
Programmers Should Still Use Slices When Debugging

Ezekiel O. Soremekun
Software Engineering Chair

Saarland University
Saarbrücken, Germany

Email: soremekun@cs.uni-saarland.de

Marcel Böhme
School of Computing

National University of Singapore
Singapore

Email: marcel.boehme@acm.org

Andreas Zeller
Software Engineering Chair

Saarland University
Saarbrücken, Germany

Email: zeller@cispa.saarland

Abstract—What is the best technique for fault localization? In
a study of 37 real bugs (and 37 injected faults) in more than a
dozen open source C programs, we compare the effectiveness of
statistical debugging against dynamic slicing—the first study ever
to compare the techniques. On average, dynamic slicing is more
effective than statistical debugging, requiring programmers to
examine only 14% (42 lines) of the code before finding the defect,
less than half the effort required by statistical debugging (30%
or 157 lines). Best results are obtained by a hybrid approach: If
programmers first examine the top five most suspicious locations
from statistical debugging, and then switch to dynamic slices,
they will need to examine only 11% (35 lines) of the code.

I. INTRODUCTION

In the past 20 years, the field of automated fault local-
ization has found considerable interest among researchers
in Software Engineering. Given a program failure, the aim
of fault localization is to suggest locations in the program
code where a fault in the code causes the failure at hand.
Locating a fault is an obvious prerequisite for removing and
fixing it; and thus, automated fault localization brings the
promise of supporting programmers during arduous debugging
tasks. Fault localization is also an important prerequisite for
automated program repair, where the identified fault locations
serve as candidates for applying the synthesized patch [1]–[4].

The large majority of today’s publications on automated
fault localization fall into the category of statistical debugging,
an approach pioneered 15 years ago by both Liblit et al. [5], [6]
as well as Jones et al. [7]. A recent survey [8] lists more than
100 publications on statistical debugging in the past 15 years.

The core idea of statistical debugging is to take a set of
passing and failing runs, and to record the program lines
which are executed (“covered”) in these runs. The stronger the
correlation between the execution of a line and failure (say,
because the line is executed only in failing runs, and never in
passing runs), the more we consider the line as “suspicious”.

As an example, let us have a look at the function middle,
pioneered in [7] to introduce the technique. The middle
function computes the middle of three numbers x, y, z;
Figure 1 shows its source code as well as a few sample
inputs. On most inputs, middle works as advertised; but
when fed with x = 2, y = 1, and z = 3, it returns 1 rather
than the middle value 2. Note that the statement in Line 8 is
incorrect and should read m = x. Given the runs and the lines
covered in each, statistical debugging assigns a suspiciousness
score to each program statement. The suspiciousness of a

∎: covered statements x 3 1 3 5 5 2
1 int middle(x, y, z) { y 3 2 2 5 3 1
2 int x, y, z; z 5 3 1 5 4 3
3 int m = z; ∎ ∎ ∎ ∎ ∎ ∎ 3
4 if (y < z) { ∎ ∎ ∎ ∎ ∎ ∎ 4
5 if (x < y) ∎ ∎ 2 2 ∎ ∎ 5
6 m = y; 2 ∎ 2 2 2 2 6
7 else if (x < z) ∎ 2 2 2 ∎ ∎ 7
8 m = y; ∎ 2 2 2 2 ∎ 8
9 } else { 2 2 ∎ ∎ 2 2 9

10 if (x > y) 2 2 ∎ ∎ 2 2 10
11 m = y; 2 2 ∎ 2 2 2 11
12 else if (x > z) 2 2 2 ∎ 2 2 12
13 m = x; 2 2 2 2 2 2 13
14 } 2 2 2 2 2 2 14
15 return m; ∎ ∎ ∎ ∎ ∎ ∎ 15
16 } 4 4 4 4 4 8

Fig. 1. Statistical debugging illustrated [9]: The middle function takes three
values and returns that value which is greater than or equals the smallest
and less than or equals the biggest value; however, on the input (2, 1, 3), it
returns 1 rather than 2. Statistical debugging reports the faulty Line 8 as the
most suspicious one, since the correlation of its execution with failure is the
strongest.
statement is computed as a function on the number of times it
is (not) executed by passing and failing test cases. The function
itself differs for each statistical debugging technique. Since the
statement in Line 8 is executed most often by the failing test
case and least often by any passing test case, it is reported as
most suspicious fault location.

Statistical debugging, however, is not the first technique
to automate fault localization. In his seminal paper of 1985
“Programmers use slices when debugging” [10], Mark Weiser
introduced the concept of a program slice composed of data
and control dependencies in the program, and argued that
during debugging, programmers would start from the location
where the error is observed, and then proceed backwards along
these dependencies to find the fault. In a debugging setting,
the programmer would follow dynamic dependencies to find
those lines that actually impact the location of interest in the
failing run. In our example, she simply follows the dynamic
dependency of Line 15 where the value of m is unexpected,
and immediately reaches the faulty assignment in Line 8.
Consequently, on the example originally introduced to show
the effectiveness of statistical debugging, the older technique
of dynamic slicing is just as effective. However, to the best
of our knowledge, no statistical debugging technique has ever
been compared against any form of slicing.



Fault Localization Should Use Slices

Ezekiel Soremekun
Software Engineering Chair

Saarland University
Saarbrücken, Germany

soremekun@cispa.saarland

Marcel Böhme
School of Computing

National University of Singapore
Singapore

dcsmarc@nus.edu.sg

Andreas Zeller
Software Engineering Chair

Saarland University
Saarbrücken, Germany

zeller@cispa.saarland

ABSTRACT
If programmers follow dynamic backward dependencies from the
failing output, they will find the fault much quicker than if they
examine locations whose execution correlates with failure. In our
study of XXX real bugs, fault localization along dynamic depen-
dences required programmers to examine on average N% of the
code; whereas statistical debugging techniques required NN%. This
study is the first to compare the fault localization effectiveness of
statistical debugging and dynamic dependencies, although both have
been around for more than 15 years.

CCS Concepts
•General and reference ! General conference proceedings; Gen-
eral literature; •Software and its engineering ! Software testing
and debugging; Search-based software engineering;

Keywords
ACM proceedings

1. INTRODUCTION
In the past 20 years, the field of automated fault localization has

found considerable interest among researchers in Software Engi-
neering. Given a program failure, the aim of fault localization is
to suggest locations in the program code where a fault in the code
causes the failure at hand. Locating a fault is an obvious prerequi-
site for removing and fixing it; and thus, automated fault localiza-
tion brings the promise of supporting programmers during arduous
debugging tasks. Fault localization is also an important prerequisite
for automated program repair, as the locations suggested by fault
localization would serve as candidates where to apply synthesized
fixes.

