
0/55

�

�

�

�

�

�

	

Reproducing Problems

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/55

�

�

�

�

�

�

	

Pattern: Reproduce Problem

Problem A problem occurs only under specific circumstances,
which may not be known or not be reproducible.

Solution There are three distinct patterns that help in
reproducing problems:

1. TRACK PROBLEMS to collect all facts about how to reproduce
the problem.

2. AUTOMATE TEST to reproduce the problem automatically.
This is especially useful if the problem does not occur
predictably.

3. MANAGE VERSIONS to reproduce specific versions of your
program.

2/55

�

�

�

�

�

�

	

The lifetime of a problem—40 years ago

1. The user-programmer experiences a problem.

2. He isolates the cause and fixes it.

3. He verifies that it is fixed. We’re done.

3/55

�

�

�

�

�

�

	

The lifetime of a problem—today

1. The user experiences a problem.

2. He calls the help desk,

3. He convinces the help desk that it was a problem.

4. He gives all necessary information to the help desk.

5. The programmer gets the problem report.

6. She tries to reproduce the problem.

7. Once the problem is reproduced, she becomes a
user-programmer. Now, it’s just like 40 years ago :–)

4/55

�

�

�

�

�

�

	

How do we know about problems?

From the user. By e-mail, phone, fax or ordinary mail.

From the program. Using an automatic talkback feature.

5/55

�

�

�

�

�

�

	

Pattern: Report Problem

Problem A user experiences a problem. How can a developer
reproduce the problem such that he can fix it?

Solution Identify the information that developers need to
reproduce problems. Typical information includes:

• The product release

• The operating environment

• The problem history

• A description of the expected behavior

• A description of the experienced behavior

This information is then written into instructions on how to
write a problem report.

6/55

�

�

�

�

�

�

	

What is relevant?

Variant 1—not enough information:

From: user@inter.net
To: support@vendor.com

Your program crashed. Just wanted to let you know.

X.

7/55

�

�

�

�

�

�

	

What is relevant? (2)

Variant 2—too much information:

From: another user@inter.net
To: support@vendor.com

I experienced the following problem: [...]
With the enclosed dump, you can reproduce it easily.

Sincerely,

Y.

[Attachment: ISO image of user’s hard disk, 10 GB]

8/55

�

�

�

�

�

�

	

What is relevant? (3)

Variant 3—irrelevant information:

From: yet another user@inter.net
To: support@vendor.com

Your program doesn’t work properly. It cannot
connect to the internet. Could this be because
I installed a new desktop background color
pattern? Or do I have to set up this modem thing?

Sincerely,

Z.

9/55

�

�

�

�

�

�

	

What is relevant? (4)

Solution: You set up a set of guidelines—either for the users or
for your helpdesk.

To enable us to fix a DDD bug, you _must_ include the following
information:

* Your DDD configuration. Invoke DDD as

$ ddd --configuration

to get the configuration information. If this does not work,
please include at least the DDD version, the type of machine you
are using, and its operating system name and version number.

* The debugger you are using and its version (e.g., ‘gdb-4.17’ or
‘dbx as shipped with Solaris 2.6’).

* The compiler you used to compile DDD and its version (e.g.,
‘gcc-2.8.1’). [...]

10/55

�

�

�

�

�

�

	

What has happened?

If the error occurs after a long series of events, it is often
difficult for the user to retrace all the steps from the program
invocation to the error.

Hmmm—I opened File, Open File—and then what? Wait. . .

A possible solution is to record all important events in a log
file, which can later be examined and reproduced by the
vendor.

Be aware of provacy issues, though!

11/55

�

�

�

�

�

�

	

Pattern: Manage Versions

Problem You must reproduce a specific configuration of the
product as installed at the customer’s site.

Solution Keep your code under version control. Whenever a
new version is shipped, mark its source base with an
appropriate tag. Use this tag to recreate the source base—and
with it, the product itself.

12/55

�

�

�

�

�

�

	

Tracking Problems

Once a problem report has been filed, it must be stored
somewhere.

Have a shared ‘PROBLEMS’ document. Easy to install, but
does not scale.

Have a problem database which stores all problem reports.

13/55

�

�

�

�

�

�

	

The Bugzilla problem database

14/55

�

�

�

�

�

�

	

Problem Identification

Each problem has a unique identifier
(also called PR number or CR number).

