
0/34

�

�

�

�

�

�

	

What’s it all about?

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/34

�

�

�

�

�

�

	

Overview

We’re going to make a quick tour through the course material
today:

• Understanding Failure Circumstances

• Examining the Run

• Isolating the Defect

• Delta Debugging

• Program Slicing

• Detecting Anomalies

This is just to provide an overview—if you don’t get it at first,
just sit back and relax :–)

2/34

�

�

�

�

�

�

	

A Simple Example

The sample program is supposed to sort its arguments:

$ sample -7 14 5 -4 1 2 3
Output: -7 -4 1 2 3 5 14
$

Unfortunately, sample has a defect:

$ sample -11 14 7 5 4 1 2 3
Output: -11 0 1 2 3 4 5 7
$

This will be our ongoing example today.

3/34

�

�

�

�

�

�

	

From Defects to Failures

A failure comes to be in three stages:

Defect→ Infection→ Failure

A defect is an error in the program (code).

An infection is an error in the program state.

A failure is an observable error in the program behavior.

The issue of debugging is to

• relate an observed failure to a defect and

• to remove the defect such that the failure no longer occurs.

4/34

�

�

�

�

�

�

	

From Defects to Failures (2)

Not every defect causes an infection, and not every infection
causes a failure.

This is the curse of testing:

Testing can only show the presence of defects,
but never their absence. (Dijkstra)

On the other hand, each failure can be traced back to some
infection, and each infection can be traced back to a defect.

This is what we shall do with the sample program.

5/34

�

�

�

�

�

�

	

Understanding Failure Circumstances

Before you rush to your favorite debugger, first try to
understand under which circumstances the failure occurs.

The idea is to identify the relevant circumstances.

Input

Output

Program
Execution

✘

✘

Erroneous
code

Observer sees failure

6/34

�

�

�

�

�

�

	

Simplifying sample input

We try to simplify the input

$ sample -11 14 7 5 4 1 2 3
Output: -11 0 1 2 3 4 5 7
$ sample -11 14 7 5
Output: -11 0 5 7
$ sample -11 14
Output: -11 0
$ sample -11
Output: -11
$

This input simplification is a general pattern which isolates a
failure cause (here: the input 14).

7/34

�

�

�

�

�

�

	

Debugging Patterns

Idea: A set of patterns where each pattern solves a specific
debugging problem.

DEBUG A

PROGRAM

REPRODUCE

PROBLEM

TRACK

PROBLEMS

IDENTIFY

DUPLICATES

AUTOMATE

TEST

CAPTURE

AND REPLAY

AUTOMATE

EXECUTION
MANAGE

VERSIONS

SCIENTIFIC

METHOD

OCKHAM’S

RAZOR

KEEP A

NOTEBOOK

ISOLATE CIR-
CUMSTANCES

COMPARE

VERSIONS

TEST EARLY,
TEST OFTEN

NARROW

VERSIONS
SIMPLIFY

INPUT

COMPARE

INPUTS

NARROW

INPUTS

COMPARE

SCHEDULES

NARROW

SCHEDULES

WORK

AROUND

DELTA

DEBUGGING

ISOLATE

STATE

LOG

EXECUTION

ENCAPSULATE

DEBUGGING

CODE

USE A

DEBUGGER

DEBUG POST

MORTEM

SIMPLIFY

STATE

ISOLATE

ORIGINS

PROGRAM

SLICING

COMPARE

STATES

NARROW

STATES

ISOLATE

CAUSE-
EFFECT

CHAINISOLATE

INFECTION

ASSERT

STATE

CHECK AL-
LOCATIONS

CHECK

BOUNDS
SIMPLIFY

RUN

SIMPLIFY

CODE

DETECT RUN

ANOMALIES

COMPARE

COVERAGE

DETECT

INVARIANTS

CHECK

STYLE

ALGORITHMIC

DEBUGGING

FIX

PROGRAM

MOST

GENERAL FIX

DEBUG

QUICK AND

DIRTY

8/34

�

�

�

�

�

�

	