The large majority of today’s publications on automated fault
localization fall into the category of Statistical Debugging, an ap-
proach pioneered more than 15 years ago by both Liblit [?] as well
as Jones, Stasko, and Harrold [?]. Today, a recent survey by Wong
et al. [?] lists more than 100 publications on statistical debugging
in the past 15 years.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE 2016 Singapore
c� 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

⌅: covered statements x 3 1 3 5 5 2
1 int middle(x, y, z) { y 3 2 2 5 3 1
2 int x, y, z; z 5 3 1 5 4 3
3 int m = z; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 3
4 if (y < z) { ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 4
5 if (x < y) 2 ⌅ 2 2 2 2 5
6 m = y; 2 ⌅ 2 2 2 2 6
7 else if (x < z) ⌅ 2 2 2 ⌅ ⌅ 7
8 m = y; ⌅ 2 2 2 2 ⌅ 8
9 } else { ⌅ 2 ⌅ ⌅ 2 2 9

10 if (x > y) 2 2 ⌅ 2 2 2 10
11 m = y; 2 2 ⌅ 2 2 2 11
12 else if (x > z) 2 2 2 2 2 2 12
13 m = x; 2 2 2 2 2 2 13
14 } 2 2 2 2 2 2 14
15 return m; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 15
16 } 4 4 4 4 4 8

Figure 1: Statistical Debugging illustrated [?]: The middle
function takes three values and returns the middle one; how-
ever, on the input (2, 1, 3), it returns 1 rather than 2. Statis-
tical Debugging reports the faulty Line 8 as the most suspi-
cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards

Fault Localization Should Use Slices

Ezekiel Soremekun
Software Engineering Chair

Saarland University
Saarbrücken, Germany

soremekun@cispa.saarland

Marcel Böhme
School of Computing

National University of Singapore
Singapore

dcsmarc@nus.edu.sg

Andreas Zeller
Software Engineering Chair

Saarland University
Saarbrücken, Germany

zeller@cispa.saarland

ABSTRACT
If programmers follow dynamic backward dependencies from the
failing output, they will find the fault much quicker than if they
examine locations whose execution correlates with failure. In our
study of XXX real bugs, fault localization along dynamic depen-
dences required programmers to examine on average N% of the
code; whereas statistical debugging techniques required NN%. This
study is the first to compare the fault localization effectiveness of
statistical debugging and dynamic dependencies, although both have
been around for more than 15 years.

CCS Concepts
•General and reference ! General conference proceedings; Gen-
eral literature; •Software and its engineering ! Software testing
and debugging; Search-based software engineering;

Keywords
ACM proceedings

1. INTRODUCTION
In the past 20 years, the field of automated fault localization has

found considerable interest among researchers in Software Engi-
neering. Given a program failure, the aim of fault localization is
to suggest locations in the program code where a fault in the code
causes the failure at hand. Locating a fault is an obvious prerequi-
site for removing and fixing it; and thus, automated fault localiza-
tion brings the promise of supporting programmers during arduous
debugging tasks. Fault localization is also an important prerequisite
for automated program repair, as the locations suggested by fault
localization would serve as candidates where to apply synthesized
fixes.

The large majority of today’s publications on automated fault
localization fall into the category of Statistical Debugging, an ap-
proach pioneered more than 15 years ago by both Liblit [?] as well
as Jones, Stasko, and Harrold [?]. Today, a recent survey by Wong
et al. [?] lists more than 100 publications on statistical debugging
in the past 15 years.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE 2016 Singapore
c� 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

⌅: covered statements x 3 1 3 5 5 2
1 int middle(x, y, z) { y 3 2 2 5 3 1
2 int x, y, z; z 5 3 1 5 4 3
3 int m = z; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 3
4 if (y < z) { ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 4
5 if (x < y) 2 ⌅ 2 2 2 2 5
6 m = y; 2 ⌅ 2 2 2 2 6
7 else if (x < z) ⌅ 2 2 2 ⌅ ⌅ 7
8 m = y; ⌅ 2 2 2 2 ⌅ 8
9 } else { ⌅ 2 ⌅ ⌅ 2 2 9

10 if (x > y) 2 2 ⌅ 2 2 2 10
11 m = y; 2 2 ⌅ 2 2 2 11
12 else if (x > z) 2 2 2 2 2 2 12
13 m = x; 2 2 2 2 2 2 13
14 } 2 2 2 2 2 2 14
15 return m; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 15
16 } 4 4 4 4 4 8

Figure 1: Statistical Debugging illustrated [?]: The middle
function takes three values and returns the middle one; how-
ever, on the input (2, 1, 3), it returns 1 rather than 2. Statis-
tical Debugging reports the faulty Line 8 as the most suspi-
cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards

Fig. 2. Dynamic slicing illustrated [9]: The middle return value in Line 15
can stem from any of the assignments to m, but only those in Lines 3 and 8
are executed in the failing run. Following back the dynamic dependency
immediately gets the programmer to Line 8, the faulty one.

In this paper, we take a localizable set of the COREBENCH
suite of bugs—a set of 37 real, confirmed, and fixed bugs in a
dozen programs, as well as 37 injected faults—and use them to
compare both fault localization techniques against each other.
Our takeaway findings are as follows:

1) Top ranked locations in statistical debugging can
pinpoint the fault. If one is only interested in a small set
of candidate locations, statistical debugging frequently
outperforms dynamic slicing. In our experiments, looking
at the top five locations only, statistical debugging would
reveal 10% of all faults, whereas a dynamic backward
slice from the output across five locations would detect
only 5%. This result is important for automatic repair
techniques, as the search for possible repairs can only
consider a limited set of candidate locations; also, the
search is not necessarily expected to succeed.

2) If one must fix the bug, dynamic slicing is twice
as effective. In our experiments, locating faults along
dynamic dependencies requires programmers to examine
on average 14% of the code (42 LoC); whereas statistical
debugging techniques require 30% (157 LoC). This is im-
portant for human debuggers, as they eventually must find
and fix the fault: If they follow the dynamic slice from the
failing output, they will find the fault much quicker than if
they examine locations whose execution correlates with
failure. On top, dynamic slicing needs only the failing
run, whereas statistical debugging additionally requires
multiple similar passing runs.

3) Programmers can start with statistical debugging,
but should quickly switch to dynamic slicing after
a few locations. In our experiments, it is a hybrid search
strategy that works best: First consider the top locations
of statistical debugging (if applicable), and then proceed
along the dynamic slice. In our experiments, this hybrid
strategy required programmers to examine only 11% of
the code (35 LoC), improving over dynamic slicing alone.

The remainder of this paper is organized as follows. Section II
and Section III introduce program slicing and statistical de-
bugging, respectively. This is followed by a discussion of a
hybrid strategy in Section IV where the developer switches to

slicing after investigating the N most suspicious statements.
Section V describes our experimental setting while the results
are detailed in Section VI. Section VII closes with conclusion
and consequences.

II. PROGRAM SLICING

It was more than three decades ago that Mark Weiser [10],
[11] noticed that developers localize the root cause of a failure
by following chains of statements starting from where the
failure is observed. Starting from the symptomatic statement s
where the error is observed, the developer would identify those
program locations that directly influence the variable values
or execution of s. This traversal continues until, transitively,
the root cause of the failure (i.e., the fault) is found. This
procedure allows her to investigate, in reverse, those parts of
the program involved in the infected information-flow towards
the location where the failure is first observed.

A. Static Slicing

Weiser developed program slicing as the first automated
fault localization technique. A person marks the statement
where the failure is observed (i.e., the failure’s symptom) as
slicing criterion C. To determine the potential impact of one
statement onto another, the program slicer first computes the
Program Dependence Graph (PDG) for the buggy program.

The PDG is a directed graph with nodes for each statement
and an edge from a node s to a node s′ if

1) statement s′ is a conditional (e.g., an if-statement) and s
is executed in a branch of s′ (i.e., the values in s′ control
whether or not s is executed), or

2) statement s′ defines a variable v that is used at s and s
may be executed after s′ without v being redefined at
an intermediate location (i.e., the values in s′ directly
influence the value of the variables in s).

The first condition elicits control dependence while the second
elicits data dependence. The PDG essentially captures the
information-flow among all statements in the program. If there
is no path from node n to node n′, then the values of the
variables at n′ have definitely no impact on the execution of n′

or its variable values.
The static program slice [11], [12] computed w.r.t. C con-

sists of all statements that are reachable from C in the PDG. In
other words, it contains all statements that potentially impact
the execution and program states of the slicing criterion.
Note that static slicing only removes those statements that
are definitely not involved in observing the failure at C. The
statements in the static slice may or may not be involved. Static
program slices are often very large, containing an average of
one third (33%) of the program’s code [13].

