
www.bit.do/dbgbench

How	 Developers	 Debug	 Software  
The	 DBGBENCH	 Dataset

Marcel	 Böhme,	 	 Ezekiel	 O.	 Soremekun,	 Sudipta	 Cha;opadhyay,	 Emamurho	 Ugherughe,	 and	 Andreas	 Zeller

Evalua&ng	 debugging	 aids	 is	 difficult	 and	 &me	 consuming.

DBGBENCH	 allows	 for	 effec&ve	 evalua&on	 of	 debugging	 aids.

27 real bugs  
 with simplified bug report and test cases
12 software professionals  
 11 developers + 1 researcher
07 plus years experience
06 countries  
 Russia, India, Slovenia, Spain, Canada, Ukraine
02 Open Source Software  
 GNU Grep, GNU Find, each with ~17KLOC
29 working days spent debugging these bugs  
 About 27 hours per developer

Experiment

0%

10%

20%

30%

40%

50%

Incomplete Fix Incorrect
Workaround

Regression Treating the
Symptom

Fr
eq

ue
nc

y●

Correctness

Plausibility

0% 25% 50% 75% 100%

While for most bugs all submitted patches are plausible (i.e., pass the failing test case),  
for most bugs 30% of patches are incorrect (i.e., fail the code review)!

DBGBENCH helps to evaluate:
• automated fault localisation,
• automated bug diagnosis, and
• automated repair techniques.

DBGBENCH helps to compare:
• how much faster a developer is  

diagnosing and repairing a bug 
using a novel debugging aid.

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

Combined Bug Diagnosis Patching

Not at all difficult

Slightly difficult

Moderately difficult

Very difficult

Extremely difficult

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Debugging/Fixing Time (in min)

Type
● Crash

Functional

Infinite Loop

Resource Leak

DemographyMain Objective

For a single bug,
developers identify  
4-20 faulty stmts in  
3-4 distinct regions
distributed across
several functions.

Find “-mtime [+-n]” is broken (behaves as “-mtime n”)
Lets say we created 1 file each day in the last 3 days:
$ mkdir tmp
$ touch tmp/a -t $(date --date="yesterday" +"%y%m%d%H%M")
$ touch tmp/b -t $(date --date="2 days ago" +"%y%m%d%H%M")
$ touch tmp/c -t $(date --date="3 days ago" +"%y%m%d%H%M")

Running a search for files younger than 2 days, we expect
$./find tmp -mtime -2
tmp
tmp/a

However, with the current grep-version, I get
$./find tmp -mtime -2
tmp/b

Results are the same if I replace -n with +n, or just n.

(a) Bug Report and Test Case

If find is set to print files that are
strictly younger than n days (-mtime -n),
it will instead print files that are exactly
n days old. The function get comp type
actually increments the argument pointer
timearg (parser.c:3175). So, when
the function is called the first time
(parser.c:3109), timearg still points to
’-’. However, when it is called the second
time (parser.c:3038), timearg already
points to ’n’ such that it is incorrectly clas-
sified as COMP EQ (parser.c:3178;
exactly n days).

(b) Bug diagnosis and Fault Locations

Example Correct Patches
• Copy timearg and restore after first call

to get comp type.
• Pass a copy of timearg into first call of

get comp type.
• Pass a copy of timearg into call of

get relative timestamp.
• Decrement timearg after the first call to

get comp type.
Example an Incorrect Patch
• Restore timearg only if classified as

COMP LT (Incomplete Fix because it
does not solve the problem for -mtime
+n).

(c) Examples of (in-)correct Patches

Fig. 1. DBGBENCH Example: For the error find.66c536bb, we show (a) the bug report and test case that a participant receives to reproduce the error,
(b) the bug diagnosis that the participants provide (incl. fault locations), and (c) examples of ways how to patch the error (in-)correctly.

