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Abstract—How do practitioners debug computer programs? In
a retrospective study with 180 respondents and an observational
study with 12 practitioners, we collect and discuss data on how
developers spend their time on diagnosis and fixing bugs, with
key findings on tools and strategies used, as well as highlighting
the need for automated assistance. To facilitate and guide future
research, we provide a highly usable debugging benchmark
providing fault locations, patches and explanations for common
bugs as provided by the practitioners.

I. INTRODUCTION

In the software engineering community, the past decade has
seen a surge in automated debugging techniques designed to
assist programmers locating and fixing faults in software. A
recent survey [1] on automated fault localization cites no less
than 427 papers related in some way or another to the problem
of determining possible fault locations for a given failure. Yet,
we mostly ignore how such tools would address real-world
debugging needs. Actually, not only do we know very little
about how practitioners debug; we also lack data and methods
that would allow us to check novel tools against practitioners’
needs. This is unfortunate, as it is feedback from practice that
should shape and determine future research in our field.

In this paper, we address this issue by providing data on how
practitioners debug. Our DBGBENCH benchmark, presented
in this paper, allows to evaluate novel automated debugging
techniques by providing fault locations, error explanations,
fix explanations, and human-generated patches for a set of
27 real world erros in the find and grep programs. In contrast
to past bugs and fixes obtained from software archives (e.g.,
[2]), which typically represent only one problem solution and
lack diagnosis and details, our benchmark represents the large
variance of how developers debug programs, incorporating
different strategies, fixes, and error explanations—including
correct and incorrect ones. In other words, DBGBENCH
captures the reality of today’s debugging—and this is what
debugging tools should address.

To obtain DBGBENCH, we have ran two major studies,
described in this paper: In an initial retrospective study,
180 respondents (including the study participants) provided
insights in their general debugging process, giving additional
insights about the state of the practice in debugging, and
how the present and future state of the art might help in
addressing these problems. This shaped our observational

Hang in grep -F for empty string search

Searching with grep -F for an empty string in a
multibyte locals would freeze grep.

For example,
$ export LC_ALL=en_US.UTF-8
$ echo "abcd" | ./grep -F ""
(runs forever)

Fig. 1. grep.5fa8c7c9 bug report

study with 12 practitioners, having them spend 29 working
days on debugging 27 real errors in open-source C programs.
Each participant would be given an executable, failing test case
and a simplified bug report. As an example, consider Figure 1,
showing a bug report for the grep program. Given this bug
report, we would ask for the practitioners to provide a fix (i.e.,
debug the program), measuring, among others, the time spent
on bug reproduction, diagnosis, and fixing; and asking them,
among others, for their familiarity with the code, the difficulty
of the task, and the strategies they used for finding the fault.
All this is contained in DBGBENCH.

In this paper, we also use the DBGBENCH data to inves-
tigate a number of common assumptions about debugging
techniques, including tools and strategies used (the majority
of developers always or often relies on traces and interactive
debuggers, but never uses slicing, algorithmic debugging, or
statistical debugging), the location and span of faults (ex-
planations typically span multiple functions, whereas patches
tend to be local to one function), characteristics of patches
(every patch applies about two changes to modify either data
or control flow—in contrast to mutation analysis or automated
repair, where patches are much less complex), whether de-
velopers fix programs in the best way possible (a third of
patches produced treat symptoms rather than causes), and how
practitioners would design debugging tools (56% want tools
that describe the actions or conditions leading to the error, or
the deviation from an expected execution).

The remainder of this paper is organized as follows. After
discussing the background (Section II), Section III details our
retrospective study and its results. Section IV discusses our
observational study, detailing how practitioners spend their
time on diagnosing and fixing bugs, and again discussing the
results. In Section V, we present the debugging benchmark
with all data resulting from the study. After discussing limita-
tions and threats to validity (Section VI), Section VII closes
with conclusion and consequences.



II. BACKGROUND

Debugging is one of the most difficult and time consuming
activities in the software development process [1]. In the past,
several works have studied the effectiveness of automated
debugging assistants, such as automated fault localization, in
practice. For instance, Parnin and Orso [3] found that a ranked
list of suspicious statements does not help towards a faster
and better bug diagnosis. Participants spent up to 23 minutes
debugging one of two errors with and without the help of a
statistical fault localization tool. To investigate how statistical
fault localization might be improved, Kochhar et al. [4]
asked practitioners about their expectations of automated fault
localization. The study explored several crucial parameters,
such as trustworthiness, scalability and efficiency, in order
for a practitioner to adopt a statistical fault localization tool.
These works provide valuable insights on potential research
directions in automated debugging. However, we find two
major limitations of the current literature that study debugging
activities in practice:

• The authors focus on a specific debugging technique and
not the debugging activity in general, and

• There is a general lack of studies that focus on developers
debugging real programming errors.

This motivates us to initiate our work that studies the
activity of debugging real software errors. By designing such a
study, we discover that debugging real software error requires
better fault localization and repair tools. Besides, we confirm
that practitioners rarely use any automated debugging tools
(e.g. slicing or statistical debugging). This highlights potential
actions that need to be taken, in order to bring the research of
automated debugging into practice.

There are several works that investigate and model debug-
ging strategies in practice. Perscheid et al. [5] study available
literature, the tool support, and debugging strategies used in
practice. The authors visited four companies in Germany and
conducted think-aloud experiments with eight developers at
during their normal work. Romero et al. [6] explore the impact
of verbal ability and the level of graphical literacy on the
choice of debugging strategy and debugging performance. Fi-
nally, Lawrance et al. [7] model debugging using information
foraging theory. In contrast, our focus is not on assessing
the current state-of-practice. Instead, we investigate whether
common assumptions in automated debugging research hold in
practice. We also investigate manual debugging strategies with
the aim of identifying how automated debugging assistants
may support the debugging task.

A primary motivation of our study is to provide the research
community a set of real errors with human-generated root
diagnoses and patches. Existing benchmarks, which collect
real software bugs (e.g. [2], [8], [9], [10]), do not provide
information on human-generated root causes, patches and time
spent in bug diagnosis and repair. In order to bridge this gap,
we provide such information in the benchmark created as an
artifact of this paper. We hope that such a benchmark will
open up several research directions in the future.

III. RETROSPECTIVE STUDY

We start with our retrospective study, which we conducted to
obtain a general impression on today’s practice of debugging.

A. Study Design
Study Objective. The main objective of the retrospective

study is to explore the task of debugging in software engi-
neering practice and elicit challenges and opportunities for
researchers to automate the process. Practitioners are asked
about several aspects of their day-to-day debugging activities.
We focus our exploration on the following research questions.

• Time and Familiarity. How much time do practitioners spend
debugging. How familiar are they with the debugged code?

• Techniques Used. Which tools and techniques do practitioners
use? Is debugging perceived to be systematic or trial-and-error?

• Techniques Needed. Which techniques should be developed?
Which tool output would be considered most helpful?

Terms. We distinguish three distinct tasks of debugging.
Bug reproduction is the task of reproducing the bug locally
and finding a test case that confirms the unexpected behavior.
Bug diagnosis is the task of understanding and explaining the
runtime actions that lead to the unexpected behavior. Finally,
bug fixing is the task of removing the error. The symptom of an
error is the deviation of the actual from the expected program
output or behavior for a given test input (e.g., a program crash).

Survey. Respondents filled an online questionnaire which
begins with informing respondents about the goals of our study
and some basic terminology. We requested general demo-
graphic information about occupation, experience, and skill.
After the technical questions investigating the study objectives,
we allow participants to register for the observational study.
Otherwise, both studies are completely anonymous.

Measures. In order to quantify attitudes to a topic, such as
code familiarity, we use the common 5-point Likert scale [11].
This allows to measure otherwise qualitative properties on a
symmetric scale where each item takes a value from 1 to 5 and
the distance between each item is assumed to be equal. When
asking how often participants use certain techniques, we offer
the following choices:

[ ] Trace-based Debugging (using printing; e.g., println, log4c)
[ ] Interactive/Online Debugging (using breakpoints; e.g., gdb, jdb)
[ ] Post-Mortem/Offline Debugging (using core dumps, stack traces)
[ ] Regression Debugging to find faulty changes (e.g., git bisect)
[ ] Statistical/Spectrum-based Debugging to find faulty statements

. (e.g., Tarantula)
[ ] Program Slicing (e.g., Frama-C, CodeSurfer)
[ ] Time Travel or Reversible Debugging (e.g., UndoDB)
[ ] Algorithmic or Declarative Debugging (e.g., JavaDD)

Demographics. We advertised both studies on several free-
lancer platforms and social as well as professional networks,
including Upwork, Guru, Freelancer and Github. The majority
of respondents are professional software developers with seven
(7) years or more experience in software development rating
their level of skill as advanced or expert. One in four respon-
dents is a student and one in six is a researcher. A quarter
has three to six years of experience and the remaining 22%
of respondents have two years or less of experience. One in
three respondents rate their level of skill as intermediate.