B. Dynamic, Relevant, and Execution Slicing

A dynamic program slice [14], [15] is computed for a spe-
cific failing input t and is thus much smaller than a static slice.
It is able to capture all statements that are definitely involved
in computing the values that are observed at the location
where the failure is observed for failing input t. Specifically,



the dynamic slice computed w.r.t. slicing criterion C for
input t consists of all statements whose instances are reachable
from C in the Dynamic Dependence Graph (DDG) for t. The
DDG for t is computed similarly as the PDG only that the
nodes are the statement instances in the execution trace π(t).
The DDG contains a separate node for each occurence of a
statement in π(t) with outgoing dependence edges to only
those statement instances on which this statement instance
depends in π(t) [15]. However, an error is not explained only
by the actual information-flow towards C. It is important also
to investigate statements that could have contributed towards
an alternative, potentially correct information-flow.

The relevant slice [16], [17] computed for a failing input t
subsumes the dynamic slice for t but also captures the fact that
the fault may be in not executing an alternative, correct path.
It adds conditional statements (e.g., if-statements) that were
executed by t and if evaluated differently may have contributed
to a different value for the variables at C. It requires computing
(static) potential dependencies. In the execution trace π(t),
a statement instance s potentially depends on conditional
statement instance b if there exists a variable v used in s such
that (i) v is not defined between b and s in trace π(t), (ii) there
exists a path σ from ϕ(s) to ϕ(b) in the PDG along which v
is defined, where ϕ(b) is the node in the PDG corresponding
to the instance b, and (iii) evaluating b differently may cause
this untraversed path σ to be exercised. Qi et al. [18] proved
that the relevant slice w.r.t. C for t contains all statements
required to explain the value of C for t.

The approximate dynamic slice [14], [19] is computed w.r.t.
slicing criterion C for failing input t as the set of executed
statements in the static slice w.r.t. C. The approximate dy-
namic slice subsumes the dynamic slice because there can
be an edge from an instance s to an instance s′ in the
DDG for t only if there is an edge from statement ϕ(s)
to statement ϕ(s′) in the PDG. The approximate dynamic
slice subsumes the relevant slice because it also accounts
for potential dependencies: Suppose instance s potentially
depends on instance b in execution trace π(t). Then, by
definition there exists a path σ from ϕ(s) to ϕ(b) in the PDG
along at least one control- and one data-dependence edge (via
the node defining v); and if ϕ(s) is in the static slice, then
ϕ(b) is as well. Note that the approximate dynamic slice is

● easier to compute than dynamic slices (static analysis),
● significantly smaller than the static slice, and still
● as “complete” as the relevant slice.

In summary, dynamic slice ⊆ relevant slice ⊆ approximate
dynamic slice ⊆ static slice.

Figure 3 (a) and (b) show the static and the dynamic slice for
the middle program, respectively. The slicing criterion was
chosen as the return statement of the program—that statement
where the failure is observed. As test case, we chose the single
failing test case ⟨2,1,3⟩. In this example, the approximate
dynamic slice matches exactly the dynamic slice.

8 6

15

11 13

12

10

7

5

4

2

8

15

7

5

4

2

(a) Static Slice (b) Dynamic Slice

Fig. 3. Slicing Example: Nodes are statements in each line of the middle
program (see Figure 1). Control-dependencies are shown as dashed lines while
data dependencies are shown as concrete lines.

III. STATISTICAL DEBUGGING

It was one and a half decades ago that Jones et al. introduced
the first statistical debugging technique, TARANTULA [7],
quickly followed by Liblit et al. [5], [6]. The main idea
of statistical debugging is to associate the execution of a
particular program element with the occurence of failure using
so-called suspiciousness measures. Program elements (like
statements, basic blocks, functions, components, etc.) that
are observed more often in failed executions than in correct
executions are deemed as more suspicious. A program element
with a high suspiciousness score is more likely to be related
to the root cause of the failure. Being able to suggest a
fault location is not only important for human debuggers, but
also for several automated program repair techniques [1]–
[4], which first consider the highest ranked, most suspicious
elements as patch location. Using a more effective debugging
technique thus directly increases the effectiveness of such
repair techniques.

The effectiveness of various statistical approaches to fault
localization has been studied by several colleagues; for a recent
survey on fault localization, see Wong et al. [8].

For our evaluation, we chose the three most popular sta-
tistical fault localization measures, TARANTULA [7], [9],
OCHIAI [20], [21], and JACCARD [22]. They are either al-
ready used in recent automated repair techniques [2] or have
been shown to improve automated repair techniques [23].
Other statistical fault localization techniques perform similarly
well [23]–[25].

Figure 4 shows the scores computed for the executable
lines in our motivating example. The statement in Line 8 is
incorrect and should read m = x; instead. This statement is
also the most suspicious according to all three statistical fault
localization techniques. Notice that only twelve (12) lines are
actually executable.

Evidently, in this example from Jones and Harrold [9],
the faulty statement is also the most suspicious for all three
statistical fault localization techniques. The scores for the
faulty statement in Line 8 are tarantula(s8) =

1
1
/ (

1
1
+

1
5
),

ochiai(s8) = 1√
1(1+1) , and jaccard(s8) = 1

1+1 .



1 int middle(x, y, z) { Tarantula Ochiai Jaccard
2 int x, y, z; 0.500 0.408 0.167
3 int m = z; 0.500 0.408 0.167
4 if (y < z) { 0.500 0.408 0.167
5 if (x < y) 0.625 0.500 0.250
6 m = y; 0.000 0.000 0.000
7 else if (x < z) 0.714 0.578 0.333
8 m = y; 0.833 0.707 0.500
9 } else { 0.000 0.000 0.000

10 if (x > y) 0.000 0.000 0.000
11 m = y; 0.000 0.000 0.000
12 else if (x > z) 0.000 0.000 0.000
13 m = x; 0.000 0.000 0.000
14 } 0.000 0.000 0.000
15 return m; 0.500 0.408 0.167
16 }

Fig. 4. Statistical Fault Localization - Example

IV. A HYBRID APPROACH

We propose a new fault localization approach which lever-
ages the strengths of both dynamic slicing and statistical de-
bugging called the hybrid approach. The goal is to improve on
the effectiveness of both approaches by harnessing the power
of statistical correlation and dynamic program analysis. The
hybrid approach first reports a few most suspicious statements
before it reports the statements in the dynamic slice computed
w.r.t. the symptomatic statement. This is inspired by the
observation that programmers tend to transition to traditional
debugging (i.e., finding those statements that impact the value
of the symptomatic statement) after failing to locate the fault
within the first N top-ranked most suspicious statements [26].

Specifically, the hybrid approach proceeds in two phases.
In the first phase, it reports the N most suspicious statements,
obtained from the ordinal ranking1 of a statistical fault local-
ization technique (e.g. Ochiai). Then, if the fault is not found,
it proceeds to the second phase where it reports the symptom’s
dynamic backward dependencies. For COREBENCH, we have
empirically determined the best value of N to be five (5).
Indeed, the hybrid approach with N = 5 has the programmer
inspect the least number of statements before finding the fault.

We obtain the statistical fault localization ranking by exe-
cuting the accompanying test suite of the program and tracking
the coverage information for each statement and each test case.
Furthermore, we obtain the dynamic backward dependencies
via approximate dynamic slicing, by using the symptom of
the failure as the slicing criterion. In the second phase, we
account for statements that have already been reported in the
first phase by not reporting them a second time.

A. Weakness of Statistical Debugging

The hybrid approach is capable of overcoming the weak-
nesses of statistical debugging. Statistical fault localization
techniques are sensitive to the size and variance of the accom-
panying test suites [27]. Statistical debugging is less efficient
when the accompanying test suite is small or achieves low
coverage. To reduce the time wasted in search of the fault in
these cases, the hybrid approach reports only the Top-N most
suspicious statements, then proceeds to dynamic slicing.