Pattern: The Scientific Method

1. Observe a failure.

2. Invent a hypothesis as to the failure cause that is consistent
with the observations and the necessary conditions.

3. Use the hypothesis to make predictions.

4. Test the hypothesis by experiments or further observations
and modify the hypothesis in the light of your results.

5. Repeat steps 3 and 4 until you found the actual cause.

Run with args. . . Outcome Notes
1 8 -7 5 -4 1 2 3 ✔ original pass
2 -11 14 7 5 4 1 2 3 ✘—output contains 0 original failure
3 -11 14 7 5 ✘—output contains 0 simplified
4 -11 14 ✘—output contains 0 simplified
5 -11 ✔ isolated difference
Conclusion: extra 14 is failure-inducing

9/34

�

�

�

�

�

�

	

Understanding Infection Origins

Program
states

Variable and input values

Program
execution

✘

✘ ✘ ✘

✘

✘ Erroneous
code

Infected
state

Observer sees failure

Sane
state

10/34

�

�

�

�

�

�

	

Debugging as a search problem

Search in space. Each single state is composed of thousands
or even millions of variables.

Debugging means to separate the infected variables from
the sane variables.

Search in time. A program execution consists of thousands,
millions or even billions of states.

Debugging means to isolate the infection—the transition
from a sane state towards an infected state.

Fortunately, debugging is not that difficult:
Good programming style limits the information flow between
units (= functions, modules, objects. . .)

A divided state is much easier to conquer!

11/34

�

�

�

�

�

�

	

sample.c

int main(int argc, char *argv[])
{

int *a;
int i;

a = (int *)malloc((argc - 1) * sizeof(int));
for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

shell_sort(a, argc);

printf("Output: ");
for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);
printf("\n");

free(a);

return 0;
}

12/34

�

�

�

�

�

�

	

sample.c (2)

static void shell_sort(int a[], int size)
{

int i, j;
int h = 1;
do {

h = h * 3 + 1;
} while (h <= size);
do {

h /= 3;
for (i = h; i < size; i++)
{

int v = a[i];
for (j = i; j >= h && a[j - h] > v; j -= h)

a[j] = a[j - h];
if (i != j)

a[j] = v;
}

} while (h != 1);
}

13/34

�

�

�

�

�

�

	

Isolating the infection

The 0 in the output stems from a[1].
(See printf)

a[1] stems from shell sort.
(See shell sort)

At shell sort invocation, the state is infected.

a[0] = -11
a[1] = 14
a[2] = 0
size = 3

The infection occurs at the invocation of shell sort:

shell sort(a, argc);

14/34

�

�

�

�

�

�

	

How the Failure came to Be

1. The array a[] is allocated and initialized with the correct
number of elements (2).

2. shell sort is invoked such that the size parameter is 3.

3. This causes shell sort to access a[] beyond the allocated
space—namely at a[2].

4. The uninitialized memory at a[2] happens to be zero.

5. During the sort, a[2] is eventually swapped with a[1].

6. Thus the zero value of a[1] is printed, causing the failure.

15/34

�

�

�

�

�

�

	

Fixing the Defect

We replace

shell sort(a, argc);

by the correct invocation

shell sort(a, argc - 1);

Now we must repeat the test:

$ sample -11 14
Output: -11 14
$

The sample program is fixed.

16/34

�

�

�

�

�

�

	

Our Debugging Process

SIMPLIFY INPUT. Reducing the number of sample arguments.

ISOLATE ORIGINS. Relating a[1] back to shell sort.

LOG EXECUTION. Looking into the values at shell sort.

ISOLATE INFECTION. Finding out that the state was infected at
the invocation of shell sort.

MOST GENERAL FIX. We’re done!

17/34

�

�

�

�

�

�

	

The General Debugging Process

1. Reproduce the failure, using REPRODUCE PROBLEM.

2. Use the SCIENTIFIC METHOD to

• isolate failure-inducing circumstances

• trace back infected values to its origins

• isolate the moment of infection

3. Fix the program, using MOST GENERAL FIX.

This is a pattern, namely DEBUG A PROGRAM

18/34

�

�

�

�

�

�

	

Isolating Relevant Circumstances

We have

• A means to simplify the input (i.e. the arguments)

• A testing function that executes the program and tells us
whether the failure occurs

Idea: Automated simplification

While we can simplify the input such that the failure still
occurs, do it.

