How Developers Debug Software
The DBGBENCH Dataset

Marcel B6hme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho Ugherughe, and Andreas Zeller

www.bit.do/dbgbench

Main Objective

e to develop a dataset that allows to evaluate
novel debugging techniques w.r.t. humans.

Demography
27 real bugs
with simplified bug report and test cases

12 software professionals

« How do developers explain the bug? 11 developers + 1 researcher

« Which fault locations do experts point to?
Do developers agree on a single explanation?

07 plus years experience

06 countries

Russia, India, Slovenia, Spain, Canada, Ukraine
 How do developers patch the bug?

* Do patch and fault locations overlap?

« How many human-generated patches are
plausible but incorrect”

02 Open Source Software
GNU Grep, GNU Find, each with ~17KLOC

29 working days spent debugging these bugs
About 27 hours per developer

Evaluating debugging aids is difficult and time consuming.

Regions per Error Statements per Error

Frequency of debug strategies over different bug types

° 56: °

60 ' ' | | Clrlasrll ' Debugging Strategies g%: For a sing'e bug,

resource iea R RRRRRRRRS ' 48 -

50 | functional BR - Backward Reasoning 6- i 33 developers identify
= a0l infinite loop === | CC - Code Comprehension gé 4-20 faultv stmts in
P X FR - Forward Reasoning 0 3 y

X . . - o - = = -
5 30f | IM - Input Manipulation 2, 20 3-4 distinct regions
S ool | OA - Offline Analysis g 78 distributed across
L X L - .

ol IT - Intuition 18- several functions.

| X 14 -
() S £ 6:
BR CC FR M OA IT ° %E I
Debug strategy ' '
50% -
Plausibility - ® A > 40% -
-
®© 30% -
o
O 20% -
Correctness - s L
10% -
. 0% - -
0% 25% 50% 75% 100% '] ' o n
Incomplete Fix Incorrect Regression Treating the
Workaround Symptom

While for most bugs all submitted patches are plausible (i.e., pass the failing test case),
for most bugs 30% of patches are incorrect (i.e., fail the code review)!

DBGBENCH allows for effective evaluation of debugging aids.

Find ‘“‘-mtime [+-n]” is broken (behaves as ‘“-mtime n”)

Lets say we created 1 file each day in the last 3 days:
$ mkdir tmp

$ touch tmp/a -t $(date —--date="yesterday" +"%y%m%d$HSM")
$ touch tmp/b -t $(date —--date="2 days ago" +"%y%sm%d%H%M"
$ touch tmp/c -t $(date —--date="3 days ago" +"%y%tm%dSHSM"

Running a search for files younger than 2 days, we expect
$./find tmp -mtime -2

tmp

tmp/a

However, with the current grep-version, I get
$./find tmp -mtime -2
tmp/b

Results are the same if I replace -n with +n, or just n.

(a) Bug Report and Test Case

Combined

Extremely difficult -

Very difficult -

A
A
[]
Moderately difficult - N M, A
A a
—_— g4t
Slightly difficult - A e

Notatalldifficult-I
O 10 20 30 40 50 60 70 80 90 O

If find i1s set to print files that are
strictly younger than n days (-mtime -n),
it will instead print files that are exactly

, n days old. The function get_comp_type

y actually increments the argument pointer
timearg (parser.c:3175). So, when
the function is called the first time
(parser.c:3109), timearg still points to
. However, when it 1s called the second
time (parser.c:3038), timearg already
points to 'n’ such that it is incorrectly clas-
sified as COMP_EQ (parser.c:3178;
exactly n days).

(b) Bug diagnosis and Fault Locations

Bug Diagnosis
A

A

a
A N A A

A °
.
| ﬁ_'_‘ A
A i N
29 T ot
% “ﬁ
£y

10 20 30 40 50 60 O 10 20

Debugging/Fixing Time (in min)

Example Correct Patches

e Copy timearg and restore after first call
to get_comp_type.

e Pass a copy of timearg into first call of
get_comp_type.

e Pass a copy of timearg into call of
get_relative_timestamp.

e Decrement timearg after the first call to
get_comp_type.

Example an Incorrect Patch

e Restore timearg only if classified as
COMP_LT (Incomplete Fix because it
does not solve the problem for -mtime
+n).

(c) Examples of (in-)correct Patches

Patching
Type
A e (Crash
= A Functional
A A
® |nfinite Loop
+ Resource Leak
30 40 50 60

DBGBENCH helps to evaluate:
automated fault localisation,

automated bug diagnosis, and

automated repair techniques.

DBGBENCH helps to compare:
how much faster a developer is
diagnosing and repairing a bug
using a novel debugging aid.

BE &

%NUS

National University
of Singapore

UNIVERSITAT
DES
SAARLANDES

==l

SINGAPORE UNIVERSITY OF
TECHNOLOGY AND DESIGN

Established in collaboration with MIT

CISP

Center for IT-Security, Privacy
and Accountability

SPONSORED BY THE

% Federal Ministry s
of Education erc
and Research LIS
European Research Council

http://www.bit.do/dbgbench