1In ordinal ranking, lines with the same score are ranked by line number.

∎: covered statements x 3 2
1 int middle(x, y, z) { y 3 1
2 int x, y, z; z 5 3 Tarantula Ochiai Jaccard
3 int m = z; ∎ ∎ 0.500 0.707 0.333
4 if (y < z) { ∎ ∎ 0.500 0.707 0.333
5 if (x < y) ∎ ∎ 0.500 0.707 0.333
6 m = y; 2 2 0.000 0.000 0.000
7 else if (x < z) ∎ ∎ 0.500 0.707 0.333
8 m = y; ∎ ∎ 0.500 0.707 0.333
9 } else { 2 2 0.000 0.000 0.000

10 if (x > y) 2 2 0.000 0.000 0.000
11 m = y; 2 2 0.000 0.000 0.000
12 else if (x > z) 2 2 0.000 0.000 0.000
13 m = x; 2 2 0.000 0.000 0.000
14 } 2 2 0.000 0.000 0.000
15 return m; ∎ ∎ 0.500 0.707 0.333
16 } 4 8

Fig. 5. Test suite sensitivity of statistical debugging. Let us consider the
middle function with a small test suite containing two test cases (3, 3, 5)
and (2, 1, 3). Then, statistical debugging reports all executed lines 3, 4, 5,
7, 8, and 15 as the “most” suspicious statements, since they are all strongly
correlated to the failure.

For instance, Figure 5 depicts for our motivating example
how the effectiveness of statistical fault localization depends
on the provided test suite. Given one passing and one failing
test case, statistical debugging correlates all six executed state-
ments for the failing test case—(2,3,4,7,8,15), as the most
suspicious ranked statements. Conservatively, the programmer
needs to inspect half the program statements before finding
the fault. Although a large test suite and a high coverage is
desirable for statistical fault localization, for real programs this
is not always available. Often only one or two failing test cases
are actually available [28].

Meanwhile, the hybrid approach with the same test suite
improves the programmer’s effectivenss. Assuming N = 2, the
programmer inspects the first two statements before following
the dependency from the symptomatic statement in Line 15.
She finds the fault after inspecting only three statements. In
contrast, using statistical debugging she would find the fault
after investigating five statements (using ordinal ranking).

B. Weakness of Dynamic Slicing

Program slices can become very large [13]. Generally,
programmers using dynamic slicing become ineffective when
the fault is located relatively far away from the symptomatic
statement. However, our proposed hybrid approach can over-
come this limitation by leveraging statistical debugging which
can point to any statement in the program however far from the
symptomatic statement. This improves the chances of finding
the fault quickly by first applying statistical correlation before
dynamic analysis.

Figure 6 illustrates this weakness. This modified variant of
the middle function contains another fault which is exposed
by the same test suite. Since the return value for test case
(1,2,3) is unexpected, we mark Line 15 as slicing criterion. In
this example, the operator fault is located relatively far from
the slicing criterion. The programmer following backward de-
pendencies from the symptom has to inspect three statements
(lines 8, 7, and 5) in addition to the slicing criterion. On the
other hand, our hybrid approach with N ≥ 1 has to inspect
only a single statement before the fault is located.



∎: covered statements x 3 1 3 5 5 2
1 int middle(x, y, z) { y 3 2 2 5 3 1
2 int x, y, z; z 5 3 1 5 4 3
3 int m = z; ∎ ∎ ∎ ∎ ∎ ∎ 3
4 if (y < z) { ∎ ∎ ∎ ∎ ∎ ∎ 4
5 if (x > y) ∎ ∎ 2 2 ∎ ∎ 5
6 m = y; 2 2 2 2 ∎ ∎ 6
7 else if (x < z) ∎ ∎ 2 2 2 2 7
8 m = x; ∎ ∎ 2 2 2 2 8
9 } else { 2 2 ∎ ∎ 2 2 9

10 if (x > y) 2 2 ∎ ∎ 2 2 10
11 m = y; 2 2 ∎ 2 2 2 11
12 else if (x > z) 2 2 2 ∎ 2 2 12
13 m = x; 2 2 2 2 2 2 13
14 } 2 2 2 2 2 2 14
15 return m; ∎ ∎ ∎ ∎ ∎ ∎ 15
16 } 4 8 4 4 8 8

Fig. 6. Weakness of dynamic slicing. This is a variant of the faulty middle
function with an operator fault in Line 5 (instead of Line 8). Following back
the dynamic dependency gets the programmer to Line 5 (the fault) after
inspecting 2–3 statements—(5,6) or (5,7,8) depending on the failing test case.

V. EXPERIMENTAL SETUP

We evaluate the performance of statistical debugging and
dynamic slicing in the framework of Steimann, Frenkel, and
Abreu [29] where we fix the granularity of fault localization
at statement level and the fault localization mode at one-at-a-
time. In this practical setting with real errors and real test suites
the provided test suites may not be coverage adequate. Fault
localization effectiveness is evaluated as relative wasted effort
based on the ranking of units in the order they are suggested
to be examined.

A. Objects of Empirical Analysis

COREBENCH [28] is a collection of 70 real errors that
were systematically extracted from the repositories and bug
reports of four open-source software projects: Make, Grep,
Findutils, and Coreutils.2 These projects are well-tested, well-
maintained, and widely-deployed open source programs for
which the complete version history and all bug reports can
be publicly accessed. All projects come with an extensive test
suite. For each error, COREBENCH provides the patch that
fixes the error and a test case that fails before but passes after
the patch is applied.

Real Errors. Through a systematic analysis of 4 × 1000 re-
cent code commits, Böhme and Roychoudhury [28] identified
and validated 70 errors. 12% of the errors were fixed within a
week while half stayed undetected and uncorrected for more
than nine months up to 8.5 years. Eleven errors were fixed
incorrectly. In these cases the error was indeed removed in
the fixed version. Yet, up to three new errors were introduced
that required further fixes. All errors were submitted uninten-
tionally by experienced developers and package maintainers
despite the large test suite and despite the long practice of
code reviews where each patch is carefully checked by other
developers before it is committed to the code repository. The
repository, bug reports, test cases, and much more are publicly
accessible and real in the sense that they were created in
production rather than under scientific supervision.

2http://www.comp.nus.edu.sg/∼release/corebench/

TABLE I
OBJECTS: OPEN SOURCE PROJECTS IN COREBENCH [28]

Project Tools Total Size #Errors #Excluded
Coreutils 98 83k LoC 22 7
Findutils 4 18k LoC 15 3
Grep 1 11k LoC 15 5
Tcas 41 60 LoC 41 4

Minimal Patches. The user-generated patches are used to
identify those statements in the buggy version that are marked
faulty. In fact, Renieris and Reiss [30] recommend to identify
as faulty statements those that need to be changed to derive
the (correct) program that does not contain the error. The
authors of COREBENCH made sure that the provided patches
are minimal such that they are not tangled with other, unrelated
changes. For each error, we consider as buggy program that
revision which exists right before the error’s patch. Hence,
only patched statements are considered faulty.

Slicing Criterion. All aspects of approximate dynamic slic-
ing can be fully automated. To this end, as slicing criterion we
chose the last statement that is executed or the return statement
of the last function that is executed. For instance, when the
program crashes because an array is accessed out of bounds,
the location of the array access is chosen as slicing criterion.
In our implementation the slicing criterion is automatically
selected by a bash script running GDB.