A. Automating the Diagnosis of Software Bugs

We find the very first evidence that bug diagnosis is indeed
no subjective matter. Most participants provide essentially the
same explanation for an error. Suppose, everyone provided a
different explanation or blamed different locations as the root
cause of an error: How could there ever be consensus about
the effectiveness or utility of an auto-generated bug diagnosis?
For each error, DBGBENCH provides an English explanation
of the chain of events that lead up to the error (Fig. 1-b). This
explanation is in agreement with 10 out of 12 participants,
on average. However, while agreeable participants were often
very confident about the correctness of their diagnosis the dis-
agreeable participants were only slightly confident, providing
further evidence in favor of our aggregated diagnoses.

Automated Fault Localization (AFL), the identification of
a ranked list of most suspicious statements, is a major topic
in automated debugging research; a recent literature survey on
AFL cites more than 400 papers [1]. A common measure of
AFL effectiveness is the proportion of suspicious locations that
a developer would need to examine before the faulty location
is found. However, we observe that there is no single fault
location that dominates a bug diagnosis, neither semantically
nor syntactically. Often, it is the complex interaction among
several statements that bring about an error. This might explain
the negative results of Parnin and Orso [4]. The middle 50%
of bug diagnoses reference between three and four continuous
code regions that can be distributed over several files. Interest-
ingly, the produced software patches tend to be local to one
function. Still, there was an overlap between the statements
mentioned in the diagnosis and the statements changed in the
patch only for 69% of submitted patches. For a memory leak,
for instance, the diagnosis references the statements causing
the leak while the patch releases the memory potentially
anywhere in the program. This motivates further research in
auto-generated patches as aids to bug diagnosis (e.g., [12]).

Our participants perceived four of 27 bugs as very difficult
to diagnose. Asked to provide a rationale, our participants
told us that certain flags, functions, or data structures were
left undocumented. This impeded program comprehension,
a prerequisite for effective debugging and motivates further
research in automated code documentation.

B. Automating the Repair of Software Bugs
Even professional software engineers with at least seven

years experience, each of whom spent more then two days
debugging 27 bugs in only two programs, submit plausible
but incorrect patches. While 282 out of 291 of submitted
patches pass the previously failing test case, only 170 patches
(58%) are actually correct in the sense that they also pass
our code review. For each error, DBGBENCH provides high-
level examples of correct and incorrect patches (Fig. 1-c).
For incorrect patches, we provide a rationale as to why we
classify them as incorrect. It is interesting to note that the
principal causes of patch incorrectness could be addressed by
automated regression testing techniques (e.g., [13], [14]): 124
patches are incorrect because they either introduce new bugs
or they did not fix the bug completely. 34 patches are incorrect
because they treat the symptom rather than the root cause, for
instance, by deleting the failing assertion. The remaining ten
incorrect patches can be classified as incorrect workarounds.
This motivates research in combining automated regression
test generation and software repair to increase the correctness
of (auto-generated) software patches.

In terms of fix ingredients, we found that one-third of
patches exclusively affect the control-flow. Such patches may
be efficiently generated by automated repair techniques such as
SPR [15]. Only very few patches would require the synthesis
of complex functions. However, many patches actually add
new statements, like a function call to release resources. Most
patches could not be generated with simple mutation operators.
Yet, three of the four bugs that were perceived to be very
difficult to diagnose are actually caused by a simple operator
fault and, hence, perceived to be easy to fix.

III. DBGBENCH DATASET

We publish the full dataset of DBGBENCH together with the
protocol, questionnaires, setup, and virtual infrastructure on
our webpage. We encourage fellow researchers to repeat our
experiment for other programs and programming languages
and utilize DBGBENCH to evaluate their novel automated fault
localization, bug diagnosis, and software repair techniques
with respect to human expert judgement.

• http://www.st.cs.uni-saarland.de/debugging/dbgbench/

• to develop a dataset that allows to evaluate
novel debugging techniques w.r.t. humans.

• How do developers explain the bug?
• Which fault locations do experts point to?
• Do developers agree on a single explanation?

• How do developers patch the bug?
• Do patch and fault locations overlap?
• How many human-generated patches are

plausible but incorrect?

Debugging Strategies  
BR - Backward Reasoning
CC - Code Comprehension
FR - Forward Reasoning
IM - Input Manipulation
OA - Offline Analysis
IT - Intuition

http://www.bit.do/dbgbench