B. Results
The study ran over 14 months and gathered 180 entries.

●● ●

● ●●
●●●●●● ●

%
D

evelopm
ent Tim

e
%

D
ebugging Tim

e

0% 25% 50% 75% 100%

Debugging

Diagnosis

Patching

Reproduction

Fig. 2. Distribution of development and debugging time.

Debugging Time & Code Familiarity. Respondents spend
about one third of their development time with debugging (see
Figure 2). During debugging, they spend half their time with
bug diagnosis. Respondents spend about as much time trying
to reproduce an error from a bug report as they spend patching
the error. Most respondents did not write the software they
are debugging. We asked to rate code familiarity and how
often they debug other people’s code on a 5-point Likert scale.
About two in three respondents are moderately or less familiar
with the code she debugs. About every second respondent often
or always debugs code that is not her own.

Statistical Debugging

Algorithmic Debugging

Time Travel Debugging

Program Slicing

Regression Debugging

Post−Mortem Debugging

Interactive Debugging

Trace−based Debugging
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Fig. 3. Debugging Techniques and their Frequency

Techniques Used. In practice, bug diagnosis is still a vastly
manual effort. As shown in Figure 3, most respondents always
or often use techniques such as trace-based debugging (e.g.,
println) and interactive debugging (e.g., gdb). They sometimes
use post-mortem debugging (e.g., inspecting coredump and
stack traces). They rarely use regression debugging (e.g., git
bisect). The majority of respondents never used any of the
remaining choices. Respondents mentioned memory, coverage,
and performance profiler and analysis tools, such as valgrind,
gcov, and gprof as additional tools which they use, but which
are not listed. One in three respondents admits to trial-and-
error versus a more systematic debugging approach.

Techniques Needed. In practice, most respondents would
like to design and use a tool that does what has already been
achieved in automated debugging research. For instance, two
in five (40%) respondents would like a tool that points out
suspicious statements or functions in the source code while
almost nobody has ever used statistical debugging. However,
two in five (40%) respondents would design a tool that outputs
a sophisticated bug diagnosis rather than only fault locations.

These respondents asked for a high-level or an approximate
explanation of the pertinent sequence of events leading to the
error – perhaps as cause-effect chains or even as an English
narrative. One in eight (13%) respondents would output an
auto-generated patch in lieu of a diagnosis. The same percent-
age would output the most general conditions under which the
error occurs (e.g., input range or OS dependence). Moreover,
respondents prefer a tool that generates a short, high-level
bug diagnosis versus a long, detailed one. Minor, simple bugs
should have only small explanations. Most respondents would
output some information about the program state, such as
variable values and possibly how and where the observed state
deviates from the expected state.

Specifically, we asked which output an automated diagnosis
assistant would provide if the respondent designed the tool.
We used open card sort [12] to establish the categories and
quantify the prevalence. If we did not find related work that
addresses a practitioners’ need, the concern is shown in bold.

In terms of general program comprehension, developers are
interested in tools that
• (7%) visualize the value history of a variable [13],
• (3%) visualize data structures and allow to persist, restore, and

compare their states [13],
• (3%) help at program understanding, generate documentation [14],
• (1%) uncover “meaning” of variables and value range [15], [16],
• (1%) point to code fragments processing certain input bytes [17],

In terms of automated bug diagnosis, developers are often
interested in tools that
• (28%) generate a diagnosis or explanation why the error occurs,
• (23%) report the most general environment or conditions under

which the bug can be reproduced,
• (19%) print the sequence of executed functions for a failing input

(can be obtained automatically via any online-debugger),
• (17%) generate a suggestion where and how to patch the bug [18],
• (17%) point to the cause-effect chain leading to the symptom [19],
• (15%) point to suspicious functions or program statements [20],
• (13%) generate a patch to assist in understanding the error [21],
• (7%) visualize divergence from the expected value of a variable, or
• (1%) visualize the range of expected values for a given variable.

In terms of explaining and classifying symptoms, developers
are interested in tools that
• (19%) highlight the symptoms and side-effects of an error,
• (8%) classify the error according to its symptom in a category

(e.g., if nullpointer deref., suggest check or where to init.),
• (1%) evaluate criticality of the symptoms (e.g., security risk),
• (1%) find program statement that prints the unexpected output,
• (1%) track allocated resources and where they are allocated/used

(as can be obtained via tools like valgrind [22]).

Ensuring Patch Correctness. We also asked how respon-
dents make sure that a submitted patch is a correct one.
Almost everybody (95%) tries to reproduce the bug on the
patched version while more than half generate new test cases
and execute the existing regression test suite (57% and 54%,
resp.). Only few respondents suggested to rely on a valid
bug diagnosis. Several respondents mentioned third-party code
review as the best way to ensure patch correctness.



C. Implications

Exigency of Automation. Developers spend ten minutes of
every development hour trying to understand1 the runtime ac-
tions leading to an error in a rather unfamiliar program that is
often written by somebody else. There is almost no automation
in debugging practice. The most frequently used debugging
techniques are manual and ad-hoc rather than systematic. At
the same time, developers are calling for automated assistants
that help with program comprehension and bug diagnosis.

Need and Knowledge. In practice, most practitioners have
never used statistical fault localization tools. Yet, two in five
(40%) practitioners would like a bug diagnosis tool that can
point out suspicious statements of functions. Therefore, we
suggest to make automated debugging research more useful to
practitioners by considering more carefully how to integrate
our research prototypes into the existing development process
and environment.

Disconnect and Revision. In research, statistical fault local-
ization is one of the most popular techniques for automated
debugging. Then, why do practitioners never use statistical
fault localization tools while there is such an evident need?
One reason might be flaws in our assumptions. For instance,
to evaluate fault localization techniques, faults are artificially
injected by changing one statement. Then, a tool is considered
effective if it localizes that statement with high precision. In
the subsequent observational study, we set out to investigate
several of these assumptions. For instance, we determine how
many locations practitioners point out when explaining the
pertinent runtime actions to us. Another reason might be that
most practitioners (56%) would design a bug diagnosis tool
that goes beyond simple fault localization. Such a tool would
describe the unfortunate chain of events leading up to the error,
the deviation from an expected execution, or general condi-
tions under which the error occurs. Many practitioners (13%)
would also use an automated patching tool for diagnosis.

Opportunities. Techniques that can derive an approximate
English narrative explaining the context and chain of events
leading to the error may be very successful in practice. A tool
that explains and classifies the symptoms of an error may be as
helpful as a tool that can derive the most general environment
or conditions under which an error occurs. Moreover, it may
be worthwhile to develop debugging tools that can distinguish
expected from actual values.

IV. OBSERVATIONAL STUDY

The insights from the retrospective study shaped the design
of our observational study. Seeking to understand more about
the disconnect between practice and research, we designed and
conducted experiments with professional software developers
to find out how they debug programs. We used the insights
from this observational study constructively and developed
the first human-generated benchmark for the evaluation of
automated debugging techniques.

1Respondents spend 36% of their development time with debugging tasks
and 47% of their debugging time with bug diagnosis, on average.

A. Study Design
Study Objectives. The observational study has three main

objectives: i) to study more closely how practitioners debug a
number of real errors in C programs; ii) to investigate common
research assumptions about debugging in practice; and iii) to
establish a human-generated benchmark for the evaluation of
novel debugging assistants. Participants are given a virtual
environment with several buggy versions of the same program.
For each version, participants fill an online questionnaire. We
focus our investigations on the following research questions.

• Difficulty, Time, and Familiarity. How difficult do participants
perceive the debugging of certain errors and what makes very
difficult errors so difficult? How much time do they spend on
bug diagnosis and patching? Does the increasing familiarity
with the code affect the likelihood to produce a correct patch?

• Strategies. Which steps do participants take to diagnose the bug?
What are the ingredients of a developer patch?

• Single Fault Assumption. Do participants reference a single
statement or one contiguous region when explaining the error?