Passing and Failing Test Cases. All projects come with a
manually written test suite which checks corner cases and
that previously fixed errors do not re-emerge. The complete
test suite is executed with make check or make tests.
Executing a single test case is more difficult. Each project
comes with its own testing framework. While find uses
Dejagnu,3 coreutils and grep implement their own test
framework in perl, where each executable file in the tests-
folder can be considered a test case. For statistical debugging,
we execute each of these (passing) test cases individually to
collect coverage information. The failing test case is provided
in COREBENCH.

Table I lists all objects and the studied errors. For our evalu-
ation, we also used all injected errors for Tcas that is available
from the Siemens programs4 and the most well-studied subject
according to a recent survey on fault localization [8]. From
COREBENCH, we used all projects, except the Make project.5

In summary, for our automated evaluation we used 74 errors
in dozens of programs from two well-known benchmarks.
For TCAS, each artificially injected error has 1.7 faulty lines,
1571 passing and 37 failing test cases, on average. For
COREBENCH, each real error has 25 faulty lines, 42 passing
test cases and one failing test case, on average.

3www.gnu.org/software/dejagnu/
4http://www-static.cc.gatech.edu/aristotle/Tools/subjects
5Frama-C, our tool of choice to construct the Program Dependence Graph

(PDG) cannot handle some recursive or variadic method calls that are abundant
in Make. For this reason, we also excluded 2 errors in grep. Otherwise, we
excluded an error if no coverage information could be generated (e.g., infinite
loops; 9 errors) or the faulty statement could not be identified (e.g., patch
only added statements; 4 errors). All other errors are used for our evaluation.

http://www.comp.nus.edu.sg/~release/corebench/


B. Measure of Localization Effectiveness

We measure fault localization effectiveness as the proportion
of statements that do not need to be examined until finding
the first fault. This allows us to assign a score of 0 for the
worst performance (i.e., all statements must be examined)
and 1 for the best. More specifically, we measure the score
= 1 − p where p is the percentage of statements that needs
to be examined before the first faulty statement is found. Not
all failures are caused by a single faulty statement. In fact,
only about 10% of failures are caused by a single statement
while there is a long tail of failures that are substantially more
complex [28]. Focusing on the first faulty statement found,
the score measures the effort to find a good starting point
to initiate the bug-fixing process rather than to provide the
complete set of code that must be modified, deleted, or added
to fix the failure. Wong et al. [8] motivates this measure of
effectiveness and presents an overview of other measures.

Ranking. Both fault localization techniques produce a rank-
ing. The developer starts examining the highest ranked state-
ments and goes down the list until reaching the first faulty
statement. To generate the ranking for statistical debugging,
we list all statements in the order of their suspiciousness
(as determined by the technique), most suspicious first. To
generate the ranking for approximate dynamic slicing, given
the statement c where the failure is observed, we rank first
those statements in the slice that can be reached from c
along one backward dependency edge. Then, we rank those
statements that can be reached from c along two backward
dependency edges, and so on. Generally, for both techniques,
the score is computed as

score = 1 −
∣S∣

∣P ∣

where S are all statements with the same rank or less as
the highest ranked faulty statement and P is the set of all
statements in the program. So, S represents the statements
a developer needs to examine until finding the first faulty
statement.

Multiple Statements, Same Rank. In most cases there are
several statements that have the same rank as the faulty state-
ment. We make the conservative assumption that a developer
finds the faulty statement among other statements with the
same rank last. More precisely, the ranking is a modified com-
petition ranking, leaving gaps before the set of equal ranking
items. Suppose, statements si where 1 ≤ i ≤ 4 are ranked by
index i except s2 and s3 are ranked equally. Then their ranks
are ⟨1,3,3,4⟩. This is in agreement with evaluations of fault
localization techniques in previous work [8], [9], [24].

1) Dynamic Slicing Evaluation: We define the effectiveness
of approximate dynamic slicing, the scoreads according to
Renieris and Reiss [30] as follows. Given a failing test case t,
the symptomatic statement c, let ζ be the approximate dynamic
slice computed w.r.t. c for t, let kmin be the minimal number
of backward dependency edges between c and any faulty
statement in ζ, and let DS∗(c, t) be the set of statements

in ζ that are reachable from c along at most kmin backward
dependency edges. Then,

scoreads = 1 −
∣DS∗(c, t)∣
∣P ∣

Algorithmically, the scoreads is computed by i) measuring
the minimum distance kmin from the statement c where the
failure is observed to any faulty statement along the backward
dependency edges in the slice, ii) marking all statements
in the slice that are at distance kmin or less from c, and
iii) measuring the proportion of marked statements in the slice.
This measures the part of code a developer investigates who
follows backward dependencies of executed statements from
the program location where the failure is observed towards the
root cause of the failure.

For instance, the scoreads for the approximate dynamic slice
in our motivating example in Figure 3 is = 1− 1

12
= 0.92. The

slicing criterion is c = s15. The program size is ∣P ∣ = 12. The
faulty statement s8 is ranked first. Statements s7 and s2 are
both ranked third according to modified competition ranking.
Statements s5 and s4 are ranked fourth and fifth, respectively,
while the remaining, not executed (but executable) statements
are ranked 12th.

2) Statistical Debugging Evaluation: We define the ef-
fectiveness of a statistical fault localization technique, the
scoresfl as follows. Given the modified competition ranking
of program statements in P for test suite T according to
their suspiciousness as determined by the statistical fault
localization method, let rf be the rank of the highest ranked
faulty statement. Then,

scoresfl = 1 −
rf

∣P ∣

Note that scoresfl = 1 − EXAM-score where the well-known
EXAM-score [9], [27] gives the proportion of statements that
need to be examined until the first fault is found. Intuitively,
the scoresfl is its complement assigning 0 to the worst possible
ranking where the developer needs to examine all statements
before finding a faulty one.

For instance, scoresfl = 1 − 1
12

= 0.92 for our motivating
example and all considered statistical debugging techniques.
All statistical debugging techniques identify the faulty state-
ment in Line 8 as most suspicious. So, there is only one top-
ranked statement (Rank 1). But there are six statements with
the lowest rank (Rank 12). If the fault was among one of
these statements, the programmer might need to look at all
statements of our small program middle before localizing
the fault.

3) Hybrid Approach Evaluation: We define the effective-
ness of the hybrid approach, the scorehyb as follows. Let R be
the set of faulty statements and H be the N most suspicious
statements – sorted first by suspiciousness score and then by
line numbers. Given the failing test case t and a statement c
that is marked as symptomatic, we have

scorehyb =

⎧
⎪⎪
⎨
⎪⎪
⎩

min(scoresfl,N) if R ∩H ≠ ∅

1 − ∣H ∪DS∗(c, t)∣ / ∣P ∣ otherwise



Essentially, scorehyb computes the score for the statistical fault
localization technique if the faulty statement is within the
first N most suspicious statements, and the score for approx-
imate dynamic slicing while accounting for the statements
already reported in the first phase. For instance, for N = 2
we have scorehyb = 1 − 1

12
= 0.92 for the motivating example

in Figure 1 since the fault is amongst the N most suspicious
statements. On the other hand, considering the same program
with only two test cases (Figure 5), the hybrid approach has a
score of 0.75 since the faulty statement is not amongst the N
most suspicious statements. The score for the hybrid technique
is better than that of statistical debugging (0.58).

C. Implementation and Infrastructure

We performed the experiments on the COREBENCH virtual
machine running Ubuntu Linux 14.04. The VM was running
on a MacBook Pro (Retina, 15-inch, Mid 2015) with a 2.5GHz
Intel Core i7 CPU and 16GB of main memory.