This developers can refer to it in

• e-mails

• change logs

• status reports

15/55

�

�

�

�

�

�

	

Problem Severity

Blocker Blocks development and/or testing work. This highest
level of severity is also known as Showstopper.

Critical Crashes, loss of data, severe memory leak.

Major Major loss of function.

Normal This is the “standard” problem.

Minor Minor loss of function, or other problem where an easy
workaround is present.

Trivial Cosmetic problem like misspelled words or misaligned
text.

Enhancement Request for enhancement.

16/55

�

�

�

�

�

�

	

Problem Status and Resolution

FIXED This problem has been fixed and tested.

INVALID The problem described is not a problem.

WONTFIX The problem described is a problem which will
never be fixed.

LATER The problem will be fixed in a later version.

REMIND Like LATER, but might still be fixed earlier.

DUPLICATE The problem is a duplicate of an existing problem.

WORKSFORME All attempts at reproducing this problem were
futile. If more information appears later, the problem will
be re-assigned.

17/55

�

�

�

�

�

�

	

Pattern: Track Problems

Problem What problems are in my current product? Which
problems must be fixed before I can ship the next release?

Solution Use a problem tracking system to keep track of
problem reports.

Using the problem tracking system, assign each problem
report

• a unique identifier such that one can refer to the problem
(frequently called PR number)

• a status such that one can find problems that do persist in
the current version

• a severity such that the most serious problems get fixed
first.

18/55

�

�

�

�

�

�

	

Managing Problem Reports

Who files problem reports? This can be support personnel
only; in general, though, it is probably useful if any
developer can add new entries.

Who assigns ownership, severity, etc? This depends on how
your work is organized.

Who closes issues? This can be the individual tester, or some
quality assurance instance that verifies fixes.

19/55

�

�

�

�

�

�

	

Drowning in Problems

In October, 2002, the Mozilla problem database listed roughly
28,000 open problems waiting to be resolved.

Reasons:

1. Lots of problems :–)

2. Lots of duplicates—problem reports that apply to the same
defect

20/55

�

�

�

�

�

�

	

Pattern: Identify Duplicates

Problem A problem tracking system lists several problems
that are so similar that they are likely caused by the same
defect.

Solution Allow problems to be marked as duplicates of each
other.

Whenever one submits a new problem report, one should first
query whether a similar problem has already occurred. If so,
the new problem should be marked as duplicate of the old
problem.

21/55

�

�

�

�

�

�

	

Making Problem Reports Obsolete

Once in a while, a problem database should be cleaned up by
searching for obsolete problems. A problem report could be
declared obsolete if, for instance,

• The problem will never be fixed—for instance, because the
program is no longer supported.

• The problem is old and has only occurred once, or

• The problem is old and has only occurred internally.

22/55

�

�

�

�

�

�

	

Reproducing Problems

Once a problem report is in the problem database, it will
eventually be processed by some programmer in order to fix
the problem.

The first task of the programmer is to make the problem
reproducible. ⇒ Whenever someone wants the problem to
occur, there is a well-defined and reliable way to do so.

If the problem is not reproducible, then you’ll never know
whether it has been successfully fixed :–(

23/55

�

�

�

�

�

�

	

Pattern: Automate Test

Problem Testing software requires user interaction and is
thus expensive and error-prone.

Solution Automate the tests such that they can be executed
automatically.

Applicability Choose a level for automating execution:

• If your program can be decomposed into individual units,
use the interface of these units for testing them.

• If your program interacts with its environment, you can use
capture/replay techniques to automate its execution.

• If your program offers an automation interface, you can
use this interface to write appropriate test scripts.

24/55

�

�

�

�

�

�

	

Automating Unit Tests

If your program can be decomposed into individual units that
offer interfaces for manipulating their resources, then these
interfaces can frequently be used for automating the test of
these units.

This is called unit testing—a great way to both automate
testing and simplify debugging.

25/55

�

�

�

�

�

�

	

What Unit Tests do

When a single unit test is executed, it does three things:

It sets up an environment for embedding the unit.
Frequently, a unit will require services of other units or the
operating environment; this part sets up the stage.