• Single Diagnosis Assumption. Do participants agree on an
explanation of the pertinent runtime actions leading to the error,
or do they come up with different explanations?

• Single Patch Assumption. Do participants agree on a correct
patch for an error or do they submit conceptually very different
(yet correct) patches?

• Correctness and Plausibility. Do participants submit patches
that are technically incorrect but plausible (pass the test case)?

• Fix Location [ Fault Location 6= ;. Do developers fix the same
code that they reference in the bug diagnosis?

The benchmark contains the following artifacts:
• Fault Locations: We provide the pertinent locations referred to

in an effective bug diagnosis.
• Bug Diagnosis: We provide a concise explanation of the runtime

events leading to the error which references pertinent functions,
variables, and data flows.

• Correct vs. Plausible Patches: We provide examples of correct
and incorrect but plausible patches (the failing test case passes)
and an explanation of the changes needed to fix the error.

Infrastructure [23]. To conduct the study remotely and in
an unsupervised manner, we developed a virtual environment
based on Docker. We prepared 1 readme, 34 slides, and 10
tutorial videos (⇠2.5 minutes each) to explain the goals of our
study and provide details about subjects and infrastructure.
The virtual environment is a lightweight Docker image with
Ubuntu 14.2 Guest OS containing a folder for each buggy
version of either grep or find. A script generates the ID for the
participant’s responses and scrambles the order of the folders:
The first error for one participant might be the last error for
another. The image contains most common development and
debugging tools, including gdb, vim, and Eclipse. Participants
are encouraged to install their own tools and copy the created
folders onto their own machine.

Real Errors. We chose all 27 reproducible errors in find
and grep from COREBENCH [2]. The command line tools
find and grep are well-known, well-maintained, and widely-
deployed open-source C programs. The code bases of find
and grep has 17k and 19k lines of code, respectively. For each
error, we provide a failing test case, a simplified bug report,
and a large regression test suite.
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Fig. 4. Average time spent for and the perceived difficulty of explaining and patching each error.

Figure 1 shows a simplified bug report describing inputs,
symptoms, and the expected behavior. We chose two subjects
out of the four available to limit the time a participant spends
in our study to a maximum of three working days and to help
participants to get accustomed to at most two code bases.

Pilot Study (Students). To test our infrastructure and get a
first estimate of the time spent in the observational study, we
conducted a small supervised version of this study where we
invited five (5) student volunteers to our lab. These volunteers
were chosen from a larger pool of interested candidates as
those with most experience in software development. However,
in seven hours our student participants submitted only a
sum total of five patches. The setup and infrastructure was
working very well indeed but we felt strongly advised to
recruit software engineering professionals for the main study.

Main Study (Professionals). The candidates registered
via the questionnaire of the retrospective study. From 180
responses, 130 indicated interest. We selected and invited
89 candidates with sufficient experience in C development.
However, only 12 participants actually entered and completed
the observational study. These are one researcher and eleven
professional software engineers from six countries (Russia, In-
dia, Slovenia, Spain, Canada, and Ukraine). Nine participants
have more than 7 years experience in developing C programs.
All entered C or C++ as their favourite programming lan-
guage. Upon completion, a participant received 540 USD in
compensation for their time and efforts.

B. Results
Overall, 12 participants spent 29 working days debugging

27 real errors in 2 open-source C programs: find and grep.
Time and Difficulty. On average, participants rated an error

as moderately difficult to explain (2.8) and slightly difficult to
patch (2.3). On average, participants spent 32 and 16 minutes
on diagnosing and patching an error, respectively. The details
are shown in Figure 4. For each error, we asked participants
to provide the time spent in understanding the runtime actions
leading to the error (bug diagnosis) and in changing the source
code so as to remove the error (bug fixing). We also asked to
rate the difficulty of both tasks on a 5-point Likert scale. For
all errors, a participant spent on average 14 hours 20 minutes
to understand the errors and come up with the diagnosis
and 7 hours 11 minutes to remove the errors and come up
with the patches.2 Developers that work with novel debugging
assistants are expected to improve on this time.

2In all cases, the time excludes the time spent filling the questionnaire.

Why are some errors very difficult? There are four errors
(3 functional, 1 crash) rated as very difficult to diagnose which
took between 1 and 1.5 hours to debug, on average. In many
cases, missing documentation for certain functions, flags, or
data structures were mentioned as reasons for such difficulty.
Other times, developers start out with an incorrect hypothesis
before moving on to the correct one. For instance, the crash
is caused by a corrupted heap such that the crash location
and that location where heap is corrupted are very distant.
The crash and another functional error are caused by a simple
operator fault. Three of the four bugs which are very difficult
to diagnose are actually fixed in a single line. For the only error
that is both very difficult to diagnose and patch, the developer
patch is actually very complex, involving eighty added and
thirty deleted source code lines. Only one participant provided
a correct patch.

Code Comprehension. In the retrospective study, we found
that many practitioners frequently debug code which they did
not write. In the observational study, we investigate the impact
of increasing familiarity with the code base as they continue
to debug a randomized sequence of errors in the same code
base. This allows us to observe trends of the participant as she
understands the code with each new error she debugs while
controlling for that bias in other analyses. We take the number
of submissions for that subject and participant as a measure
of her code comprehension.
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Fig. 5. Patch correctness and code familiarity increase as the developer
diagnoses and patches more errors (i.e., as code comprehension increases).

A participant that has a better understanding of the code is
more likely to produce a correct patch (Spearman’s ⇢ = 0.52).
Moreover, participants who submitted a correct patch spent
25% (5 min) more time generating the bug diagnosis compared
to participants who submitted an incorrect patch. We also
asked the participants to rate their code familiarity on a 5-point
Likert scale. Unsurprisingly, we found a very strong correla-
tion between code comprehension and familiarity (Spearman’s
⇢ = 0.89). Both relationships are shown in Figure 5.
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Single Fault Assumption. Most narratives of the pertinent
chain of events that lead up to the error reference three to
four contiguous regions in the source code. This contradicts a
common assumption in works on automated fault localization
and supports a recent finding by Orso and Parnin [3]: It is
insufficient to show a developer a suspicious statement for
her to understand the error. The set of program statements
must be linked to the pertinent runtime actions leading to
the error. Figure 6 shows more details about the number
of pertinent program locations. The middle 50% of bug
diagnoses3 reference three to four contiguous regions in the
source code. In most cases, these regions are distributed across
different functions and files. Most regions contain only a single
statement. However, the fourth quartile (i.e, upper 25%) ranges
from 3 to 30 statements that constitute a region. Generally,
most bug diagnoses reference 10 statements or less.

Single Diagnosis Assumption. 85% of participants provide
essentially the same diagnosis for an error.4 In other words,
there are no two participants who are confident about the
correctness of their individual diagnosis – which also vastly
disagree. For each error, we asked participants to provide the
root cause of the error and explain the runtime actions leading
to the error while referencing the pertinent locations in the
source code. Subsequently, we aggregated these explanations
into a single, self-containing, and precise bug diagnosis.5
The ability to extract an agreeable diagnosis shows that the
understanding and explanation of an error is no subjective
endeavor. The extracted bug diagnoses can serve as the ground
truth for information that is perceived relevant to a practitioner.

Patch vs. Fault Location. Only 69% of submitted patches
modify statements that are referenced in the bug diagnosis.
However, unlike an explanation that sometimes stretches over
several files, the patch tends to be local to one function. An
assumption of automated debugging research is that the fault
and fix location overlap. For instance, an operator fault is fixed
by substituting the faulty by the correct operator. However, we
often observe the opposite. For instance, the resource leak in
grep is explained by pointing out where the resource is opened
and used. Finding the location where the resource can be
released is another matter. Often new branches, assignments,

3The inter-quartile range (i.e., box) represents the middle 50% of a group.
4We note that the disagreeable participants provide a different explanation,

about the correctness of which they are only slightly confident, on average. In
contrast, participants with an explanation that agrees with our diagnosis are
very confident (3.7) in the correctness of their explanation, on average.

5An example of a bug diagnosis can be found in the appendix.

or function calls are added, for instance, to conditionally print
a message, reset a variable, or free/allocate some memory.

