Abstract—How do practitioners debug computer programs? In a retrospective study with 180 respondents and an observational study with 12 practitioners, we collect and discuss data on how developers spend their time on diagnosis and fixing bugs, with key findings on tools and strategies used, as well as highlighting the need for automated assistance. To facilitate and guide future research, we provide a highly usable debugging benchmark providing fault locations, patches and explanations for common bugs as provided by the practitioners.

I. INTRODUCTION

In the software engineering community, the past decade has seen a surge in automated debugging techniques designed to assist programmers locating and fixing faults in software. A recent survey [1] on automated fault localization cites no less than 427 papers related in some way or another to the problem of determining possible fault locations for a given failure. Yet, we mostly ignore how such tools would address real-world debugging needs. Actually, not only do we know very little about how practitioners debug; we also lack data and methods that would allow us to check novel tools against practitioners’ needs. This is unfortunate, as it is feedback from practice that should shape and determine future research in our field.

In this paper, we address this issue by providing data on how practitioners debug. Our DBGBENCH benchmark, presented in this paper, allows to evaluate novel automated debugging techniques by providing fault locations, error explanations, fix explanations, and human-generated patches for a set of 27 real world errors in the find and grep programs. In contrast to past bugs and fixes obtained from software archives (e.g., [2]), which typically represent only one problem solution and lack diagnosis and details, our benchmark represents the large variance of how developers debug programs, incorporating different strategies, fixes, and error explanations—including correct and incorrect ones. In other words, DBGBENCH captures the reality of today’s debugging—and this is what debugging tools should address.

To obtain DBGBENCH, we have ran two major studies, described in this paper: In an initial retrospective study, 180 respondents (including the study participants) provided insights in their general debugging process, giving additional insights about the state of the practice in debugging, and how the present and future state of the art might help in addressing these problems. This shaped our observational study with 12 practitioners, having them spend 29 working days on debugging 27 real errors in open-source C programs. Each participant would be given an executable, failing test case, and a simplified bug report. As an example, consider Figure 1, showing a bug report for the grep program. Given this bug report, we would ask for the practitioners to provide a fix (i.e., debug the program), measuring, among others, the time spent on bug reproduction, diagnosis, and fixing; and asking them, among others, for their familiarity with the code, the difficulty of the task, and the strategies they used for finding the fault. All this is contained in DBGBENCH.

In this paper, we also use the DBGBENCH data to investigate a number of common assumptions about debugging techniques, including tools and strategies used (the majority of developers always or often relies on traces and interactive debuggers, but never uses slicing, algorithmic debugging, or statistical debugging), the location and span of faults (explanations typically span multiple functions, whereas patches tend to be local to one function), characteristics of patches (every patch applies about two changes to modify either data or control flow—in contrast to mutation analysis or automated repair, where patches are much less complex), whether developers fix programs in the best way possible (a third of patches produced treat symptoms rather than causes), and how practitioners would design debugging tools (56% want tools that describe the actions or conditions leading to the error, or the deviation from an expected execution).

The remainder of this paper is organized as follows. After discussing the background (Section II), Section III details our retrospective study and its results. Section IV discusses our observational study, detailing how practitioners spend their time on diagnosing and fixing bugs, and again discussing the results. In Section V, we present the debugging benchmark with all data resulting from the study. After discussing limitations and threats to validity (Section VI), Section VII closes with conclusion and consequences.

Hang in grep -F for empty string search
Searching with grep -F for an empty string in a multibyte locals would freeze grep.
For example,
$ export LC_ALL=en_US.UTF-8
$ echo "abcd" | ./grep -F "**
(runs forever)

Fig. 1. grep.5fa8c7c9 bug report
II. Background

Debugging is one of the most difficult and time consuming activities in the software development process [1]. In the past, several works have studied the effectiveness of automated debugging assistants, such as automated fault localization, in practice. For instance, Parnin and Orso [3] found that a ranked list of suspicious statements does not help towards a faster and better bug diagnosis. Participants spent up to 23 minutes debugging one of two errors with and without the help of a statistical fault localization tool. To investigate how statistical fault localization might be improved, Kochhar et al. [4] asked practitioners about their expectations of automated fault localization. The study explored several crucial parameters, such as trustworthiness, scalability and efficiency, in order for a practitioner to adopt a statistical fault localization tool. These works provide valuable insights on potential research directions in automated debugging. However, we find two major limitations of the current literature that study debugging activities in practice:

- The authors focus on a specific debugging technique and not the debugging activity in general, and
- There is a general lack of studies that focus on developers debugging real programming errors.

This motivates us to initiate our work that studies the activity of debugging real software errors. By designing such a study, we discover that debugging real software error requires better fault localization and repair tools. Besides, we confirm that practitioners rarely use any automated debugging tools (e.g., slicing or statistical debugging). This highlights potential actions that need to be taken, in order to bring the research of automated debugging into practice.

There are several works that investigate and model debugging strategies in practice. Perscheid et al. [5] study available literature, the tool support, and debugging strategies used in practice. The authors visited four companies in Germany and conducted think-aloud experiments with eight developers at during their normal work. Romero et al. [6] explore the impact of verbal ability and the level of graphical literacy on the choice of debugging strategy and debugging performance. Finally, Lawrance et al. [7] model debugging using information foraging theory. In contrast, our focus is not on assessing the current state-of-practice. Instead, we investigate whether common assumptions in automated debugging research hold in practice. We also investigate manual debugging strategies with the aim of identifying how automated debugging assistants may support the debugging task.