1) Statistical Debugging Implementation: The statistical
debugging tool was implemented using two bash scripts
with several standard command line tools, notably gcov,6

git-diff,7 gdb,8 and bc.9 COREBENCH allows to im-
plement a so-called analyze-script which is executed for
each error on the version directly before the error was fixed.
The differencing tool git-diff identifies those lines in the
buggy program that were changed in the patch. If the patch
only added statements, we cannot determine a corresponding
faulty line. Seven errors were thus excluded from the evalu-
ation.10 The code coverage tool, gcov identifies those lines
in the buggy program that are covered by an executed test
case. When the program crashes, gcov does not emit any
coverage information. If the crash is not caused by an infinite
loop, it is sufficient to run the program under test in gdb and
force-call the gcov-function from gdb to write the coverage
information once the segmentation fault is triggered. This was
automated as well. However, for eight cases, no coverage
information could be generated due to infinite recursion.11

Gcov also gives the number of executable statements in the
buggy program (i.e., ∣P ∣). Finally, bc is an arbitrary precision
numeric processing language and was used to compute the
fault localization effectiveness.

2) Dynamic Slicing Implementation: The approximate
dynamic slice is computed using Frama-C,12 gcov,
git-diff, gdb, and several python libraries. Given the
preprocessed source files of a C program, Frama-C computes
the static slices for each function and their call graphs as
DOT files. The gcov-tool determines the executed/covered
statements in the program. The git-diff-tool determines

6https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
7https://git-scm.com/docs/git-diff
8https://www.gnu.org/software/gdb/documentation/
9https://www.gnu.org/software/bc/manual/html mono/bc.html
10core.2e636af1, core.a6a447fc, core.64d4a280, find.24bf33c0,

tcas.13, tcas.14, tcas.36, tcas.38.
11core.51a8f707, core.61de57cd, core.8f976798, core.d461bfd2,

find.ff248a20, grep.3220317a, grep.5fa8c7c9 and grep.db9d6340.
12http://frama-c.com/

the changed statements in the patch and thus the faulty state-
ments in the program. The gdb-tool allows to derive coverage
information even for crashing inputs and to determine the
slicing criterion as the last executed statement. Our python
script intersects the statements in the static slice and the set of
executed statements to derive the approximate dynamic slice.
We use the python libraries pygraphviz13, networkxx,14

and matplotlib15 to process the DOT files and compute
the score for the approximate dynamic slice.

3) Hybrid Approach Implementation: The hybrid approach
is implemented simply as a combination of both tools. If the
top-N most suspicious statements do not contain the fault,
the dynamic slicing component is informed about the set of
statements already inspected in the first phase.

VI. RESULTS

A. Research Questions

In this study, we seek to answer these research questions:
● RQ.1 Given a real error, which technique is more likely

to be more effective at fault localization (odds ratio)?
Which technique allows to investigate the least number
of statements before finding the fault, on average (mean)?

● RQ.2 Cumulative Frequency. Given a real error and
assuming that a programmer is willing to investigate at
most N statements, which technique performs best?

● RQ.3 Sensitivity. How many most suspicious statements
should the programmer inspect before switching to slicing?

● RQ.4 Is there a difference between evaluating a fault
localization technique on artificial versus real errors?

B. Presentation

For the presentation and evaluation of our results, we use
three measures and metrics. Odds Ratio “is a measure of
how many times greater the odds are that a member of a
certain population will fall into a certain category than the
odds are that a member of another population will fall into
that category” [31]. We use odds ratio to assess whether
fault localization technique A is more effective than fault
localization technique B: Let b the number of successes for B,
and n = a + b the total number of successes. Then, the odds
ratio ψ is calculated as

ψ = (

a + ρ

n + ρ − a
)/(

b + ρ

n + ρ − b
)

where ρ is an arbitrary positive constant (e.g., ρ = 0.5) used
to avoid problems with zero successes. There is no difference
between the two algorithms when ψ = 1 while ψ > 1 indicates
that technique A has higher chances of success. For example,
an odds ratio of 5 means that fault localization technique A
is five times more likely to be successful (i.e., more effective
as compared to B) at fault localization than B.

13https://pygraphviz.github.io/
14https://networkx.github.io/
15http://matplotlib.org/



TABLE II
FAULT LOCALIZATION EFFECTIVENESS FOR APPROXIMATE DYNAMIC SLICING, STATISTICAL DEBUGGING, AND THE HYBRID APPROACH. FOR EACH

PROJECT, WE SHOW THE MEAN EFFECTIVENESS µ, THE ODDS RATIO ψ (STATISTICALLY SIGNIFICANT VALUES IN BOLD), AND THE MANN-WHITNEY U
TEST. WE COMPARE (1) SLICING VS. STATISTICAL DEBUGGING, (2) SLICING VS. HYBRID, AND (3) HYBRID VS. STATISTICAL DEBUGGING.

Object Hybrid Slicing Statistical Debugging Odds Ratio ψ Mann-Whitney U
N = 5 µ TARANTULA OCHIAI JACCARD 1 2 3 1 2 3

COREBENCH 0.89 0.86 0.70 0.70 0.70 2.62 0.77 3.00 < 0.05 0.23 < 0.05
core 0.83 0.82 0.73 0.73 0.73 1.46 1.13 1.46 0.32 0.68 0.18
find 0.94 0.92 0.71 0.71 0.71 1.89 0.53 2.71 < 0.05 0.45 < 0.05
grep 0.91 0.88 0.63 0.63 0.63 21.00 0.69 21.00 < 0.05 0.54 < 0.05
tcas 0.68 0.61 0.50 0.66 0.59 0.62 1.81 0.85 0.12 0.44 0.41

Besides odds ratio, we use the well known Mann-Whitney
U measure to show whether any performance difference
between both techniques is statistically significant. Finally,
we use cumulative frequency curves, a running total of
frequencies, to show the percentage of errors that require
examining up to a certain percentage of program locations.
The percentage locations examined is plotted on a log-scale
because the difference between examining 5 to 10 locations
is more important than difference between examining 1005 to
1010 locations.

RQ.1 Fault Localization Effectiveness

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Statistical Debugging Effectiveness (Ochiai)

S
lic

in
g 

E
ffe

ct
iv

en
es

s

Fig. 7. Direct comparison of fault localization effectiveness between statistical
debugging (Ochiai) versus approximate dynamic slicing for COREBENCH.

Odds Ratio. For all real errors in our study, a programmer
is about three (3) times more likely to find the fault location
early if she starts with approximate dynamic slicing instead
of statistical debugging but 28% less likely when compared
to the hybrid approach (N = 5). In other words, the majority
of real bugs is best localized by the hybrid approach. We let
Ochiai represent statistical debugging when computing odds
ratio and Mann-Whitney test since its effectiveness is indeed
representative of the other statistical techniques. As we can
see in Table II, the odds ratio for all projects in COREBENCH
is strictly in favor of the hybrid approach and approximate
dynamic slicing (ψ > 1). The high odds ratio for grep is
explained by slicing and the hybrid approach being more
effective than statistical debugging in all ten cases. For find
slicing is more effective than statistical debugging in eight out
of twelve cases. For core slicing is more effective in nine
out of fifteen cases.

Figure 7 shows a direct comparison of the scores computed
for slicing and statistical debugging. The scatter plot shows for
each error the effectiveness score of statistical debugging on
the x-axis and the effectiveness score of slicing on the y-axis.
Errors plotted above the line are better localized using slicing.
We can see that slicing performs consistently above 60% and
that most data points lie above the line at a significant distance.

Mean. For all real errors in our study, a programmer using
approximate dynamic slicing needs to examine less than half
(47%) of those statements that she would need to examine
if she used statistical debugging.16 If she used the hybrid
approach she would need to examine only a third of the
statements she would need to examine if she used statistical
debugging. Table II shows that slicing is about 16 percentage
points more effective than statistical debugging for the real
errors in COREBENCH, on average.

RQ.2 Cumulative Frequency

20%

40%

60%

80%

100%

1 5 10 50 100 500 1000
Locations examined to find fault location.

