem into
smaller subproblems.

General pattern:

• Start with some initial difference (= initial cause)

• Decompose this difference into smaller differences

• Test the resulting hypotheses to see whether the smaller
differences are more specific failure causes.



38/50

�

�

�

�

�

�

	

The Initial Difference

✘

✔

Failing World

Passing World

Initial Difference
= Initial Cause



39/50

�

�

�

�

�

�

	

Setting up an Alternate World

✘

✔

Failing World

Passing World

Alternate World



40/50

�

�

�

�

�

�

	

Testing the Alternate World

✘

✔

Failing World

Passing World

✘
Alternate World



41/50

�

�

�

�

�

�

	

Narrowing the Difference

✘

✔

Failing World

Passing World

✘
Reduced Difference
= more specific cause

Alternate World



42/50

�

�

�

�

�

�

	

Alternate Test Outcome

✘

✔

Failing World

Passing World

✔
Alternate World



43/50

�

�

�

�

�

�

	

Narrowing the Difference

✘

✔

Failing World

Passing World

✔

Reduced Difference
= more specific cause

Alternate World



44/50

�

�

�

�

�

�

	

The Narrowing Process

✘

✔

✘

✔

Alternate World

✘

✔

✔

✘

✔

✘

Reduced difference
= more specific cause

Reduced difference
= more specific cause

Failing World

Passing World

Initial Difference
= Initial Cause

Set up
hypothesis

1.

Hypothesis
confirmed

2a. Hypothesis
rejected

2b.

Repeat
as needed

3.
Repeat
as needed

3.

or



45/50

�

�

�

�

�

�

	

Simplifying HTML Input

Mozilla bug #24735, reported by anantk@yahoo.com:

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to
.50 (I use the file /var/tmp/netscape.ps)

-> Once it’s done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

What’s the cause for this failure?



46/50

�

�

�

�

�

�

	

Simplifying HTML Input (2)

Idea: Apply Divide and Conquer to simplify HTML pages

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘
62 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 ✘

...
75 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
76 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
77 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔

...
90 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✘

Simplified bug report: Printing <SELECT> crashes.



47/50

�

�

�

�

�

�

	

Divide and Conquer in Action

We shall see how to use Divide and Conquer

• For simplifying test cases (as shown)

• For isolating failure-inducing input

• For isolating failure-inducing code changes

• For isolating failure-inducing thread schedules

• For isolating failure-inducing program states

• For isolating infection sites

—and we’ll try to automate this as much as possible.



48/50

�

�

�

�

�

�

	

Concepts

✏ The SCIENTIFIC METHOD, as applied to debugging, consists
of five steps:

1. Observe a failure.

2. Invent a hypothesis as to the failure cause that is
consistent with the observations and the necessary
conditions.

3. Use the hypothesis to make predictions.

4. Test the hypothesis by experiments or further
observations and modify the hypothesis in the light of
your results.

5. Repeat steps 3 and 4 until you found the actual cause.

✏ It is useful to KEEP A NOTEBOOK to make the individual steps
explicit.



49/50

�

�

�

�

�

�

	

Concepts (2)

✏ A cause is an event preceding another event without which
the event in question (the effect) would not have occurred.

A cause is thus described as a difference between the world
where the effect occurs and a possible world where the
effect does not occur.

✏ Only experimentation can prove causality—that is, one
must set up the possible world and show that the effect in
question does not occur. Reasoning alone does not suffice
to establish causality.

✏ An actual cause is a minimal difference between the two
worlds—that is, a difference between the world where the
effect occurs and the closest possible world where the
effect does not occur.



50/50

�

�

�

�

�

�

	

Concepts (3)

✏ Necessary conditions set up a common context between
the actual and possible worlds and thus focus the search
for an actual cause.

✏ DIVIDE AND CONQUER is useful to invent and modify
hypotheses about failure causes. Its main idea is to break
some initial (trivial) cause into smaller parts and to narrow
down the actual cause along the scientific method.


	www.askigor.org
	Guessing Causes
	Alternatives to Intuition
	The Scientific Method
	The Scientific Method of Debugging
	Causes and Effects
	Causes and Effects (2)
	Causes and Effects (3)
	Establishing Failure Causes
	Establishing Failure Causes (2)
	Establishing Failure Causes (3)
	Establishing Failure Causes (4)
	Establishing Failure Causes (5)
	Explicit Contrast
	Explicit Contrast (2)
	Explicit Contrast (3)
	Changes vs. Fixes
	A Mastermind Game
	Keep a Notebook
	Keep a Notebook (2)
	Notebook Example
	More about Notebooks
	State the Problem
	Debug Quick and Dirty
	Finding ``the'' Cause
	The Closest Possible World
	The Closest Possible World (2)
	The Closest Possible World (3)
	Ockham's Razor
	Hanlon's Razor
	Necessary Conditions
	Necessary Conditions (2)
	Necessary Conditions (3)
	Necessary Conditions (4)
	What is necessary?
	Short Summary
	Divide and Conquer
	The Initial Difference
	Setting up an Alternate World
	Testing the Alternate World
	Narrowing the Difference
	Alternate Test Outcome
	Narrowing the Difference
	The Narrowing Process
	Simplifying HTML Input
	Simplifying HTML Input (2)
	Divide and Conquer in Action
	Concepts
	Concepts (2)
	Concepts (3)