It tests the unit. Each possible behavior of the unit is covered
by a test case, which first performs the operation(s) and
then verifies whether the outcome is as expected.

It tears down the environment again. This means to bring
everything back in the state encountered initially.

26/55

�

�

�

�

�

�

	

Example: Testing Rational numbers

Let us assume you manage a Java class for rational numbers,
called Rational.

The constructor takes a numerator and a denominator:

Rational(1, 3) creates the rational number
1
3

.

27/55

�

�

�

�

�

�

	

Desired Properties of Rational numbers

Identity. Is
1
3
= 1

3
?

Different representations. Is
2
6
= 1

3
?

Integers. Is
3
3
= 1?

Non-Equality. Is
1
3
6= 2

3
?

28/55

�

�

�

�

�

�

	

RationalTest.java
public class RationalTest extends TestCase {

private Rational a_third;

// Create new test
public RationalTest(String name) {

super(name);
}

// Setup environment
// will be called before any testXXX() method
protected void setUp() {

a third = new Rational(1, 3);
}

// Release environment
protected void tearDown() {

a third = null;
}

29/55

�

�

�

�

�

�

	

RationalTest.java (2)
// Test for equality
public void testEquality() {

assertTrue(new Rational(1, 3).equals(a third));
assertTrue(new Rational(2, 6).equals(a third));
assertTrue(new Rational(3, 3).equals(

new Rational(1, 1)));
}

// Test for non-equality
public void testNonEquality() {

assertTrue(!(new Rational(2, 3).equals(a third)));
}

30/55

�

�

�

�

�

�

	

RationalTest.java (3)

// Set up a suite of tests
public static Test suite() {

TestSuite suite =
new TestSuite(RationalTest.class);

return suite;
}

31/55

�

�

�

�

�

�

	

RationalTest.java (4)
// Assign a name to this test case
public String toString() {

return getName();
}

// Main method: Invokes GUI
public static void main(String args[]) {

String[] testCaseName =
{ RationalTest.class.getName(); }

// Run using a textual user interface
// junit.textui.TestRunner.main(testCaseName);

// Run using a graphical user interface
junit.swingui.TestRunner.main(testCaseName);

}
}

32/55

�

�

�

�

�

�

	

JUNIT user interface

33/55

�

�

�

�

�

�

	

Benefits of automated testing

✔ It can be used as verificator.

✔ Automated testing allows faster changes.

✔ Automated testing also allows for faster debugging.

✔ Also, an automated test case can be used as debuggee
instead of the original program.

✔ Automated test cases can serve as specifications.

✔ Automated testing is much more reliable than say, written
user instructions.

✔ After the fix, an automated test can be used as prevention
against regression.

✔ Test cases can drive and measure the development process.

See also Extreme Programming!

34/55

�

�

�

�

�

�

	

Pattern: Test Unit

Problem Some unit of the program must be tested.

Solution Create a test case that tests the unit via its interface.

Applicability The unit must operate without user interaction.
If other interaction with the environment is required, the test
case must take care to set up and tear down the appropriate
resources.

35/55

�

�

�

�

�

�

	

Pattern: Test Early, Test Often

Problem A test that used to pass suddenly fails. Can we
relate the failing test to a particular change?

Solution Test early and often.

This means that you should test as soon as the code is written,
not later (“test early”).

Furthermore, you should test after each small change to the
code (“test often”). This way, if a test suddenly fails, you can
relate it to the most frequent change.

36/55

�

�

�

�

�

�

	

Capture and Replay

Problems with unit testing:

• Program may not be decomposable into units

• Interactive interfaces cannot be tested

In such cases, a capture/replay tool comes in handy.

37/55

�

�

�

�

�

�

	

Pattern: Capture and Replay

Problem A program interacts with its environment—especially
with the user. To fully automate the program execution, this
interaction must faithfully be reproduced as well.

Solution Use a capture and replay tool. As the name says,
such tools come in two modes:

Capturing interaction. The program is normally executed,
interacting with its environment. However, the tool records
all input from the environment to a script before
forwarding it to the program.

Replaying interaction. The program is executed under control
of the tool. The tool redirects the program input such that
it no longer gets its input from the environment, but rather
from the previously recorded script.