Single Patch Assumption. Often, there are several ways
to patch an error correctly, syntactically and semantically. It
might seem obvious that a correct patch can syntactically differ
from the patch that is provided by the developer. However, we
also found correct patches that conceptually differ from the
developer-provided patch. For instance, to patch a null pointer
reference, one participant might initialize the memory while
another might add a null pointer check. To patch an access out-
of-bounds, one participant might double the memory that is
allocated initially while others might reallocate memory only
as needed. For one error in grep, some participants remove a
negation to change the outcome of a branch while others set
a flag to change the behavior of the function which influences
the outcome of the branch.

Correctness and Plausibility. While 282 out of 291 (97%)
of the submitted patches pass the test case, only 170 patches
(58%) are actually correct.6 We determined patch correctness
by code review and patch plausibility by executing the provided
test case. A patch is incorrect if we can provide an explanation
as to why it is incorrect. Figure 7.a) shows that for the majority
of bugs 69% or less of submitted patches are correct while for
the same majority all (100%) submitted patches are plausible.
Figure 7.b shows that more than half of the incorrect patches
actually introduce new errors and that incorrect patches are
incomplete fixes or are treating the symptom in roughly equal
parts (20%). A regression breaks existing functionality; we
could provide a test that fails but passed before. An incomplete
fix does not patch the error completely; we could provide a
test that fails with and without the patch because of the bug.
A patch is treating the symptom if it does not address the root
cause. For instance, it removes an assertion to stop it from
failing. An incorrect workaround changes an artifact that is
not supposed to be changed, like a third-party library.

●

Correctness

Plausibility

0% 25% 50% 75% 100%
0%

10%

20%

30%

40%

50%

Incomplete Fix Incorrect
Workaround

Regression Treating the
Symptom

Fr
eq

ue
nc

y

Fig. 7. (a) Average patch correctness and plausibility for an error (left).
(b) Reasons for incorrectness (right).

Ensuring Correctness. We asked how participants made
sure that the submitted patch is a correct one. According to
them, a quarter patches (24%) were checked by generating
new test cases while one in ten patches (10%) were checked by
executing existing test cases in the regression test suite. Only
three in four (72%) patches were checked by executing the
failing test case on the patched version. However, some might
simply not have mentioned this since we explicitly suggested
to execute the failing test case. For one in five patches (19%)
participants suggested to rely on intuition and a valid bug
diagnosis.

6Note that participants were asked to ensure the correctness of their
submitted patch by passing the provided test case.



C. Bug Diagnosis Strategies
For each error, we asked participants which concrete steps

they took to understand the runtime actions leading to the
error. We observed the following bug diagnosis strategies.

Classification. We extend the bug diagnosis strategies that
have been identified by Romero and colleagues [6], [24]:

• (FR) Forward Reasoning. Programmers follow each computational step
in the execution of the failing test.

• (BR) Backward Reasoning. Programmers start from the unexpected
output following backwards to the origin.

• (CC) Code Comprehension. Programmers read the code to understand
it and build a mental representation.

• (IM) Input Manipulation. Programmers construct a similar test case to
compare the behavior and execution.

• (OA) Offline analysis. Programmers analyze an error trace or a core-
dump (e.g. via valgrind, strace).

• (IT) Intuition. Developer uses her experience from a previous patch.

Specifically, we identified the Input Manipulation (IM) bug
diagnosis strategy. Developers would first modify the failing
test case to construct a passing one. This gives insight into
the circumstances required to observe the error. Next, they
would compare the program states in both executions. IM
is reminiscent of classic work on automated debugging [25]
which might again reflect the potential lack of knowledge
about automated techniques that have been available from the
research community for over a decade.
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Fig. 8. Frequency of diagnosis strategies for different error types.

Frequency. Forward reasoning and code comprehension
(FR+CC) are the most frequently used diagnosis strategies.
The frequency of bug diagnosis strategies is shown in Figure 8
for the different error types. We also observe that past experi-
ence (IT) is used least frequently. Therefore, we consider the
set of diagnosis strategies to be representative for debugging
real and unknown errors. Many participants used input mod-
ification (IM) as diagnosis strategy. Therefore, the integration
of automated techniques that implement IM (e.g. [25]) into
mainstream debugger will help improve debugger productivity.

Error Type. We can see in Figure 8 that most infinite loops
(58%) are diagnosed with forward reasoning (FR). Intuitively,
there is no last executed statement which can be used to reason
backwards from. Two in five crashes (40%) are diagnosed
with backward reasoning (BR). Intuitively, the crash location
is most often a good starting point to understand how the
crash came about. Two in five functional errors (40%) are
diagnosed with forward reasoning (FR). If the symptom is an
unexpected output, the actual fault location can be very far
from print statement responsible for the unexpected output.
It may be better to start stepping from a location where the
state is not infected, yet. Input modification is used for 10% of

functional errors to understand what distinguishes the failing
from a passing execution.

Tools. Every participant used a combination of trace-based
and interactive debugging. For resource leaks, participants fur-
ther used tools such as valgrind and strace. We also observed
that participants use bug diagnosis techniques that have been
automated previously [25], albeit with manual effort, to narrow
down the pertinent sequence of events.

D. Repair Ingredients
Participants submitted a sum total of 291 patches where

one third (34%) exclusively affects the control-flow, one third
(30%) exclusively affects the data-flow, and the remaining
patches (36%) affect both.

Control-Flow. In automated repair research, the patching
of control-flow is considered tractable because the search
space is binary [26]: Either a set of statements is executed or
not. The frequency with which participants patch the control-
flow provides some insight about the effectiveness of such
an approach. The control-flow is modified by seven in ten
patches (69%). Of all the patches that affect the control-flow,
a branch condition is changed by 63%. The loop or function
flow is modified by every fifth patch that affects the control-
flow (19%).7 A new if-or-else branch is added by two of every
five patches affecting the control-flow (43%). In many cases,
an existing statement is then moved into the new branch or a
new function call is added.

Data-Flow. The data-flow is modified by two of every
three patches (64%). Of all patches that change the data-
flow, a variable value or function parameter is changed by
30%. The RSRepair [27] and GenProg [28] automated repair
systems copy and move existing program statement while
Kali [29] effectively deletes existing statements. In our study,
participants add, move, or delete a statement in 39%, 24%,
and 16% of their patches that affect the data-flow, respectively.
Every fifth patch that affects the data-flow (21%) actually adds
a new function call, for instance to report an error or to release
resources. A completely new variable is declared in every sixth
patch that affects the control flow (14%). Only 2.8% of all
patches introduce complex functions that would need to be
synthesized.

Patch Complexity. Mutation testing [30] is based on the
assumption that test case finding simple errors that are ar-
tificially injected are also effective in finding more complex
errors. Errors are injected using simple changes for instance by
deleting a statement, changing an arithmetic or binary operator,
or substituting variables and constants. These ideas have also
been applied to automated program repair [31]. However, in
our study, we find that only every ninth patch (12%) actually
changes an arithmetic or binary operator. Every fifth patch
(17%) substitutes a variable or constant by another. Most
patches affect only one statement (median 1). Yet, on average,
every patch applies about two changes to modify either data-
flow or control-flow.

7Examples of changing the loop or function flow are adding a return, exit,
continue, or goto statement.



E. Implications

We distinguish between participants and respondents to
differentiate between findings from the observational and the
retrospective study, respectively.

Automated Documentation. Most respondents frequently
debug programs written by other developers. Participants rate
errors as very difficult to diagnose often because certain flags,
functions, or data structures are left undocumented. The lack
of documentation has a detrimental impact on the likelihood to
produce a correct patch. Thus, techniques that can summarize
and explain the meaning of a function or variable provide
substantial benefits. We also present some evidence that tools
which assign the employee with the best understanding of the
buggy component for debugging can increase the likelihood
to patch the error correctly.

Automated Fault Localization. We present more evidence
that the assumption of perfect bug understanding is invalid
[3], [2], [32]. It is not sufficient to point out one suspicious
statement in the source code to understand the root cause of an
error. Most narratives of the chain of events leading up to the
error reference 3–4 code regions that can be distributed across
several files. We cannot expect that pointing out a suspicious
statement in only one region is sufficient for an effective bug
diagnosis. Constructively, we suggest instead to measure the
precision of finding at least one statement in each region that
– a developer – identifies as pertinent even without a tool.

Automated Diagnosis. Many respondents (40%) expressed
explicit interest in tools that produce a more sophisticated bug
diagnosis than fault localization. We find that most participants
(85%) provide basically the same explanation for how an error
comes about. So, in principle, a tool could create an agreeable
and precise explanation of the pertinent sequence of events
leading up to the error. In fact, we aggregate the provided
explanations to produce such a narrative. Constructively, we
suggest that an effective automated bug diagnosis tool points
to the same variable values, function calls, and data flows that
a developer identifies as pertinent even without a tool.