A primary motivation of our study is to provide the research community a set of real errors with human-generated root diagnoses and patches. Existing benchmarks, which collect real software bugs (e.g. [2], [8], [9], [10]), do not provide information on human-generated root causes, patches and time spent in bug diagnosis and repair. In order to bridge this gap, we provide such information in the benchmark created as an artifact of this paper. We hope that such a benchmark will open up several research directions in the future.

III. Retrospective Study

We start with our retrospective study, which we conducted to obtain a general impression on today’s practice of debugging.

A. Study Design

Study Objective. The main objective of the retrospective study is to explore the task of debugging in software engineering practice and elicit challenges and opportunities for researchers to automate the process. Practitioners are asked about several aspects of their day-to-day debugging activities. We focus our exploration on the following research questions.

- Time and Familiarity. How much time do practitioners spend debugging. How familiar are they with the debugging code?
- Techniques Used. Which tools and techniques do practitioners use? Is debugging perceived to be systematic or trial-and-error?
- Techniques Needed. Which techniques should be developed? Which tool output would be considered most helpful?

Terms. We distinguish three distinct tasks of debugging. Bug reproduction is the task of reproducing the bug locally and finding a test case that confirms the unexpected behavior. Bug diagnosis is the task of understanding and explaining the runtime actions that lead to the unexpected behavior. Finally, bug fixing is the task of removing the error. The symptom of an error is the deviation of the actual from the expected program output or behavior for a given test input (e.g., a program crash).

Survey. Respondents filled an online questionnaire which begins with informing respondents about the goals of our study and some basic terminology. We requested general demographic information about occupation, experience, and skill. After the technical questions investigating the study objectives, we allow participants to register for the observational study. Otherwise, both studies are completely anonymous.

Measures. In order to quantify attitudes to a topic, such as code familiarity, we use the common 5-point Likert scale [11]. This allows to measure otherwise qualitative properties on a symmetric scale where each item takes a value from 1 to 5 and the distance between each item is assumed to be equal. When asking how often participants use certain techniques, we offer the following choices:

- Trace-based Debugging (using printing; e.g., println, log4c)
- Interactive/Online Debugging (using breakpoints; e.g., gdb, jdb)
- Post-Mortem/Offline Debugging (using core dumps, stack traces)
- Regression Debugging to find faulty changes (e.g., git bisect)
- Statistical/Spectrum-based Debugging to find faulty statements (e.g., Tarantula)
- Program Slicing (e.g., Frama-C, CodeSurfer)
- Time Travel or Reversible Debugging (e.g., UnhDB)
- Algorithmic or Declarative Debugging (e.g., JavaDD)

Demographics. We advertised both studies on several freelancing platforms and social as well as professional networks, including Upwork, Guru, Freelaencer and Github. The majority of respondents are professional software developers with seven (7) years or more experience in software development rating their level of skill as advanced or expert. One in four respondents is a student and one in six is a researcher. A quarter has three to six years of experience and the remaining 22% of respondents have two years or less of experience. One in three respondents rate their level of skill as intermediate.
B. Results

The study ran over 14 months and gathered 180 entries.

<table>
<thead>
<tr>
<th>Debugging Techniques</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace-based Debugging</td>
<td>Always</td>
</tr>
<tr>
<td>Interactive Debugging</td>
<td>Often</td>
</tr>
<tr>
<td>Post-Mortem Debugging</td>
<td>Sometimes</td>
</tr>
<tr>
<td>Regression Debugging</td>
<td>Rarely</td>
</tr>
<tr>
<td>Time Travel Debugging</td>
<td>Never</td>
</tr>
<tr>
<td>Algorithmic Debugging</td>
<td>Always</td>
</tr>
<tr>
<td>Statistical Debugging</td>
<td>Rarely</td>
</tr>
</tbody>
</table>

Fig. 2. Distribution of development and debugging time.

Debugging Time & Code Familiarity. Respondents spend about one third of their development time with debugging (see Figure 2). During debugging, they spend half their time with bug diagnosis. Respondents spend about as much time trying to reproduce an error from a bug report as they spend patching the error. Most respondents did not write the software they are debugging. We asked to rate code familiarity and how often they debug other people’s code on a 5-point Likert scale. About two in three respondents are moderately or less familiar with the code she debugs. About every second respondent often or always debugs code that is not her own.

Techniques Used. In practice, bug diagnosis is still a vastly manual effort. As shown in Figure 3, most respondents always or often use techniques such as trace-based debugging (e.g., println) and interactive debugging (e.g., gdb). They sometimes use post-mortem debugging (e.g., inspecting coredump and stack traces). They rarely use regression debugging (e.g., git bisect). The majority of respondents never used any of the remaining choices. Respondents mentioned memory, coverage, and performance profiler and analysis tools, such as valgrind, gcov, and gprof as additional tools which they use, but which are not listed. One in three respondents admits to trial-and-error versus a more systematic debugging approach.