E
rr

or
s 

lo
ca

liz
ed

Technique

Hybrid

Slicing

Ochiai

Fig. 8. Cumulative frequency of locations to be examined for each error for
statistical debugging (Ochiai), approximate dynamic slicing, and the hybrid
approach (N = 5) using the real errors in COREBENCH.

If the programmer is willing to inspect no more than
5 to 15 statements, statistical debugging performs better
than approximate dynamic slicing. Otherwise, approximate
dynamic slicing performs better. Suppose, a programmer is
willing to inspect no more than the Top-10 most suspicious
statements. She will be able to localize the fault for 10% of all
errors if she used statistical debugging, compared to 5% for
approximate dynamic slicing. If, however, the programmer is

16Percentage improvement is measured as 1−0.86
1−0.70

. Note that score by itself
gives the number of statements that need not be examined.



patient enough to inspect 50 statements and used approximate
dynamic slicing, she would localize the fault for 70% of the
errors, compared to 30% if she used statistical debugging.
The hybrid approach performs best independent of how many
statements a programmer is willing to inspect.

RQ.3 Sensitivity of Hybrid Approach w.r.t. N

20%

40%

60%

80%

100%

1 2 5 10 20 50 100 200
Locations examined to find fault location.

E
rr

or
s 

lo
ca

liz
ed

N

2

5

10

15

Fig. 9. Cumulative frequency of locations to be examined for each real error
using the hybrid approach when switching from statistical debugging to slicing
after examining the N ∈ {2,5,10,15} most suspicious statements.

When the programmer switches to slicing after investigating
the N = 5 most suspicious statements, she can usually localize
more errors than if she switched after investigating less or
more suspicious statements (cf. Figure 9). Note that the hybrid
approach degenerates to approximate dynamic slicing when
N = 0 and to statistical debugging when N is large (e.g.,
program size). So, a good value of N lies somewhere in
between those extremes. For the errors in COREBENCH, we
determine N = 5 to be a good value.

RQ.4 Real vs. Artificial Errors

A recent survey of the statistical fault localization lit-
erature [8] identifies the Siemens benchmark of artificially
injected errors and specifically Tcas as subjects that were used
most often for the evaluation of fault localization effectiveness.
The Siemens benchmarks come with very large test suites and
a number of variants of small programs containing artificially
injected errors. The test suites contain large numbers of failing
test cases. Our preliminary results suggest that this poses a
threat to the generality of the conclusions.

Observation 1. While for the artificial errors in Tcas there
appears to be a significant difference in the performance of
each statistical debugging technique, for the real errors in
COREBENCH all three techniques perform exactly the same
(see Figure 10). We would explain this observation with the
abundance of failing test cases for Tcas. For COREBENCH,
there is always only one or two failing test cases that can be
used to correlate test case failure to the suspiciousness of a
program statement. In fact, Abreu et al. [27] investigate the
sensitivity of the effectiveness of statistical techniques on the
provided passing and failing test cases and establish that the
suspiciousness scores stabilize starting from an average six (6)
failing and twenty (20) passing test cases. In a realistic setting
so many failing test cases may not be available.

CoREBench (37 errors) Tcas (37 errors)

Ta
ra

nt
ul

a

0%

5%

10%

15%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

P
ro

po
rt

io
n 

of
 E

rr
or

s

0%

10%

20%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

P
ro

po
rt

io
n 

of
 E

rr
or

s

O
ch

ia
i

0%

5%

10%

15%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

P
ro

po
rt

io
n 

of
 E

rr
or

s

0%

10%

20%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

P
ro

po
rt

io
n 

of
 E

rr
or

s

Ja
cc

ar
d

0%

5%

10%

15%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

P
ro

po
rt

io
n 

of
 E

rr
or

s

0%

10%

20%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

P
ro

po
rt

io
n 

of
 E

rr
or

s

Fig. 10. Histograms of scores of three statistical fault localization techniques
evaluated on the real errors in COREBENCH and the injected errors in TCas.

0%

25%

50%

75%

100%

1 10 100
Locations examined to find fault location.

E
rr

or
s 

lo
ca

liz
ed

Technique

Slicing

Ochiai

Hybrid

●●

●
●

● ●

●

●

●
●●● ●

●● ●●

●●●●● ●
● ●

●●
●

● ●
●

●
●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Ochiai − Effectiveness

S
lic

in
g 

−
 E

ffe
ct

iv
en

es
s

Fig. 11. Cumulative frequency curves for all techniques (left) and comparison
of the effectiveness of slicing and statistical debugging (right) for Tcas.

Observation 2. For Tcas, neither statistical debugging nor
approximate dynamic slicing show a significant advantage.
The odds ratio in Table II shows that it is less likely that
slicing outperforms statistical debugging than it is to fare
the same or worse than statistical debugging. This is also
evident in Figure 11. In the chart on the right, we can
see that approximate dynamic slicing consistently achieves a
score between 0.5 and 0.75 while the scores for statistical
debugging varies significantly. We also note that the Mann-
Whitney U test fails, suggesting no statistically significant
difference between the effectiveness of approximate dynamic
slicing versus statistical debugging for Tcas.

The Tcas faults demonstrate the circumstances under which
statistical debugging can be better than dynamic slicing,
namely if there is a large distance between fault and its
manifestation—and, consequently, the program slice. How-
ever, we are not aware that Tcas or the manually injected
faults were chosen and designed to be representative in that
regard; we would expect the real faults from COREBENCH to
much better fill that role.



C. Threats to Validity

We discuss the threats to validity for this fault localization
study within the framework of Steimann et al. [29].

External validity refers to the extent to which the reported
results can be generalized to other objects which are not
included in the study. The most immediate threats to external
validity are the following: EV.1) Heterogeneity of Probands.
The quality of the test suites provided by the object of analysis
may vary greatly which hampers the assessment of accuracy
for practical purposes. However, in our study the test suites
are well-stocked and maintained. All projects are GNU open
source C programs which are subject to common measures of
quality control, such as code review and providing a test case
with bug fixes and feature additions. EV.2) Faulty Versions
and Fault Injection. For studies involving artificially injected
faults, it is important to control the type and number of injected
faults. Test cases become subject to accidental fault injection.
Some failures may be spurious. However, in our study we
use real errors that were introduced (unintentionally) by real
developers. Failing test cases are guaranteed to fail because
of the error. EV.3) Language Idiosyncrasies. Indeed, our ob-
jects are well-maintained open-source C projects containing
real errors typical for such projects. However, for instance
errors in projects written in other languages, like Java, or in
commercially developed software may be of different kind
and complexity. Hence, we cannot claim generality for all
languages and suggest to reproduce our experiments for real
errors in projects written in other languages as well.

Construct validity refers to the degree to which a test mea-
sures what it claims, or purports, to be measuring. The most
immediate threats to construct validity are the following: CV.1)
Measure of Effectiveness. Conforming to the standard [8],
we measure fault localization effectiveness as ranking-based
relative wasted effort. The technique that ranks the faulty
statement higher is considered more effective. Parnin and Orso
find that “programmers will stop inspecting statements, and
transition to traditional debugging, if they do not get promising
results within the first few statements they inspect” [26].
However, Steimann et al. [29] insist that one may question
the usefulness of fault locators, but measures of ranking-based
relative wasted effort are certainly necessary for evaluating
their performance, particularly in the absence of the subjective
user as the evaluator. CV.2) Implementation Flaws. Tools that
we used for the evaluation process may be inaccurate. Despite
all care taken, our implementation of the three studied statis-
tical fault localization techniques, or of approximate dynamic
slicing, or of the empirical evaluation may be flawed or subject
to random factors. However, we make all scripts and results
available online for public scrutiny.