Patches as Diagnosis. Several respondents (13%) would
design an automated repair tool which allows to inspect the
generated patches to gain insights about the cause of the
error. While diagnoses may span several functions, patches are
mostly local to a function. Three of the four errors that are
perceived to be very difficult to diagnose are actually caused
by an operator fault and can be fixed in a single line. However,
we note that only about two-third of patches actually modify
statements that are referenced in the bug diagnosis. We suggest
to investigate whether patches can serve as adequate diagnosis.

Automated Patch Review. For the median error, 31% of
submitted patches passes the test case but fails the code review.
In automated repair research, such patches are considered
plausible but incorrect [29]. Even though many participants
generate new test cases or execute existing ones, the most
important causes of patch incorrectness are regression and in-
complete fix. We note that these causes can be addressed with
existing techniques, like regression test generation [33], [34] or

regression verification techniques [35], [36]. However, every
fifth incorrect patch actually treats the symptom, for instance,
by removing the failing assertion. Our benchmark provides
incorrect patches and reasons as to why they are incorrect.
Constructively, we suggest that an effective automated code
review tool detects at least the same incorrect patches that
failed the human patch review.

Automated Program Repair. Many developers provide
plausible but incorrect patches. This clearly motivates the need
for automated tools that assist in generating a correct patch.
We find that there are several ways to patch an error correctly,
syntactically and semantically. For instance, to patch an array
access out-of-bounds, some participants might increase the
initially allocated memory, others might prevent the access,
and others might re-allocate memory as necessary. One third
of patches exclusively affect the control-flow in some manner.
Such patches may be efficiently generated by automated repair
techniques such as SPR [37]. Only very few patches would
require the synthesis of complex functions. However, many
patches actually add a new statement, such as a function call
to release resources. Many changes in a patch may not be
brought about by simple mutation operators.

V. DBGBENCH: AUTOMATED DEBUGGING BENCHMARK

Our findings suggest to evaluate automated debugging tech-
niques with respect to manual debugging techniques: Does the
automated technique report pertinent fault locations, variable
values, function parameters, or the sequence of events that a
developer finds relevant to point out herself?

We introduce DBGBENCH which consists of 27 errors
that the developers introduced in 13 revisions of 2 well-
known, well-maintained, and widely-deployed open source C
projects, findutils and grep, taken from COREBENCH
[2]. For each error, we provide a failing test case, a simplified
bug report, the identified fault locations, an explanation of
the runtime actions leading to the error, the time taken to
understand and fix the error, and examples of correct and
incorrect patches. An overview can be found in the appendix.

Test & Report. For each error there exists at least one
executable, failing test case and a simplified bug report that
contains concrete instructions on how to reproduce the bug,
the actual and expected output. For example, the simplified
bug report for find.66c536bb reads:

Find “-mtime [+-n]” is broken (behaves as “-mtime n”)

Lets say we created 1 file each day in the last 3 days:
$ mkdir tmp
$ touch tmp/a -t $(date --date="yesterday" +"%y%m%d%H%M")
$ touch tmp/b -t $(date --date="2 days ago" +"%y%m%d%H%M")
$ touch tmp/c -t $(date --date="3 days ago" +"%y%m%d%H%M")

Running a search for files younger than 2 days, we expect
$ ./find tmp -mtime -2
tmp
tmp/a

However, with the current grep-version, I get
$ ./find tmp -mtime -2
tmp/b

Results are the same if I replace -n with +n, or just n.

The bug report clearly explains how to reproduce the bug,
which symptoms we observe, and which output we expect.
Note that this provides the strongest oracle (cf. [29]).



Bug Diagnosis. For each error, we asked our participants
to provide the root cause of the error and explain the runtime
actions leading to the error while referencing the pertinent
locations in the source code. Subsequently, we aggregated
these explanations into a single, self-containing, and precise
bug diagnosis. We note that 15% of participants provide an
explanation that does not agree with our diagnosis while rating
their confidence in the correctness of their explanation on
average only as slightly confident (2.4) on a 5-point Likert
scale. In contrast, participants with an explanation that agrees
with our diagnosis are very confident (3.7) in the correctness
of their explanation, on average. The aggregated bug diagnosis
for find.66c536bb reads:

If find is set to print files that are strictly younger than 2 days (-
mtime -2), it will instead print files that are exactly 2 days old. The
function get comp type actually increments the argument pointer
timearg (parser.c:3175). So, when the function is called
the first time (parser.c:3109), timearg still points to ’-’.
However, when it is called the second time (parser.c:3038),
timearg already points to ’2’ such that it is incorrectly classified
as COMP EQ (parser.c:3178).

Automated debugging tools are expected to reference the
same pertinent locations, variables, functions, or chain of
events that are provided by our explanation.

Correct Patches. After explaining the root cause of the
error, we asked our participants to fix the error and submit
the patch. A correct patch does not introduce new errors and
does not allow to provide other test cases that fail due to the
same error. We determined correctness by code review and
plausibility by executing the failing test case. Our benchmark
provides several examples of correct patches and a high-level
description of the changes done to the code. For example, the
error find.66c536bb can be patched correctly as follows:

1) Copy timearg and restore after first call to get comp type.
2) Pass a copy of timearg into first call of get comp type.
3) Pass a copy of timearg into call of get relative timestamp.
4) Decrement timearg after the first call to get comp type.

Incorrect Patches. For each incorrect patch we give a rea-
son as to why it is incorrect and whether the test case passes.
Reasons are listed in Figure 7. The error find.66c536bb
has the following example for an incorrect patch:

Restore timearg only if classified as COMP LT (Incomplete Fix
because it does not solve the problem for -mtime +2).

Usage. DBGBENCH (see appendix) allows to evaluate novel
automated debugging and patching techniques and assistants:

• The human-generated fault locations can be used to evaluate
automated fault localization techniques. We suggest to measure
the accuracy in finding at least one statement in each contiguous
region that participants localized.

• The human-generated explanations can be used to evaluate
automated bug diagnosis techniques. We suggest to measure
the accuracy in finding the pertinent variable values, function
calls, events, or cause-effect chains mentioned in the aggregated
human-generated bug diagnosis.

• The examples of correct and incorrect patches can be used to
evaluate automated repair and code review techniques. These
high-level explanations serve as ground-truth to determine the
correctness (not plausibility) of an auto-generated patch.

• The time that our participants take to understand and patch each
error can be used to measure how much faster developers can
be if assisted with automated tools.

VI. LIMITATIONS

In software engineering, it is often difficult to draw general
conclusion from empirical studies because a potentially large
number of contextual variables can impact the process under
investigation [38]. Since we investigate the debugging of just
two programs, we cannot assume generalization of the findings
of the observational study. We decided on two subjects to limit
the time a participant spends in our study to a maximum of
three working days and to help participants to get accustomed
to at most two code bases. However, there is nothing specific
to our investigations that would prevent replication for errors
in other programs. In fact, we strongly urge the community to
reproduce our study for different programming languages and
applications domains to build an empirical body of knowledge,
to establish the means of evaluating automated debugging
techniques more faithfully. DBGBENCH is the first human-
generated benchmark for the evaluation of automated diagno-
sis and repair techniques and may serve as subject for in-depth
case studies. To facilitate replication, the questionnaires for the
retrospective and observational study are made available [39].

In empirical research, in-depth case studies that involve only
two subjects may mistakenly be taken to provide little insight
for the academic community. However, there is evidence to
the contrary. Beveridge observed that “more discoveries have
arisen from intense observation than from statistics applied to
large groups” [40]. This does not mean that research focusing
on large samples is not important. On the contrary, both types
of research are essential [41].

As potential threat to internal validity, we note that we sug-
gested participants to complete an error in 45 minutes so as to
remain within a 20 hours time frame. Some errors would take
much more time. So, given more time, the participants might
form a better understanding of the runtime actions leading to
the error and produce a larger percentage of correct patches. In
order to control for expectancy bias, where participants might
behave differently during observation, we conducted the study
remotely in a virtual environment with minimal intrusion.
Participants were encouraged to use their own tools. We also
stressed that there was no “right and wrong behavior”.