38/55

�

�

�

�

�

�

	

Example: Getting Core Dump Contents
$ sample-with-efence -11 14
Electric Fence 2.1 Copyright (C) 1987-1998 Bruce Perens.
Segmentation fault (core dumped)
$

Issue: Create a tool that automates GDB such that it reports
where a core dump occured.

39/55

�

�

�

�

�

�

	

Example: Getting Core Dump Contents (2)
$ gdb sample-with-efence
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc. [...]
(gdb) core-file core
Core was generated by ‘./sample-with-efence -11 14’.
Program terminated with signal 11, Segmentation fault.
#0 0x0804865f in shell sort (a=0x40160ff8, size=3)

at sample.c:17
17 int v = a[i];
(gdb) where
#0 0x0804865f in shell sort (a=0x40160ff8, size=3)

at sample.c:17
#1 0x08048777 in main (argc=3, argv=0xbffffa94)

at sample.c:35
#2 0x400446cf in libc start main ()

from /lib/libc.so.6
(gdb) quit
$

40/55

�

�

�

�

�

�

	

Using EXPECT

The EXPECT utility automates the execution of interactive
command-line tools.

EXPECT commands include:

Spawn. Start a program under EXPECT control. In our example,
this would be GDB.

Send. Send a string of characters to the spawned program—for
instance, GDB commands.

Expect. Wait until the program has issued a specific
output—typically, a prompt such as "(gdb) ".

41/55

�

�

�

�

�

�

	

An EXPECT script

Get the location for the current core file

spawn gdb sample-with-efence
expect "(gdb) "
send "core-file core\n"
expect "(gdb) "
send "where\n"
expect "(gdb) "
send "quit\n"

42/55

�

�

�

�

�

�

	

Executing the EXPECT script
$ expect gdb.exp
spawn gdb sample-with-efence
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc. [...]
(gdb) core-file core
Core was generated by ‘./sample-with-efence -11 14’.
Program terminated with signal 11, Segmentation fault.
#0 0x0804865f in shell_sort (a=0x40160ff8, size=3)

at sample.c:17
17 int v = a[i];
(gdb) where
#0 0x0804865f in shell_sort (a=0x40160ff8, size=3)

at sample.c:17
#1 0x08048777 in main (argc=3, argv=0xbffffa94)

at sample.c:35
#2 0x400446cf in __libc_start_main ()

from /lib/libc.so.6
(gdb) quit
$

43/55

�

�

�

�

�

�

	

A more abstract EXPECT script

Get the location for the current core file

proc gdb send {command} {
expect "(gdb) "
send "$command\n"

}

spawn gdb sample-with-efence
gdb send "core-file core"
gdb send "where"
gdb send "quit"

44/55

�

�

�

�

�

�

	

Recording scripts with AUTOEXPECT
$ autoexpect gdb sample-with-efence
autoexpect gdb sample-with-efence
autoexpect started, file is script.exp
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc. [...]
(gdb) core-file core
...
(gdb) where
...
(gdb) quit
autoexpect done, file is script.exp
$ expect script.exp
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc. [...]
(gdb) core-file core ...

45/55

�

�

�

�

�

�

	

Exploring AUTOEXPECT scripts

send "where\n"
expect "where\n
#0 0x0804865f in shell_sort (a=0x40160ff8, size=3)

at sample.c:17
#1 0x08048777 in main (argc=3, argv=0xbffffa94)

at sample.c:35
#2 0x400446cf in __libc_start_main ()

from /lib/libc.so.6
(gdb) "

Problem: verbosity—AUTOEXPECT cannot distinguish output
from a prompt

Script is good for short-term usage only (debugging); must be
edited otherwise

46/55

�

�

�

�

�

�

	

Capture and Replay of GUIs

In principle, work just like EXPECT and AUTOEXPECT, but

• we must know which part of the graphical user interface we
should send our input to, and

• which part to read the expected output from.

This makes creating scripts much harder than for
command-line tools.

47/55

�

�

�

�

�

�

	

Example: ANDROID

ANDROID is an EXPECT variant for X window system clients.

Script excerpt:

send xevents wait 0 @298,198 btndn 1
send xevents wait 164 @298,198 btnup 1
send xevents wait 1574 @202,350 btndn 1

48/55

�

�

�

�

�

�

	

Example: Commercial Tools

Script excerpt:

SelectOption "Favorites/Search/Google"
FocusOn "Search Term"
Type "Debugging"
LeftMouseClick "Google Search"
WaitFor "Searched the web for Debugging."