This is a pattern: SIMPLIFY INPUT!

19/34

�

�

�

�

�

�

	

Isolating Relevant Circumstances (2)

The pattern DELTA DEBUGGING automates simplifying the input

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘
62 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 ✘

...
75 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
76 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
77 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔

...
90 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✘

20/34

�

�

�

�

�

�

	

Isolating Relevant Circumstances (3)

Other relevant circumstances that can be isolated include:

Input differences:
The character < in the input causes Mozilla to fail.

Schedule differences:
The failure occurs if the thread switch occurs here.

Version differences:
The change in that line caused the failure.

21/34

�

�

�

�

�

�

	

Program Slicing

While debugging sample, we traced back a[1] to its origins.

This can also be partially automated, using PROGRAM SLICING.

Basic idea of slicing: isolate dependencies of variable values by
analyzing the program code.

Any value of a[i] at the program end, for instance, is
dependent on

• a[i] = atoi(argv[i + 1]);

• a[j] = v;

• a[j] = a[j - h];

a[i] can get its value only from these locations!

22/34

�

�

�

�

�

�

	

Dynamic Slicing

Dynamic slicing tracks the dependencies for a concrete
program run.

Using a dynamic slicer, we can determine that a[1] was last
assigned in

a[j] = v; // j = 1, v = 0

The previous assignment to v was at

v = a[i]; // i = 2

We have traced back that a[1]’s bad value came from a[2].

But i is 2 because of size, so a[1] is also dependent on size.

23/34

�

�

�

�

�

�

	

Cause-Effect Chains

Basic idea: COMPARE STATES of a passing run and a failing run;
differences indicate failure causes.

y

Line Run argc argv[0] argv[1] argv[2] a[0] a[1] a[2] size

30
✔
✘

2
3 "sample" "-11"

NULL
"14" n/a n/a n/a n/a

8
✔
✘

2
3 "sample" "-11"

NULL
"14" −11

256
14

512
0

2
3

37
✔
✘

2
3 "sample" "-11"

NULL
"14" −11

256
0

512
14 n/a

Which one of these differences is relevant for the failure?

24/34

�

�

�

�

�

�

	

Cause-Effect Chains (2)

Basic idea: We one difference at a time and check the outcome.

1. If we apply no difference at all, a[1] is eventually 256; the output is -11. The
program passes.

2. If we run the program until Line 8, set argc from 2 to 3 and resume
execution, a[1] is still 256; the output is -11 256.

3. If we repeat the experiment and also set argv[2] from NULL to "14", a[1]
and output are unchanged.

4. If we also set a[1] from 256 to 14, variable a[1] remains 14; the output is
-11 14.

5. If we also set a[2] from 512 to 0, variable a[1] remains 14, the output is still
-11 14.

6. If we also set size from 2 to 3, variable a[1] becomes 0; the output is -11 0.

Only with this last step did the failure occur—a[1] became zero.

25/34

�

�

�

�

�

�

	

Cause-Effect Chains (3)

26/34

�

�

�

�

�

�

	

Isolating Infections

Issue: Find the moment in time when the state changes from
sane to infected.

Automation requires means to check the sanity of the state.

27/34

�

�

�

�

�

�

	

Isolating Infections (2)

Assertions.

assert(is sorted(a, size));
assert(is permutation of(a, original a, size));

Checking the heap.

$ MALLOC_CHECK_=2 sample -11 14
Output: -11 14
$

Checking array boundaries.

$ gcc -g -o sample-with-efence sample.c -lefence
$ sample-with-efence -11 14
Electric Fence 2.1
Segmentation fault (core dumped)
$

28/34

�

�

�

�

�

�

	

Searching for Anomalies

Another place to search infections at are anomalies.