VII. CONCLUSION AND CONSEQUENCES

Despite the surge in publications on automated debugging in
the past decade, debugging is still an under-researched field—
maybe not so much how tools may find faults, but more how
practitioners actually debug programs, and how approaches
may address their needs and processes. The DBGBENCH
benchmark, introduced in this paper, provides essential data
to guide future research in the field, and gives insights into
the large variance at which practitioners diagnose and repair
faults. DBGBENCH is available at the project website:

http://www.st.cs.uni-saarland.de/debugging/dbgbench/

The initial analysis of our studies, as presented in this
paper, only scratches the surface of what can be done with
the DBGBENCH benchmark. Our future work will focus on
the following topics:

http://www.st.cs.uni-saarland.de/debugging/dbgbench/


find.24e2271e
Error Type: Functional Bug
Avg. Time: 13.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 75%

If find is set to print the found file’s base directory followed by the found file’s name (-printf ’%H %P\n’) and there exist directories of
different length, then find incorrectly splits base directory and file name during printing. Because the index state.starting path is set only for the
first working directory (ftsfind.c:278-279) the incorrect value of state.starting path is used when printing base directory and file name
(pred.c:709-718, pred.c:813). Examples of Correct Fixes: 1) Recompute state.starting path length for each argv before calling find.
2) Weaken condition that prevents state.starting path length to be reset. Example of Incorrect Fix: Always update state.starting path length
even if ent->fts level != 0 (Regression because it then carries the incorrect ”starting path length”).

find.dbcb10e9
Error Type: Crash
Avg. Time: 22.9 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 81%

If find is set to print all files that are exactly 2 days old (-mtime 2), it crashes with a segmentation fault. Variable **pend is defined as pointer
pointer (parser.c:2739) and expected to be allocated when xstrtoumax is called (parser.c:2759). However, it is still NULL after the
call such that the null pointer check for pend* is itself a null pointer dereference (parser.c:2762). Examples of Correct Fixes: 1) Add
null pointer check for pend. 2) Change definition of **pend to *pend and update references. 3) Allocate memory for **pend. Examples
of Incorrect Fixes: 1) Remove code containing null pointer dereference (Treating the Symptom). 2) Change the check involving **pend
(Treating the Symptom because the nullpointer is still dereferenced, only the program does not crash).

find.07b941b1
Error Type: Crash
Avg. Time: 23.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 80%

If find is set to search for file matching a regular expression (-regex ’.*’), the argument pointer arg ptr is incremented (parser.c:1644)
before it is used (parser.c:1645) which results in a nullpointer dereference (parser.c:926). Examples of Correct Fixes: 1) Increment
arg ptr *after* argv[*arg ptr] is read. 2) Save the previous value of argv[*arg ptr] in a temporary variable and use this one. Examples of
Incorrect Fixes: 1) Do not increment arg ptr at all (Regression because other arguments may not be parsed at all). 2) Add null-pointer check
(Incomplete Fix because estimate pattern match is still called with a nullpointer).

find.c8491c11
Error Type: Crash
Avg. Time: 31.4 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to print files that are newer than a reference file and this reference file is not specified (-newerXY), find crashes with a segmentation
fault. This is caused by incrementing the argument pointer arg ptr without a bounds check (parser.c:1315) resulting in a null pointer
dereference (lib/quotearg.c:249). Examples of Correct Fixes: Check for nullpointer directly after increment of arg ptr. Examples
of Incorrect Fixes: 1) Check for nullpointer only before or in fatal file error (Incomplete Fix because null pointer might still propagate via
parser.c:1342 or parser.c:1347). 2) Do not increment the pointer at all (Regression because some arguments may not be parsed, at all).

find.6e4cecb6
Error Type: Functional Bug
Avg. Time: 38.2 min
Explanation: Moderately difficult
Patching: Not at all difficult
Correctness: 89%

If find is set to search a directory referenced by a symbolic link and containing a file, and find is set to follow symbolic links (-L) or to
not follow symbolic links except for those set to be searched (-H), then find does not print the file in the referenced directory and instead
reports ”Too many levels of symbolic links”. Because of a mixup in the condition of a ternary operator (find.c:1094), extraflags are set
to O NOFOLLOW when it should be 0 and to 0 when it should be O NOFOLLOW. The flag controls whether symlinks are followed when
a directory is opened (find.c:1097). Because of this fault, safely chdir returns SafeChdirFailSymlink (find.c:1618) whence the error
message is printed (find.c:1642). Example of Correct Fix: Fix ternary operator. Example of Incorrect Fix: Do not fail if safely chdir
returns SafeChdirFailSymlink (Treating the Symptom).

find.091557f6
Error Type: Crash
Avg. Time: 44.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it aborts with a coredump
instead of listing the symbolic links and terminating gracefully. If a symbolic link loop exists, no stat information is available and the flag
FTS NS is set (ftsfind:584). The flag is not properly handled (ftsfind.c:425-446), such that state.type and mode are incorrectly
set (ftsfind.c:460) and the assertion fails (pred.c:1578). Example of Correct Fix: Handle FTS NS flag. Examples of Incorrect
Fixes: 1) Remove violated assertion (Treating the Symptom). 2) Force stat() to be called such that stat information is available (Incorrect
Workaround because stat() is not supposed to be called on symlink loops).

find.24bf33c0
Error Type: Crash
Avg. Time: 45.1 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it still prints the looping
links while an error message is expected. If a symbolic link loop exists, no stat information is available and the flag FTS NS is set
(ftsfind.c:586). The flag is not properly handled (ftsfind.c:431-446) so that the links are printed (pred.c:1459). Example of
Correct Fix: Handle FTS NS as error IF symlink loop. Examples of Incorrect Fixes: 1) Handle FTS NS as error independent of whether
it is a symlink loop (Regression because FTS NS alone does not indicate an error). 2) Handle all flags as error (Regression because not all
flags indicate errors).

find.183115d0
Error Type: Resource Leak
Avg. Time: 49.2 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 83%

If we ulimit the number file descriptors that can be open simulatanously and set find to execute ls for every subdirectory (-execdir ls ’{}’
\;), it quickly runs out of file descriptors. File descriptors are always opened (pred.c:520) but never closed (pred.c:659-664) which
raises an error when no more descriptors are available (pred.c:579). Example of Correct Fix: Close file descriptor as soon as it is not
used anymore. Example of Incorrect Fix: Close random file descriptor (Incomplete Fix because still leaking file descriptors).

find.93623752
Error Type: Functional Bug
Avg. Time: 50.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

There are two errors: 1) If find is set to search for files that were changed in the last n days but n is not a number (-ctime x), then find
complains about a ”missing” argument instead of reporting the ”incorrect” argument. Function parse time calls collect args to assign the current
argument argv[*arg ptr] to timearg and increment the argument pointer arg ptr (parser.c:3102). When timearg is failed to be parsed as a
number, parse time returns without decrementing arg ptr (parser.c:3127-3128). When the error is reported (tree.c:1248-1271),
the argument pointer points to NULL directly after the incorrect argument (tree.c:1250), such that the error is reported as missing
argument instead of invalid argument. 2) If find is set to search for files belonging to a certain group but the group-id is not specified or not a
number (-gid x), then find crashes with a segmentation fault. When the argument following the -gid option is being parsed (parser.c:913),
insert num returns NULL because argv[*arg ptr] is NULL or not a number (parser.c:3235-3259). This nullpointer remains unchecked
and is dereferenced leading to a segmentation fault (parser.c:914). When nullpointer dereference is fixed the same symptom is observed
for -gid as for -ctime because the argument pointer is also forgot to be decremented. Examples of Correct Fixes: For first error, 1)
decrement/restore arg ptr when parsing of second argument of an option fails or 2) use copy of old argument during error-reporting. For
second error, add null pointer check. Example of Incorrect Fix: For first error, decrement argument pointer before even calling parse time
(Regression because even correct arguments are reported as incorrect ones).

find.66c536bb
Error Type: Functional Bug
Avg. Time: 55.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

If find is set to print files that are strictly younger than 2 days (-mtime -2), it will instead print files that are exactly 2 days old. The
function get comp type actually increments the argument pointer timearg (parser.c:3175). So, when the function is called the first time
(parser.c:3109), timearg still points to ’-’. However, when it is called the second time (parser.c:3038), timearg already points to ’2’
such that it is incorrectly classified as COMP EQ (parser.c:3178). Examples of Correct Fixes: 1) Save timearg in auxiliary variable
and restore after first call to get comp type. 2) Pass a copy of timearg into the first call of get comp type. 3) Pass a copy of timearg into
get relative timestamp (which calls get comp type the second time). 4) Decrement timearg after the first call to get comp type. Example
of Incorrect Fix: Restore timearg only if classified as COMP LT (Incomplete Fix because it does not solve the problem for -mtime +2).