VII. CONCLUSION AND CONSEQUENCES

As it comes to debugging, dynamic slices remain the
technique of choice for programmers. Suspicious statements,
as produced by statistical debugging, can provide good start-
ing points for an investigation; but beyond the top-ranked
statements, following dependencies is much more likely to

be effective. As it comes to teaching debugging, as well as
for interactive debugging tools, we therefore postulate that
following dependencies should remain the primary method
of fault localization—it is a safe and robust technique that
will get you towards the goal. Also keep in mind that our
treatment of dynamic slicing is still conservative—we use
approximate dynamic slicing, and not real dynamic slicing,
and our strategy starts at the output, proceeding backwards,
rather than following an algorithmic approach [32] where
programmers would check intermediate results for correctness.

For automated repair techniques, the picture is different.
Since current approaches benefit from a small set of suspicious
locations, focusing on a small set of top ranked locations,
as produced by statistical debugging, remains the strategy of
choice. Still, automated repair tools could benefit from static
and dynamic dependences just as human debuggers.

We found it surprising that of the more than 100 pub-
lications on statistical debugging, none compare against its
older sibling, dynamic slicing. It is true that among all fault
localization techniques, statistical debugging is one of the
least demanding. However, dynamic slicing demands even
less, in particular in the approximate form used in this paper.
Besides static analysis, which as a compiler prerequisite can
be assumed as a given, it does its job with just the coverage
information of the failing run. As the tools and techniques
we use in our comparison have been available since the first
papers on statistical debugging were published, a comparison
as conducted in this paper could and should have been called
for by reviewers a long time ago.

While easy to deploy, the techniques discussed in this paper
should by no means be considered the best of fault localization
techniques. Experimental techniques which reduce inputs [33],
[34] or executions [35] may dramatically improve fault local-
ization by focusing on relevant parts of the execution. Symbolic
techniques also show a great potential—such as the technique
of Jose and Majumdar, which “quickly and precisely isolates
a few lines of code whose change eliminates the error” [36].
The key challenge of automated fault localization will be to
bring the best of the available techniques together in ways that
are applicable to a wide range of programs and useful for real
programmers, who must fix their bugs by the end of the day.

Additional material. All of our scripts, tools, benchmarks,
and results are freely available to support scrutiny, evaluation,
reproduction, and extension at the project site:

http://www.st.cs.uni-saarland.de/debugging/faultlocalization/

ACKNOWLEDGMENTS

We are extremely grateful to the several colleagues who
have carefully reviewed and commented on our scripts, results,
and consequences. Thanks to you all!

This work was funded by Deutsche Forschungsgemein-
schaft, Project “Extracting and Mining of Probabilistic Event
Structures from Software Systems (EMPRESS)”.



REFERENCES

[1] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, Jan. 2012.

[2] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13, 2013,
pp. 772–781.

[3] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13, 2013,
pp. 802–811.

[4] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014,
2014, pp. 254–265.

[5] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, “Statistical
debugging of sampled programs,” in Advances in Neural Information
Processing Systems, 2003, pp. 9–11.

[6] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’05, 2005, pp. 15–26.

[7] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering, ser. ICSE ’02, 2002, pp. 467–477.

[8] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
p. preprint, 2016.

[9] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05, 2005, pp. 273–282.

[10] M. Weiser, “Programmers use slices when debugging,” Communications
of the ACM, vol. 25, no. 7, pp. 446–452, Jul. 1982.

[11] ——, “Program slicing,” in Proceedings of the 5th International Con-
ference on Software Engineering, ser. ICSE ’81, 1981, pp. 439–449.

[12] F. Tip, “A survey of program slicing techniques,” Journal of program-
ming languages, vol. 3, no. 3, pp. 121–189, 1995.

[13] D. Binkley, N. Gold, and M. Harman, “An empirical study of static
program slice size,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 2,
Apr. 2007.

[14] B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process. Lett.,
vol. 29, no. 3, pp. 155–163, Oct. 1988.

[15] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proceed-
ings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, ser. PLDI ’90, 1990, pp. 246–256.

[16] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London, “Incremental
regression testing,” in Proceedings of the Conference on Software
Maintenance, ser. ICSM ’93, 1993, pp. 348–357.

[17] T. Gyimóthy, A. Beszédes, and I. Forgács, “An efficient relevant slicing
method for debugging,” in Proceedings of the 7th European Software
Engineering Conference Held Jointly with the 7th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-7, 1999, pp. 303–321.

[18] D. Qi, H. D. T. Nguyen, and A. Roychoudhury, “Path exploration based
on symbolic output,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 4,
pp. 32:1–32:41, Oct. 2013.

[19] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Efficient debugging
with slicing and backtracking,” Purdue University, Tech. Rep., 1990.

[20] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in Proceedings of the
12th Pacific Rim International Symposium on Dependable Computing,
ser. PRDC’06, 2006, pp. 39–46.

[21] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION, ser. TAICPART-MUTATION ’07, 2007, pp. 89–98.

[22] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proceed-
ings of the 2002 International Conference on Dependable Systems and
Networks, ser. DSN ’02, 2002, pp. 595–604.

[23] F. Y. Assiri and J. M. Bieman, “Fault localization for automated program
repair: effectiveness, performance, repair correctness,” Software Quality
Journal, pp. 1–29, 2016.

[24] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive evaluation of
association measures for fault localization,” in Proceedings of the 2010
IEEE International Conference on Software Maintenance, ser. ICSM
’10, 2010, pp. 1–10.

[25] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “No pot of
gold at the end of program spectrum rainbow: Greatest risk evaluation
formula does not exist,” Department of Computer Science, University
College London, Tech. Rep., 2014.

[26] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: ACM, 2011, pp. 199–209. [Online]. Available:
http://doi.acm.org/10.1145/2001420.2001445

[27] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1780–1792, Nov. 2009.

[28] M. Böhme and A. Roychoudhury, “Corebench: Studying complexity of
regression errors,” in Proceedings of the 23rd ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA, 2014,
pp. 105–115.

[29] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013, 2013, pp. 314–324.

[30] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in Proceedings of the 18th IEEE International Conference on
Automated Software Engineering. IEEE, 2003, pp. 30–39.

[31] R. Grissom and J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Erlbaum, 2005.

[32] E. Y. Shapiro, Algorithmic Program DeBugging. Cambridge, MA,
USA: MIT Press, 1983.

[33] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200,
Feb. 2002. [Online]. Available: http://dx.doi.org/10.1109/32.988498

[34] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel, “On the use
of delta debugging to reduce recordings and facilitate debugging of
web applications,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: ACM, 2015, pp. 333–344. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786846

[35] M. Burger and A. Zeller, “Minimizing reproduction of software failures,”
in Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ser. ISSTA ’11, 2011, pp. 221–231.

[36] M. Jose and R. Majumdar, “Cause clue clauses: Error localization using
maximum satisfiability,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 437–446.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993550

http://doi.acm.org/10.1145/2001420.2001445
http://dx.doi.org/10.1109/32.988498
http://doi.acm.org/10.1145/2786805.2786846
http://doi.acm.org/10.1145/1993498.1993550

	Introduction
	Program Slicing
	Static Slicing
	Dynamic, Relevant, and Execution Slicing

	Statistical Debugging
	A Hybrid Approach
	Weakness of Statistical Debugging
	Weakness of Dynamic Slicing

	Experimental Setup
	Objects of Empirical Analysis
	Measure of Localization Effectiveness
	Dynamic Slicing Evaluation
	Statistical Debugging Evaluation
	Hybrid Approach Evaluation

	Implementation and Infrastructure
	Statistical Debugging Implementation
	Dynamic Slicing Implementation
	Hybrid Approach Implementation


	Results
	Research Questions
	Presentation
	Threats to Validity

	Conclusion and Consequences
	References