Techniques Needed. In practice, most respondents would like to design and use a tool that does what has already been achieved in automated debugging research. For instance, two in five (40%) respondents would like a tool that points out suspicious statements or functions in the source code while almost nobody has ever used statistical debugging. However, two in five (40%) respondents would design a tool that outputs a sophisticated bug diagnosis rather than only fault locations.

These respondents asked for a high-level or an approximate explanation of the pertinent sequence of events leading to the error – perhaps as cause-effect chains or even as an English narrative. One in eight (13%) respondents would output an auto-generated patch in lieu of a diagnosis. The same percentage would output the most general conditions under which the error occurs (e.g., input range or OS dependence). Moreover, respondents prefer a tool that generates a short, high-level bug diagnosis versus a long, detailed one. Minor, simple bugs should have only small explanations. Most respondents would output some information about the program state, such as variable values and possibly how and where the observed state deviates from the expected state.

Specifically, we asked which output an automated diagnosis assistant would provide if the respondent designed the tool. We used open card sort [12] to establish the categories and quantify the prevalence. If we did not find related work that addresses a practitioners’ need, the concern is shown in **bold**.

In terms of general **program comprehension**, developers are interested in tools that
- (7%) visualize the value history of a variable [13],
- (3%) visualize data structures and allow to persist, restore, and compare their states [13],
- (3%) help at program understanding, generate documentation [14],
- (1%) uncover “meaning” of variables and value range [15], [16],
- (1%) point to code fragments processing certain input bytes [17],

In terms of **automated bug diagnosis**, developers are often interested in tools that
- (28%) **generate a diagnosis or explanation why the error occurs**, or
- (23%) **report the most general environment or conditions under which the bug can be reproduced**, or
- (19%) **print the sequence of executed functions for a failing input** (can be obtained automatically via any online-debugger),
- (17%) **generate a suggestion where and how to patch the bug** [18],
- (17%) **point to the cause-effect chain leading to the symptom** [19],
- (15%) **point to suspicious functions or program statements** [20],
- (13%) **generate a patch to assist in understanding the error** [21],
- (7%) **visualize divergence from the expected value of a variable**, or
- (1%) **visualize the range of expected values for a given variable**.

In terms of **explaining and classifying symptoms**, developers are interested in tools that
- (19%) **highlight the symptoms and side-effects of an error**, or
- (8%) **classify the error according to its symptom in a category** (e.g., if nullpointer deref., suggest check or where to init.),
- (1%) **evaluate criticality of the symptoms** (e.g., security risk),
- (1%) **find program statement that prints the unexpected output**, or
- (1%) **track allocated resources and where they are allocated/used** (as can be obtained via tools like valgrind [22]).

Ensuring Patch Correctness. We also asked how respondents make sure that a submitted patch is a correct one. Almost everybody (95%) tries to reproduce the bug on the patched version while more than half generate new test cases and execute the existing regression test suite (57% and 54%, resp.). Only few respondents suggested to rely on a valid bug diagnosis. Several respondents mentioned third-party code review as the best way to ensure patch correctness.
C. Implications

Exigency of Automation. Developers spend ten minutes of every development hour trying to understand the runtime actions leading to an error in a rather unfamiliar program that is often written by somebody else. There is almost no automation in debugging practice. The most frequently used debugging techniques are manual and ad-hoc rather than systematic. At the same time, developers are calling for automated assistants that help with program comprehension and bug diagnosis.

Need and Knowledge. In practice, most practitioners have never used statistical fault localization tools. Yet, two in five (40%) practitioners would like a bug diagnosis tool that can point out suspicious statements of functions. Therefore, we suggest to make automated debugging research more useful to practitioners by considering more carefully how to integrate our research prototypes into the existing development process and environment.

Disconnect and Revision. In research, statistical fault localization is one of the most popular techniques for automated debugging. Then, why do practitioners never use statistical fault localization tools while there is such an evident need? One reason might be flaws in our assumptions. For instance, to evaluate fault localization techniques, faults are artificially injected by changing one statement. Then, a tool is considered effective if it localizes that statement with high precision. In the subsequent observational study, we set out to investigate several of these assumptions. For instance, we determine how many locations practitioners point out when explaining the pertinent runtime actions to us. Another reason might be that most practitioners (56%) would design a bug diagnosis tool that goes beyond simple fault localization. Such a tool would describe the unfortunate chain of events leading up to the error, the deviation from an expected execution, or general conditions under which the error occurs. Many practitioners (13%) would also use an automated patching tool for diagnosis.

Opportunities. Techniques that can derive an approximate English narrative explaining the context and chain of events leading to the error may be very successful in practice. A tool that explains and classifies the symptoms of an error may be as helpful as a tool that can derive the most general environment or conditions under which an error occurs. Moreover, it may be worthwhile to develop debugging tools that can distinguish expected from actual values.

IV. OBSERVATIONAL STUDY

The insights from the retrospective study shaped the design of our observational study. Seeking to understand more about the disconnect between practice and research, we designed and conducted experiments with professional software developers to find out how they debug programs. We used the insights from this observational study constructively and developed the first human-generated benchmark for the evaluation of automated debugging techniques.