find.b445af98
Error Type: Functional Bug
Avg. Time: 56.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search a directory containing a symbolic link, to not follow any symbolic links (except for those specified on the command
line; -H), and to print only symbolic links (-type l), then find does not print the link. The root cause is that state.cur depth is used before
it is set. When digest mode checks whether to follow symlinks (util.c:629), state.curdepth is still 0 (util.c:607), so that mode are
incorrectly set to follow symlinks (util.c:630-636). Only later state.curdepth is set (ftsfind.c:230). Because of the incorrect value
of mode, it is incorrectly decided not to print the file (pred.c:1749). Example of Correct Fix: Move state.curdepth assignment to shortly
before digest mode is called. Examples of Incorrect Fixes: 1) Change check to match incorrect value (0) of state.curdepth (Treating the
Symptom). 2) Force stat() to be called such that stat information is available (Incorrect Workaround because stat() is not supposed to be called
on symlink loops).

find.ff248a20
Error Type: Infinite Loop
Avg. Time: 57.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 40%

If find is set to search a directory containing a symbolic link that references an ancistor directory and if find is set to follow symlinks (-follow),
then it runs indefinitely. The global variable dir ids tracks the directories that have already been visited. The function process path would
correctly exit with a loop warning (find.c:1428-1434) if the current directory (in stat buf) has already been visited. However, after the
current directory is correctly added to those that have already been visited (find.c:1442), the same entry is overriden with uninitialized
values (find.c:1621) such that the current directory is never marked as already visited. Examples of Correct Fixes: 1) Remember
whether stat() has been called. If not done, call stat() before overriding dir ids[dir curr] at find/find.c:1621. 2) Always stat() before overriding
dir ids[dir curr] at find/find.c:1621 such that statbuf is initialized. 3) Only overwrite dir ids[dir curr] if statbuf is initialized. Examples of
Incorrect Fixes: 1) Never override dir ids[dir curr] (Regression because it isn’t overridden when it should be). 2) Follow links to a maximum
depth of 1 (Regression because symlinks might need to be followed to an arbitrary depth).

find.e6680237
Error Type: Functional Bug
Avg. Time: 76.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 27%

If find is set to search a directory containing three other directories which contain the folder ”bug” and to execute pwd in every folder containing
the folder ”bug” (-name bug -execdir pwd \;), then find prints the first directory three times. The reason is that the working directory specified
in execp->wd for exec is set only once (pred.c:513-527) and never updated. Examples of Correct Fixes: 1) Correct buggy if-condition
by substituting excep->wd for exec by execp->todo. 2) If is exec in local dir, then always reallocate execp->wd for exec and remove
the assertion. Example of Incorrect Fix: Remove if-condition such that it always redefines execp->wd for exec and keep assertion that
execp->todo is false (Regression because execp->todo might be true such that assertion may fail).

find.e1d0a991
Error Type: Functional Bug
Avg. Time: 88.2 min
Explanation: Very difficult
Patching: Very difficult
Correctness: 17%

If find is set to a directory containing a file, to follow symbolic links (-L), and to execute ls for every subdirectory (-execdir ls ’{}’ \;),
then find incorrectly also prints the base directory. If find is set to follow symlinks, the flag FTS LOGICAL is set (ftsfind.c:349)
before the directory search is initiated (ftsfind.c:364). When a directory is searched (ftsfind.c:373), the working directory
is not changed because FTS LOGICAL is set. Hence, the *full* pathname is passed as argument to execdir (pred.c:484-490 and
pred.c:467-471). Example of Correct Fix: Correctly compute pathname and prefix in new impl pred exec. Example of Incorrect
Fix: Remove FTS LOGICAL flag (Incorrect Workaround because FTS LOGICAL is supposed to be set).

grep.55cf7b6a
Error Type: Functional Bug
Avg. Time: 21.1 min
Explanation: Slightly difficult
Patching: Not at all difficult
Correctness: 91%

If grep is set to silently skip devices, FIFOs, and sockets (-D skip), then grep does not search on standard input when no file is provided. When
the skip option is enabled, variables devices is set to SKIP DEVICES (main.c:1852-1859). If no file is provided, variable file is NULL
and variable desc is set to STDIN FILENO (main.c:1217-1218). The code which handles SKIP DEVICES (main.c:1246-1255)
decides to skip STDIN (which is a special device) even though it should not (desc == STDIN FILENO). Examples of Correct Fixes: 1) Do
not skip if desc is set to STDIN FILENO. 2) Do not skip if file is not set (and thus desc is set to STDIN FILENO). Example of Incorrect
Fix: Negate the skip condition (Regression because it skips everything that should not be skipped while indeed not skipping STDIN).

grep.54d55bba
Error Type: Crash
Avg. Time: 26.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 69%

If grep is set to search in all files under each directory recursively (-r) but to exclude certain directories (–exclude-dir=foo), then grep
crashes with a segmentation fault. When grepdir computes the name space (src/grep.c:1361), it calls function isdir1 via function
savedir (lib/savedir.c:123). Now, the code in isdir1 that is supposed to remove the trailing slashes from the directory name uses
the uninitialized variable path instead of variable dir (lib/savedir.c:51). The nullpointer dereference results in a segmentation fault.
Example of Correct Fix: Substitute path with dir. Examples of Incorrect Fixes: 1) Return if path is not initialized (Regression because
isdir1 returns false even if dir is a directory). 2) Only use path if initialized (Regression because isdir1 does not remove trailing slashes).

grep.9c45c193
Error Type: Functional Bug
Avg. Time: 37.7 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 83%

If grep is set to search only specific files (–include=a.txt), then grep does not print a match even if there is one. First, main correctly adds the
include pattern with EXCLUDE INCLUDE flag set (grep.c:2136-2140). When the files are chosen for the search, files that are supposed
to be included are actually excluded because the return value of excluded file name is unnecessarily negated (grep.c:2267-2269). The
negation is unnecessary because the function exclude file name is incorrectly assumed to treat excludes and includes the same. However, the
behavior changes if the EXCLUDE INCLUDE flag is present (lib/exclude.c:410, lib/exclude.c:359). Examples of Correct
Fixes: 1) Remove negation such that included patterns are not excluded during classification. 2) Do not set EXCLUDE INCLUDE flag
for included patterns which effectively negates the faulty condition. Example of Incorrect Fix: Independent of whether a file matches the
included pattern, never exclude (Regression because it doesn’t skip files that are *not* in the included patterns).

grep.5fa8c7c9
Error Type: Infinite Loop
Avg. Time: 38.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If grep is set to search for fixed strings (-F), the empty string is given (””), and the locale is UTF8, then grep runs undefinitely. When
FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Because len=0, the check is mb middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns
true (kwsearch.c:108). However, the size of the supposed multibyte character is computed as mb len=1 (kwsearch.c:115). When
mb len-1 is added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The
loop is continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is mb middle returns false for
len=0. 2) Only call is mb middle if len is set. 3) Jump to success if mb len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because it breaks multibyte character handling). 3) Remove part of the check which causes
is mb middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match size but teturn complete
buffer until end of line (Regression because only match should be returned).

grep.db9d6340
Error Type: Infinite Loop
Avg. Time: 40.6 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 45%

If grep conducts a fixed-strings search (-F) for a pattern that contains multibyte characters, then it runs indefinitely. When EXECUTE FCT
finds a match in the middle of a multibyte character, it is supposed to continue after the multibyte character (search.c:638-639).
However, the beginning of the next multibyte character is not found, and mb start remains unchanged (search.c:228-256). After beg is
assigned mb start minus 1, the loop is continue’d (search.c:640). The loop exit condition never holds (search.c:632) because beg
never exceeds buf + size, resulting in an infinite loop. Examples of Correct Fixes: 1) Raise an error, if is mb middle is unsuccessful in
finding the beginning of the multi-byte and adjusting mb start. 2) Go to after the current match. Examples of Incorrect Fixes: 1) Remove
continue (Treating the Symptom). 2) Do not reset beg (Regression because it breaks multibyte character handling).