An anomaly in a program run is a property which deviates
from the (non-failing or normal) standard.

We can look for anomalies

• in the code—CHECK STYLE

• in the execution—COMPARE COVERAGE

• in the data—DETECT INVARIANTS

29/34

�

�

�

�

�

�

	

Anomaly in the Execution

We compare the coverage of the passing and the failing run:

Coverage Code

✔ ✘ static void shell_sort(int a[], int size)
✔ ✘ {
✔ ✘ int i, j;
✔ ✘ int h = 1;
✔ ✘ do {
✔ ✘ h = h * 3 + 1;
✔ ✘ } while (h <= size);
✔ ✘ do {
✔ ✘ h /= 3;
✔ ✘ for (i = h; i < size; i++)
✔ ✘ {
✔ ✘ int v = a[i];
✔ ✘ for (j = i; j >= h && a[j - h] > v; j -= h)
✔ ✘ a[j] = a[j - h];
✔ ✘ if (i != j)
✔ ✘ a[j] = v;
✔ ✘ }
✔ ✘ } while (h != 1);
✔ ✘ }

30/34

�

�

�

�

�

�

	

Anomaly in the Data

Another area to search anomalies for is data.

DETECT INVARIANTS—see how the program data differs from
inferred invariants:

At start of shell sort

size == size(a[])
a[] one of [-11, 14], [7, -1, 25, 9], [14, 11]
size one of 2, 4

At exit of shell sort

orig(size) == orig(size(a[]))
a[] one of [-11, 14], [-1, 7, 9, 25], [11, 14]

31/34

�

�

�

�

�

�

	

Invariants in the Data (2)

At start of main

argc == size(argv[])-1
argc one of 3, 5
size(argv[]) one of 4, 6
argv[argc..] == [null]
argv[argc..] elements == null
argv[argc+1..] == []

At exit of main

argv[] == orig(argv[])
return == 0
argv[orig(argc)..] == [null]
argv[orig(argc)..] elements == null
argv[orig(argc)+1..] == []

32/34

�

�

�

�

�

�

	

Debugging Details

More material to be covered:

• Reproducing the Problem (faithfully and automatically)

• Fixing the Program (in the best possible way)

• Preventing Failures

. . . all in the remaining course.

33/34

�

�

�

�

�

�

	

Concepts

✏ In general, a failure comes to be in three stages:

1. The programmer creates a defect in the program code
(also known as bug or fault).

2. The defect causes an infection in the program state.

3. The infection causes a failure—an externally observable
error.

✏ Not every defect results in an infection, and not every
infection results in a failure.

Yet, every failure can be traced back to some infection,
which again can be traced back to a defect.

34/34

�

�

�

�

�

�

	

Concepts (2)

✏ Debugging a program consists of three activities:

1. Reproducing the failure,

2. Relating the failure to a defect in the program, and

3. Fixing the defect.

Of these three activities, the second is by far the most
time-consuming.

✏ Debugging patterns encapsulate solutions to specific
debugging problems.

✏ A variety of systematic and automated approaches is
available that help in debugging.

See remaining course!

	Overview
	A Simple Example
	From Defects to Failures
	From Defects to Failures (2)
	Understanding Failure Circumstances
	Simplifying sample input
	Debugging Patterns
	Pattern: The Scientific Method
	Understanding Infection Origins
	Debugging as a search problem
	sample.c
	sample.c (2)
	Isolating the infection
	How the Failure came to Be
	Fixing the Defect
	Our Debugging Process
	The General Debugging Process
	Isolating Relevant Circumstances
	Isolating Relevant Circumstances (2)
	Isolating Relevant Circumstances (3)
	Program Slicing
	Dynamic Slicing
	Cause-Effect Chains
	Cause-Effect Chains (2)
	Cause-Effect Chains (3)
	Isolating Infections
	Isolating Infections (2)
	Searching for Anomalies
	Anomaly in the Execution
	Anomaly in the Data
	Invariants in the Data (2)
	Debugging Details
	Concepts
	Concepts (2)