A. Study Design

Study Objectives. The observational study has three main objectives: i) to study more closely how practitioners debug a number of real errors in C programs; ii) to investigate common research assumptions about debugging in practice; and iii) to establish a human-generated benchmark for the evaluation of novel debugging assistants. Participants are given a virtual environment with several buggy versions of the same program. For each version, participants fill an online questionnaire. We focus our investigations on the following research questions.

- Difficulty, Time, and Familiarity. How difficult do participants perceive the debugging of certain errors and what makes very difficult errors so difficult? How much time do they spend on bug diagnosis and patching? Does the increasing familiarity with the code affect the likelihood to produce a correct patch?
- Strategies. Which steps do participants take to diagnose the bug? What are the ingredients of a developer patch?
- Single Fault Assumption. Do participants reference a single statement or one contiguous region when explaining the error?
- Single Diagnosis Assumption. Do participants agree on an explanation of the pertinent runtime actions leading to the error, or do they come up with different explanations?
- Single Patch Assumption. Do participants agree on a correct patch for an error or do they submit conceptually very different (yet correct) patches?
- Correctness and Plausibility. Do participants submit patches that are technically incorrect but plausible (pass the test case)?
- Fix Location \ Subset Fault Location \ ≠ \ ∅. Do developers fix the same code that they reference in the bug diagnosis?

The benchmark contains the following artifacts:

- Fault Locations: We provide the pertinent locations referred to in an effective bug diagnosis.
- Bug Diagnosis: We provide a concise explanation of the runtime events leading to the error which references pertinent functions, variables, and data flows.
- Correct vs. Plausible Patches: We provide examples of correct and incorrect but plausible patches (the failing test case passes) and an explanation of the changes needed to fix the error.

Infrastructure [23]. To conduct the study remotely and in an unsupervised manner, we developed a virtual environment based on Docker. We prepared 1 readme, 34 slides, and 10 tutorial videos (~2.5 minutes each) to explain the goals of our study and provide details about subjects and infrastructure. The virtual environment is a lightweight Docker image with Ubuntu 14.2 Guest OS containing a folder for each buggy version of either grep or find. A script generates the ID for the participant’s responses and scrambles the order of the folders: The first error for one participant might be the last error for another. The image contains most common development and debugging tools, including gdb, vim, and Eclipse. Participants are encouraged to install their own tools and copy the created folders onto their own machine.

Real Errors. We chose all 27 reproducible errors in find and grep from COREBENCH [2]. The command line tools find and grep are well-known, well-maintained, and widely-deployed open-source C programs. The code bases of find and grep has 17k and 19k lines of code, respectively. For each error, we provide a failing test case, a simplified bug report, and a large regression test suite.

1Respondents spend 36% of their development time with debugging tasks and 47% of their debugging time with bug diagnosis, on average.
Figure 1 shows a simplified bug report describing inputs, symptoms, and the expected behavior. We chose two subjects out of the four available to limit the time a participant spends in our study to a maximum of three working days and to help participants to get accustomed to at least two code bases.

Pilot Study (Students). To test our infrastructure and get a first estimate of the time spent in the observational study, we conducted a small supervised version of this study where we invited five (5) student volunteers to our lab. These volunteers were chosen from a larger pool of interested candidates as those with most experience in software development. However, in seven hours our student participants submitted only a sum total of five patches. The setup and infrastructure was working very well indeed but we felt strongly advised to recruit software engineering professionals for the main study.

Main Study (Professionals). The candidates registered via the questionnaire of the retrospective study. From 180 responses, 130 indicated interest. We selected and invited 89 candidates with sufficient experience in C development. However, only 12 participants actually entered and completed the observational study. These are one researcher and eleven professional software engineers from six countries (Russia, India, Slovenia, Spain, Canada, and Ukraine). Nine participants have more than 7 years experience in developing C programs. All entered C or C++ as their favourite programming language. Upon completion, a participant received 540 USD in compensation for their time and efforts.

B. Results

Overall, 12 participants spent 29 working days debugging 27 real errors in 2 open-source C programs: find and grep.

Time and Difficulty. On average, participants rated an error as moderately difficult to explain (2.8) and slightly difficult to patch (2.3). On average, participants spent 32 and 16 minutes on diagnosing and patching an error, respectively. The details are shown in Figure 4. For each error, we asked participants to provide the time spent in understanding the runtime actions leading to the error (bug diagnosis) and in changing the source code so as to remove the error (bug fixing). We also asked to rate the difficulty of both tasks on a 5-point Likert scale. For all errors, a participant spent on average 14 hours 20 minutes to understand the errors and come up with the diagnosis and 7 hours 11 minutes to remove the errors and come up with the patches. Developers that work with novel debugging assistants are expected to improve on this time.

Why are some errors very difficult? There are four errors (3 functional, 1 crash) rated as very difficult to diagnose which took between 1 and 1.5 hours to debug, on average. In many cases, missing documentation for certain functions, flags, or data structures were mentioned as reasons for such difficulty. Other times, developers start out with an incorrect hypothesis before moving on to the correct one. For instance, the crash is caused by a corrupted heap such that the crash location and that location where heap is corrupted are very distant. The crash and another functional error are caused by a simple operator fault. Three of the four bugs which are very difficult to diagnose are actually fixed in a single line. For the only error that is both very difficult to diagnose and patch, the developer patch is actually very complex, involving eighty added and thirty deleted source code lines. Only one participant provided a correct patch.