grep.2be0c659
Error Type: Functional Bug
Avg. Time: 47.2 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) in a file containing 8-bit characters and the current locale is Turkish UTF8, then grep prints the
wrong output. When grep conducts a case-insensitive search, it lowers the case of the input string before matching (search.c:384-392).
The lower case of an upper-case 8-bit character might occupy one more or less bytes. The latter case is not handled. When the match size
is computed (grep.c:1081), the lower-case match is used (grep.c:1060-1062). When the match is printed, the incorrect lower-case
match size which is usually larger than the actual match size is used (grep.c:1085-1091). Examples of Correct Fixes: 1) Update the
map that maps lower-case character to the normal case characters to account for cases where the number of bytes it occupies *decreases*
in the lower-case. 2) To correct the match size, lower-case as many characters in the normal-case match as result in match size lower-case
characters. Examples of Incorrect Fixes: 1) Return complete line if match exists (Regression because only the match should be returned).
2) Add the difference in length of lower-case and normal-case string to the match size (Incomplete Fix because for files that have more
multibyte characters than given in the match, grep reports longer matches than needed).

grep.8f08d8e2
Error Type: Functional Bug
Avg. Time: 48.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 75%

If grep is set to search for lines containing whole words that match a regular expression (-w), it prints only the match instead of the complete
line. When execute searches for a match, it correctly sets variable len to the length of the match (search.c:388). When it is checked if
the match aligns with word bounderies (search.c:408-414), the match length len still points to the end of the match. So, execute returns
the length of the match instead of the end of the line (grep.c:997). Examples of Correct Fixes: 1) Add statement: goto success (which
updates len with end - beg). 2) Update len with end - beg. Example of Incorrect Fix: Always return complete line (Regression because in
some settings grep should return only the match).

grep.58195fab
Error Type: Functional Bug
Avg. Time: 50.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 82%

If grep is set to search all TXT files (–include=”*.txt”) but excluding some files (–exclude=”foo.txt”), then grep also searches files that are not
TXT ignoring the include option. Because included patterns is not initialized with EXCLUDE WILDCARDS (src/grep.c:2137), the
exclude pattern is not added in add exclude (lib/exclude.c:449). Files are matched exactly (treating ”*.txt” as file name) instead of using
wildcards (lib/exclude.c:417-427). These files are then incorrectly classified as included/excluded (src/grep.c:2261-2271).
Examples of Correct Fixes: 1) Add EXCLUDE WILDCARDS flag for includes. 2) Add EXCLUDE INCLUDE flags for excludes if there
are includes. Examples of Incorrect Fixes: 1) Substitute EXCLUDE INCLUDE with EXCLUDE WILDCARDS for includes (Regression
because EXCLUDE INCLUDE flags must also be set for includes). 2) Negate condition that decides whether to exclude (Regression because
files that are specified to be excluded are now included).

grep.c1cb19fe
Error Type: Functional Bug
Avg. Time: 58.4 min
Explanation: Very difficult
Patching: Slightly difficult
Correctness: 71%

If grep searches for string specified in a bracket expression, then for some UTF8 locales (ru RU.UTF-8) grep does not print a match. For some
locales dfaparse sets the global flag hard LC COLLATE (dfa.c:1418) to denote that characters are ordered in a strange way (e.g. Russian
cyrilic). If hard LC COLLATE is set, then lex prepares the info about the letters in the bracket expression and finally calls in coll range
(dfa.c:1103-1116). Now, in coll range uses the correct function strcoll to compare the letters, but the condition is incorrect and the
wrong character are selected to be in the range that is specified by the bracket expression. Hence, there is no match reported. Example of
Correct Fix: Fix the simple operator fault. Examples of Incorrect Fixes: 1) Fix locale, such that multibyte characters do not need to be
handled (Regression because LC ALL is supposed to be handled). 2) Implement in coll range as locale implemented match (Regression
because match is supposed to be locale dependent).

grep.7aa698d3
Error Type: Functional Bug
Avg. Time: 59.9 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) on an input that contains multibyte characters and the locale is UTF8, then grep prints a match of
incorrect length. When conducting the case-insensitive search, EXECUTE FCT first computes a lower-case of the input (search.c:388).
The length of the match is computed for the match in the lower-case input (search.c:555). However, the lower-case of a multibyte
character can take 1 byte less. So, the length of the normal-case and lower-case input differ. The computed value of match size could be half
the expected value (grep.c:1081-1085). Hence, the match in the normal-case input is printed with incorrect length (grep.c:1091).
Example of Correct Fix: Add a mapping between normal-case and lower-case string to compute the length of the match in the normal-case
string from the length of the match in the lower-case string. Examples of Incorrect Fixes: 1) Do not lower the case (Regression because
a case-insensitive search is case-sensitive). 2) If matched string contains a multibyte char, double the match size (Incomplete Fix because it
works only of all are multibyte characters). 3) Print complete line if there is a match (Regression because only match should be returned).

grep.3220317a
Error Type: Crash
Avg. Time: 63.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 20%

If grep searches for a bracket expression containing a multibyte character in a file that contains multibyte characters and the current locale
is UTF8, then grep crashes with a segmentation fault. When parse bracket exp parses the next character, array index c is assigned EOF
(-1) if the character is multibyte (dfa.c:498, dfa.c:363) while wc is assigned the correct index. However, when parse bracket exp
calls setbit case fold (dfa.c:697) it uses c which overflows during the cast from int to unsigned. After setbit case fold has called setbit
(dfa.c:274), the array is accessed at a too large index which causes a segmentation fault (dfa.c:168). Example of Correct Fix: Use
wc instead of c (which equals c if the character is not multibyte). Examples of Incorrect Fixes: 1) Check for overflow condition c=EOF
(Treating the Symptom because multibyte characters are still handled incorrectly). 2) Use an arbitrary value instead of c (Treating the Symptom
because while it does not crash, the bracket expression is not correctly handled).

grep.3c3bdace
Error Type: Crash
Avg. Time: 64.8 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 70%

If grep searches for a certain extended regular expression (-E ’(ˆ| )*( | $)’), then it crashes with a coredump. When dfaanalyze allocates memory
for merged.elems (dfa.c:1728), it allocates insufficient memory because merged.elems can grow to twice the original size (dfa.c:1455).
Then memory is corrupted when the array is accessed out of bounds (dfa.c:1453). Only later the program crashes because of the corrupted
memory (dfa.c:1917). Examples of Correct Fixes: 1) Allocate twice or 3x as much for merged.elems. 2) Reallocate as needed. Example
of Incorrect Fix: Always reset the number of elements (nelem) to 0 (Regression because we always override the first element).

grep.c96b0f2c
Error Type: Functional Bug
Avg. Time: 67.6 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 50%

If grep conducts a case-insensitive search (-i) for the empty line (’ˆ$’) and an UTF-8 locale is set, then grep reports matches even for
non-empty lines. For case-sensitive searches or 8-bit locales, execute is called with the complete buffer and correctly returns no match
(grep.c:1045-1046). Otherwise, execute is called for each line (grep.c:1048-1063). However, execute does not handle the case
when no match is found (search.c:388), which is why the non-match is printed (grep.c:1091). Examples of Correct Fixes: 1) Handle
case where no match was found by breaking loop if next beg == buflim. 2) Skip printing if match is empty and we are not in inversion mode
(-v). Example of Incorrect Fix: Skip printing if match is empty even if in inversion mode (Regression because it breaks inversion mode).

Fig. 9. Complete list of errors and their average debugging time, difficulty, and patch correctness, with human-generated explanations of the runtime actions
leading to the error, and examples of correct and incorrect fixes, sorted according to average debugging time (zoom required).

Better Diagnosis Tools. From both our studies, it became
clear that automatically predicting a location (or a set
of locations) does not provide sufficient support for
developers. Descriptions that describe the circumstances
of the error and the cause-effect chain of how it came to
be (including associated variables and locations) would
likely be much more helpful; but while humans can easily
narrate these (Figure 9), producing these from automated
tools is still a long way to go.

Better Repair Tools. Given the several incorrect or incom-
plete fixes we found in our observational study, it is
evident that much better support for repairs is needed.
Tools and approaches that validate a repair for correct-
ness, determine whether a repair addresses the cause or
a symptom, and can choose between multiple repairs
would certainly be appreciated. Strong automated support

for repairing bugs might require much better tests or
specifications, as experience with automated repair tools
suggests [42].

Expectations on Automatic Debugging Tools. In our retro-
spective study, we also asked respondents about proper-
ties that make an automatic patch acceptable, as well as
additional expectations on automated bug diagnosis tools;
these answers and their consequences will be discussed
in an extended version of this paper.
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