49/55

�

�

�

�

�

�

	

Automation vs. Usability

Automation and usability are conflicting goals:

• An interface that is easy to automate is hard to use directly
by end users;

• a user-friendly interface is hard to automate.

Therefore, it is best to have at least two interfaces: one for
users, and one for automation.

This requires separating functionality and presentation.

50/55

�

�

�

�

�

�

	

Creating Automation Interfaces

Idea: Introduce an interface such that your program can be
automated.

Application programming interfaces (APIs). Make your
program available as a unit.

Network and Web interfaces. Turn your program into a
component whose services are available on the network
(.NET, JAVA bean, CORBA)

Built-in programming languages. Include an interpreter for
Python, Perl, TCL, or Visual Basic.

51/55

�

�

�

�

�

�

	

Pattern: Automate Execution

Problem An application does not provide an appropriate
interface for automation.

Solution Create an automation interface. This can be an
application programming interface, a web interface, or a
built-in programming language.

52/55

�

�

�

�

�

�

	

Does Automation Pay Off?

The initial investment in separating presentation from
functionality pays off as soon as

✔ another alternate interface is required, since it can rely on
the common functionality,

✔ substantial testing is required, since it can use the
automation interface,

✔ systematic problem tracking is required, since problems
can frequently be described in terms of automated test
cases.

And: automated testing is required for automated debugging!

53/55

�

�

�

�

�

�

	

Concepts

✏ Reports about problems encountered in the field are stored
in a problem database and classified with respect to status
and severity.

✏ Whenever you encounter a failure, write a test case that
reproduces it—if possible, automatically.

✏ The benefits of automated tests include: verification, faster
changes, faster debugging, potential use as specifications,
reliability, prevention against regression, ability to drive
and measure the development process.

54/55

�

�

�

�

�

�

	

Concepts (2)

✏ Unit tests automate the execution of program units via
programming interfaces.

✏ Capture and replay tools simulate the program
environment—especially the user’s input to a user
interface.

✏ Scripts as generated by capture tools must frequently be
edited and abstracted to be useful in the long term.

✏ In general, capture/replay scripts are likely to change with
the program behavior.

55/55

�

�

�

�

�

�

	

Concepts (3)

✏ Automation and usability are conflicting goals. Programs
should provide different interfaces for each purpose. This
requires separating functionality and presentation.

✏ Interfaces for automation include application programmer
interfaces (APIs), web service interfaces and built-in
programming languages.

✏ Test as soon as you can and as often as you can.

	Pattern: Reproduce Problem
	The lifetime of a problem---40 years ago
	The lifetime of a problem---today
	How do we know about problems?
	Pattern: Report Problem
	What is relevant?
	What is relevant? (2)
	What is relevant? (3)
	What is relevant? (4)
	What has happened?
	Pattern: Manage Versions
	Tracking Problems
	The Bugzilla problem database
	Problem Identification
	Problem Severity
	Problem Status and Resolution
	Pattern: Track Problems
	Managing Problem Reports
	Drowning in Problems
	Pattern: Identify Duplicates
	Making Problem Reports Obsolete
	Reproducing Problems
	Pattern: Automate Test
	Automating Unit Tests
	What Unit Tests do
	Example: Testing Rational numbers
	Desired Properties of Rational numbers
	RationalTest.java
	RationalTest.java (2)
	RationalTest.java (3)
	RationalTest.java (4)
	JUNIT user interface
	Benefits of automated testing
	Pattern: Test Unit
	Pattern: Test Early, Test Often
	Capture and Replay
	Pattern: Capture and Replay
	Example: Getting Core Dump Contents
	Example: Getting Core Dump Contents (2)
	Using EXPECT
	An EXPECT script
	Executing the EXPECT script
	A more abstract EXPECT script
	Recording scripts with AUTOEXPECT
	Exploring AUTOEXPECT scripts
	Capture and Replay of GUIs
	Example: ANDROID
	Example: Commercial Tools
	Automation vs. Usability
	Creating Automation Interfaces
	Pattern: Automate Execution
	Does Automation Pay Off?
	Concepts
	Concepts (2)
	Concepts (3)