Code Comprehension. In the retrospective study, we found that many practitioners frequently debug code which they did not write. In the observational study, we investigate the impact of increasing familiarity with the code base as they continue to debug a randomized sequence of errors in the same code base. This allows us to observe trends of the participant as she understands the code with each new error she debugs while controlling for that bias in other analyses. We take the number of submissions for that subject and participant as a measure of her code comprehension.

![Fig. 4. Average time spent for and the perceived difficulty of explaining and patching each error.](image)

![Fig. 5. Patch correctness and code familiarity increase as the developer diagnoses and patches more errors (i.e., as code comprehension increases).](image)
Single Fault Assumption. Most narratives of the pertinent chain of events that lead up to the error reference three to four contiguous regions in the source code. This contradicts a common assumption in works on automated fault localization and supports a recent finding by Orso and Parnin [3]: It is insufficient to show a developer a suspicious statement for her to understand the error. The set of program statements must be linked to the pertinent runtime actions leading to the error. Figure 6 shows more details about the number of pertinent program locations. The middle 50% of bug diagnoses reference three to four contiguous regions in the source code. In most cases, these regions are distributed across different functions and files. Most regions contain only a single statement. However, the fourth quartile (i.e., upper 25%) ranges from 3 to 30 statements that constitute a region. Generally, most bug diagnoses reference 10 statements or less.

Single Diagnosis Assumption. 85% of participants provide essentially the same diagnosis for an error. In other words, there are no two participants who are confident about the correctness of their individual diagnosis—which also vastly disagree. For each error, we asked participants to provide the root cause of the error and explain the runtime actions leading to the error while referencing the pertinent locations in the source code. Subsequently, we aggregated these explanations into a single, self-containing, and precise bug diagnosis. The ability to extract an agreeable diagnosis shows that the understanding and explanation of an error is no subjective endeavor. The extracted bug diagnoses can serve as the ground truth for information that is perceived relevant to a practitioner.

Patch vs. Fault Location. Only 69% of submitted patches modify statements that are referenced in the bug diagnosis. However, unlike an explanation that sometimes stretches over several files, the patch tends to be local to one function. An assumption of automated debugging research is that the fault and fix location overlap. For instance, an operator fault is fixed by substituting the faulty by the correct operator. However, we often observe the opposite. For instance, the resource leak in grep is explained by pointing out where the resource is opened and used. Finding the location where the resource can be released is another matter. Often new branches, assignments, or function calls are added, for instance, to conditionally print a message, reset a variable, or free/allocate some memory.

Single Patch Assumption. Often, there are several ways to patch an error correctly, syntactically and semantically. It might seem obvious that a correct patch can syntactically differ from the patch that is provided by the developer. However, we also found correct patches that conceptually differ from the developer-provided patch. For instance, to patch a null pointer reference, one participant might initialize the memory while another might add a null pointer check. To patch an access out-of-bounds, one participant might double the memory that is allocated initially while others might reallocate memory only as needed. For one error in grep, some participants remove a negation to change the outcome of a branch while others set a flag to change the behavior of the function which influences the outcome of the branch.

Correctness and Plausibility. While 282 out of 291 (97%) of the submitted patches pass the test case, only 170 patches (58%) are actually correct. We determined patch correctness by code review and patch plausibility by executing the provided test case. A patch is incorrect if we can provide an explanation as to why it is incorrect. Figure 7.a shows that for the majority of bugs 69% or less of submitted patches are correct while for the same majority all (100%) submitted patches are plausible. Figure 7.b shows that more than half of the incorrect patches actually introduce new errors and that incorrect patches are incomplete fixes or are treating the symptom in roughly equal parts (20%). A regression breaks existing functionality; we could provide a test that fails but passed before. An incomplete fix does not patch the error completely; we could provide a test that fails with and without the patch because of the bug. A patch is treating the symptom if it does not address the root cause. For instance, it removes an assertion to stop it from failing. An incorrect workaround changes an artifact that is not supposed to be changed, like a third-party library.

Ensuring Correctness. We asked how participants made sure that the submitted patch is a correct one. According to them, a quarter patches (24%) were checked by generating new test cases while one in ten patches (10%) were checked by executing existing test cases in the regression test suite. Only three in four (72%) patches were checked by executing the failing test case on the patched version. However, some might simply not have mentioned this since we explicitly suggested to execute the failing test case. For one in five patches (19%) participants suggested to rely on intuition and a valid bug diagnosis.

Note that participants were asked to ensure the correctness of their submitted patch by passing the provided test case.
C. Bug Diagnosis Strategies

For each error, we asked participants which concrete steps they took to understand the runtime actions leading to the error. We observed the following bug diagnosis strategies.

Classification. We extend the bug diagnosis strategies that have been identified by Romero and colleagues [6], [24]:

- **(FR) Forward Reasoning.** Programmers follow each computational step in the execution of the failing test.
- **(BR) Backward Reasoning.** Programmers start from the unexpected output following backwards to the origin.
- **(CC) Code Comprehension.** Programmers read the code to understand it and build a mental representation.
- **(IM) Input Manipulation.** Programmers construct a similar test case to compare the behavior and execution.
- **(OA) Offline analysis.** Programmers analyze an error trace or a core-dump (e.g. via valgrind, strace).
- **(IT) Intuition.** Developer uses her experience from a previous patch.

