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Main Objective

e to develop a dataset that allows to evaluate
novel debugging techniques w.r.t. humans.

Demography
27 real bugs
with simplified bug report and test cases

12 software professionals

« How do developers explain the bug? 11 developers + 1 researcher

« Which fault locations do experts point to?
Do developers agree on a single explanation?

07 plus years experience

06 countries

Russia, India, Slovenia, Spain, Canada, Ukraine
 How do developers patch the bug?

* Do patch and fault locations overlap?

« How many human-generated patches are
plausible but incorrect”

02 Open Source Software
GNU Grep, GNU Find, each with ~17KLOC

29 working days spent debugging these bugs
About 27 hours per developer

Evaluating debugging aids is difficult and time consuming.
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While for most bugs all submitted patches are plausible (i.e., pass the failing test case),
for most bugs 30% of patches are incorrect (i.e., fail the code review)!

DBGBENCH allows for effective evaluation of debugging aids.

Find ‘“‘-mtime [+-n]” is broken (behaves as ‘“-mtime n”)

Lets say we created 1 file each day in the last 3 days:
$ mkdir tmp

$ touch tmp/a -t $(date —--date="yesterday" +"%y%m%d$HSM")
$ touch tmp/b -t $(date —--date="2 days ago" +"%y%sm%d%H%M"
$ touch tmp/c -t $(date —--date="3 days ago" +"%y%tm%dSHSM"

Running a search for files younger than 2 days, we expect
$ ./find tmp -mtime -2

tmp

tmp/a

However, with the current grep-version, I get
$ ./find tmp -mtime -2
tmp/b

Results are the same if I replace -n with +n, or just n.

(a) Bug Report and Test Case
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If find i1s set to print files that are
strictly younger than n days (-mtime -n),
it will instead print files that are exactly

, n days old. The function get_comp_type

y actually increments the argument pointer
timearg (parser.c:3175). So, when
the function is called the first time
(parser.c:3109), timearg still points to
. However, when it 1s called the second
time (parser.c:3038), timearg already
points to 'n’ such that it is incorrectly clas-
sified as COMP_EQ (parser.c:3178;
exactly n days).

(b) Bug diagnosis and Fault Locations

Bug Diagnosis
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Example Correct Patches

e Copy timearg and restore after first call
to get_comp_type.

e Pass a copy of timearg into first call of
get_comp_type.

e Pass a copy of timearg into call of
get_relative_timestamp.

e Decrement timearg after the first call to
get_comp_type.

Example an Incorrect Patch

e Restore timearg only if classified as
COMP_LT (Incomplete Fix because it
does not solve the problem for -mtime
+n).

(c) Examples of (in-)correct Patches
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DBGBENCH helps to evaluate:
automated fault localisation,

automated bug diagnosis, and

automated repair techniques.

DBGBENCH helps to compare:
how much faster a developer is
diagnosing and repairing a bug
using a novel debugging aid.
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