Specifically, we identified the Input Manipulation (IM) bug diagnosis strategy. Developers would first modify the failing test case to construct a passing one. This gives insight into the circumstances required to observe the error. Next, they would compare the program states in both executions. IM is reminiscent of classic work on automated debugging [25] which might again reflect the potential lack of knowledge about automated techniques that have been available from the research community for over a decade.

![Frequency of diagnosis strategies for different error types.](image)

Frequency. Forward reasoning and code comprehension (FR+CC) are the most frequently used diagnosis strategies. The frequency of bug diagnosis strategies is shown in Figure 8 for the different error types. We also observe that past experience (IT) is used least frequently. Therefore, we consider the set of diagnosis strategies to be representative for debugging real and unknown errors. Many participants used input modification (IM) as diagnosis strategy. Therefore, the integration of automated techniques that implement IM (e.g. [25]) into mainstream debugger will help improve debugger productivity.

Error Type. We can see in Figure 8 that most infinite loops (58%) are diagnosed with forward reasoning (FR). Intuitively, there is no last executed statement which can be used to reason backwards from. Two in five crashes (40%) are diagnosed with backward reasoning (BR). Intuitively, the crash location is most often a good starting point to understand how the crash came about. Two in five functional errors (40%) are diagnosed with forward reasoning (FR). If the symptom is an unexpected output, the actual fault location can be very far from print statement responsible for the unexpected output. It may be better to start stepping from a location where the state is not infected, yet. Input modification is used for 10% of functional errors to understand what distinguishes the failing from a passing execution.

Tools. Every participant used a combination of trace-based and interactive debugging. For resource leaks, participants further used tools such as valgrind and strace. We also observed that participants use bug diagnosis techniques that have been automated previously [25], albeit with manual effort, to narrow down the pertinent sequence of events.

D. Repair Ingredients

Participants submitted a sum total of 291 patches where one third (34%) exclusively affects the control-flow, one third (30%) exclusively affects the data-flow, and the remaining patches (36%) affect both.

Control-Flow. In automated repair research, the patching of control-flow is considered tractable because the search space is binary [26]: Either a set of statements is executed or not. The frequency with which participants patch the control-flow provides some insight about the effectiveness of such an approach. The control-flow is modified by seven in ten patches (69%). Of all the patches that affect the control-flow, a branch condition is changed by 63%. The loop or function flow is modified by every fifth patch that affects the control-flow (19%).

A new if-or-else branch is added by two of every five patches affecting the control-flow (43%). In many cases, an existing statement is then moved into the new branch or a new function call is added.

Data-Flow. The data-flow is modified by two of every three patches (64%). Of all patches that change the data-flow, a variable value or function parameter is changed by 30%. The RSRpair [27] and GenProg [28] automated repair systems copy and move existing program statement while Kali [29] effectively deletes existing statements. In our study, participants add, move, or delete a statement in 39%, 24%, and 16% of their patches that affect the data-flow, respectively.

Every fifth patch that affects the data-flow (21%) actually adds a new function call, for instance to report an error or to release resources. A completely new variable is declared in every sixth patch affecting the control-flow. Only 2.8% of all patches introduce complex functions that would need to be synthesized.

Patch Complexity. Mutation testing [30] is based on the assumption that test case finding simple errors that are artificially injected are also effective in finding more complex errors. Errors are injected using simple changes for instance by deleting a statement, changing an arithmetic or binary operator, or substituting variables and constants. These ideas have also been applied to automated program repair [31]. However, in our study, we find that only every ninth patch (12%) actually changes an arithmetic or binary operator. Every fifth patch (17%) substitutes a variable or constant by another. Most patches affect only one statement (median 1). Yet, on average, every patch applies about two changes to modify either data-flow or control-flow.

*Examples of changing the loop or function flow are adding a return, exit, continue, or goto statement.
E. Implications

We distinguish between participants and respondents to differentiate between findings from the observational and the retrospective study, respectively.

Automated Documentation. Most respondents frequently debug programs written by other developers. Participants rate errors as very difficult to diagnose often because certain flags, functions, or data structures are left undocumented. The lack of documentation has a detrimental impact on the capability to produce a correct patch. Thus, techniques that can summarize and explain the meaning of a function or variable provide substantial benefits. We also present some evidence that tools which assign the employee with the best understanding of the buggy component for debugging can increase the likelihood to patch the error correctly.

Automated Fault Localization. We present more evidence that the assumption of perfect bug understanding is invalid [3], [2], [32]. It is not sufficient to point out one suspicious statement in the source code to understand the root cause of an error. Most narratives of the chain of events leading up to the error reference 3–4 code regions that can be distributed across several files. We cannot expect that pointing out a suspicious statement in only one region is sufficient for an effective bug diagnosis. Constructively, we suggest instead to measure the precision of finding at least one statement in each region that – a developer – identifies as pertinent even without a tool.

Automated Diagnosis. Many respondents (40%) expressed explicit interest in tools that produce a more sophisticated bug diagnosis than fault localization. We find that most participants (85%) provide basically the same explanation for how an error comes about. So, in principle, a tool could create an agreeable and precise explanation of the pertinent sequence of events leading up to the error. In fact, we aggregate the provided explanations to produce such a narrative. Constructively, we suggest that an effective automated bug diagnosis tool points to the same variable values, function calls, and data flows that a developer identifies as pertinent even without a tool.

Patches as Diagnosis. Several respondents (13%) would design an automated repair tool which allows to inspect the generated patches to gain insights about the cause of the error. While diagnoses may span several functions, patches are mostly local to a function. Three of the four errors that are perceived to be very difficult to diagnose are actually caused by an operator fault and can be fixed in a single line. However, we note that only about two-third of patches actually modify statements that are referenced in the bug diagnosis. We suggest to investigate whether patches can serve as adequate diagnosis.

Automated Patch Review. For the median error, 31% of submitted patches passes the test case but fails the code review. In automated repair research, such patches are considered plausible but incorrect [29]. Even though many participants generate new test cases or execute existing ones, the most important causes of patch incorrectness are regression and incomplete fix. We note that these causes can be addressed with existing techniques, like regression test generation [33], [34] or regression verification techniques [35], [36]. However, every fifth incorrect patch actually treats the symptom, for instance, by removing the failing assertion. Our benchmark provides incorrect patches and reasons as to why they are incorrect. Constructively, we suggest that an effective automated code review tool detects at least the same incorrect patches that failed the human patch review.

Automated Program Repair. Many developers provide plausible but incorrect patches. This clearly motivates the need for automated tools that assist in generating a correct patch. We find that there are several ways to patch an error correctly, syntactically and semantically. For instance, to patch an array access out-of-bounds, some participants might increase the initially allocated memory, others might prevent the access, and others might re-allocate memory as necessary. One third of patches exclusively affect the control-flow in some manner. Such patches may be efficiently generated by automated repair techniques such as SPR [37]. Only very few patches would require the synthesis of complex functions. However, many patches actually add a new statement, such as a function call to release resources. Many changes in a patch may not be brought about by simple mutation operators.

V. DBGBenCH: AUTOMATED DEBUGGING BENCHMARK

Our findings suggest to evaluate automated debugging techniques with respect to manual debugging techniques: Does the automated technique report pertinent fault locations, variable values, function parameters, or the sequence of events that a developer finds relevant to point out herself? We introduce DBGBenCH which consists of 27 errors that the developers introduced in 13 revisions of 2 well-known, well-maintained, and widely-deployed open source C projects, findutils and grep, taken from CoREBenCH [2]. For each error, we provide a failing test case, a simplified bug report, the identified fault locations, an explanation of the runtime actions leading to the error, the time taken to understand and fix the error, and examples of correct and incorrect patches. An overview can be found in the appendix.

Test & Report. For each error there exists at least one executable, failing test case and a simplified bug report that contains concrete instructions on how to reproduce the bug, the actual and expected output. For example, the simplified bug report for find.66c536bb reads:

```
Find “-mtime [+-n]” is broken (behaves as “-mtime n”)
```

Find “-mtime [+-n]” is broken (behaves as “-mtime n”)

```
Lets say we created 1 file each day in the last 3 days:
$ mkdir tmp
$ touch tmp/a -t $(date --date="yesterday* *"+"%y%m%d%H%M")
$ touch tmp/b -t $(date --date="2 days ago* *"+"%y%m%d%H%M")
$ touch tmp/c -t $(date --date="3 days ago* *"+"%y%m%d%H%M")

Running a search for files younger than 2 days, we expect
$ ./find tmp -mtime -2
tmp
	tmp/a

However, with the current grep-version, I get
$ ./find tmp -mtime -2
tmp/b

Results are the same if I replace -n with +n, or just n.
```

The bug report clearly explains how to reproduce the bug, which symptoms we observe, and which output we expect. Note that this provides the strongest oracle (cf. [29]).
Bug Diagnosis. For each error, we asked our participants to provide the root cause of the error and explain the runtime actions leading to the error while referencing the pertinent locations in the source code. Subsequently, we aggregated these explanations into a single, self-containing, and precise bug diagnosis. We note that 15% of participants provide an explanation that does not agree with our diagnosis while rating their confidence in the correctness of their explanation on average only as slightly confident (2.4) on a 5-point Likert scale. In contrast, participants with an explanation that agrees with our diagnosis are very confident (3.7) in the correctness of their explanation, on average. The aggregated bug diagnosis for `find.66c536bb` reads:

If `find` is set to print files that are strictly younger than 2 days (`-mtime -2`), it will instead print files that are exactly 2 days old. The function `get_comp_type` actually increments the argument pointer `timearg` (`parser.c:3175`). So, when the function is called the first time (`parser.c:3109`), `timearg` still points to `'-'`. However, when it is called the second time (`parser.c:3038`), `timearg` already points to `'2'` such that it is incorrectly classified as COMP_EQ (`parser.c:3178`).

Automated debugging tools are expected to reference the same pertinent locations, variables, functions, or chain of events that are provided by our explanation.

Correct Patches. After explaining the root cause of the error, we asked our participants to fix the error and submit the patch. A correct patch does not introduce new errors and does not allow to provide other test cases that fail due to the same error. We determined correctness by code review and plausibility by executing the failing test case. Our benchmark provides several examples of correct patches and a high-level description of the changes done to the code. For example, the error `find.66c536bb` can be patched correctly as follows:

1. Copy `timearg` and restore after first call to get_comp_type.
2. Pass a copy of `timearg` into first call of get_comp_type.
3. Pass a copy of `timearg` into call of get_relative_timestamp.
4. Decrement `timearg` after the first call to get_comp_type.

Incorrect Patches. For each incorrect patch we give a reason as to why it is incorrect and whether the test case passes. Reasons are listed in Figure 7. The error `find.66c536bb` has the following example for an incorrect patch:

```
Restore `timearg` only if classified as COMP_LT (Incomplete Fix because it does not solve the problem for -mtime +2).
```

Usage. DBG BENCH (see appendix) allows to evaluate novel automated debugging and patching techniques and assistants:

- The human-generated fault localization techniques can be used to evaluate automated fault localization techniques. We suggest to measure the accuracy in finding at least one statement in each contiguous region that participants localized.
- The human-generated explanations can be used to evaluate automated bug diagnosis techniques. We suggest to measure the accuracy in finding the pertinent variable values, function calls, events, or cause-effect chains mentioned in the aggregated human-generated bug diagnosis.
- The examples of correct and incorrect patches can be used to evaluate automated repair and code review techniques. These high-level explanations serve as ground-truth to determine the correctness (not plausibility) of an auto-generated patch.
- The time that our participants take to understand and patch each error can be used to measure how much faster developers can be if assisted with automated tools.

VI. LIMITATIONS

In software engineering, it is often difficult to draw general conclusion from empirical studies because a potentially large number of contextual variables can impact the process under investigation [38]. Since we investigate the debugging of just two programs, we cannot assume generalization of the findings of the observational study. We decided on two subjects to limit the time a participant spends in our study to a maximum of three working days and to help participants to get accustomed to at most two code bases. However, there is nothing specific to our investigations that would prevent replication for errors in other programs. In fact, we strongly urge the community to reproduce our study for different programming languages and applications domains to build an empirical body of knowledge, to establish the means of evaluating automated debugging techniques more faithfully. DBG BENCH is the first human-generated benchmark for the evaluation of automated diagnosis and repair techniques and may serve as subject for in-depth case studies. To facilitate replication, the questionnaires for the retrospective and observational study are made available [39].

In empirical research, in-depth case studies that involve only two subjects may mistakenly be taken to provide little insight for the academic community. However, there is evidence to the contrary. Beveridge observed that “more discoveries have arisen from intense observation than from statistics applied to large groups” [40]. This does not mean that research focusing on large samples is not important. On the contrary, both types of research are essential [41].

As potential threat to internal validity, we note that we suggested participants to complete an error in 45 minutes so as to remain within a 20 hours time frame. Some errors would take much more time. So, given more time, the participants might form a better understanding of the runtime actions leading to the error and produce a larger percentage of correct patches. In order to control for expectancy bias, where participants might behave differently during observation, we conducted the study remotely in a virtual environment with minimal intrusion. Participants were encouraged to use their own tools. We also stressed that there was no “right and wrong behavior”.

VII. CONCLUSION AND CONSEQUENCES

Despite the surge in publications on automated debugging in the past decade, debugging is still an under-researched field—maybe not so much how tools may find faults, but more how practitioners actually debug programs, and how approaches may address their needs and processes. The DBG BENCH benchmark, introduced in this paper, provides essential data to guide future research in the field, and gives insights into the large variance at which practitioners diagnose and repair faults. DBG BENCH is available at the project website:

http://www.st.cs.uni-saarland.de/debugging/dbgbench/

The initial analysis of our studies, as presented in this paper, only scratches the surface of what can be done with the DBG BENCH benchmark. Our future work will focus on the following topics:
Better Diagnosis Tools. From both our studies, it became clear that automatically predicting a location (or a set of locations) does not provide sufficient support for developers. Descriptions that describe the circumstances of the error and the cause-effect chain of how it came to be (including associated variables and locations) would likely be much more helpful; but while humans can easily narrate these (Figure 9), producing these from automated tools is still a long way to go.

Better Repair Tools. Given the several incorrect or incomplete fixes we found in our observational study, it is evident that much better support for repairs is needed. Tools and approaches that validate a repair for correctness, determine whether a repair addresses the cause or a symptom, and can choose between multiple repairs would certainly be appreciated. Strong automated support for repairing bugs might require much better tests or specifications, as experience with automated repair tools suggests [42].

Expectations on Automatic Debugging Tools. In our retrospective study, we also asked respondents about properties that make an automatic patch acceptable, as well as additional expectations on automated bug diagnosis tools; these answers and their consequences will be discussed in an extended version of this paper.

ACKNOWLEDGMENTS

The authors would like to thank all participants and respondents for their commitment towards this project and their dedication in fixing even the hardest bugs. Curd Becker of CISPA/Saarland University provided valuable technical support throughout the project.
REFERENCES

