
Poster: How Developers Debug Software
The DBGBENCH Dataset

Marcel Böhme∗ Ezekiel O. Soremekun† Sudipta Chattopadhyay‡ Emamurho Ugherughe† Andreas Zeller†

∗School of Computing, National University of Singapore, Singapore, marcel.boehme@acm.org
†CISPA, Saarland University, Germany, {soremekun@cs,s9emughe@stud,zeller@cs}.uni-saarland.de
‡Singapore University of Technology and Design, Singapore, sudipta chattopadhyay@sutd.edu.sg

Abstract—How do professional software engineers debug com-
puter programs? In an experiment with 27 real bugs that existed
in several widely used programs, we invited 12 professional
software engineers, who together spent one month on localizing,
explaining, and fixing these bugs. This did not only allow us to
study the various tools and strategies used to debug the same set
of errors. We could also determine exactly which statements a
developer would localize as faults, how a developer would diagnose
and explain an error, and how a developer would fix an error –
all of which software engineering researchers seek to automate.
Until now, it has been difficult to evaluate the effectiveness and
utility of automated debugging techniques without a user study.
We publish the collected data, called DBGBENCH, to facilitate
the effective evaluation of automated fault localization, diagnosis,
and repair techniques w.r.t. the judgement of human experts.

Keywords-Debugging in Practice, Fault Localization, Bug Diag-
nosis, Software Repair, User as Tool Benchmark, Tool Evaluation

I. INTRODUCTION

In the software engineering community, the past decade has
seen a surge in automated debugging techniques designed to
assist programmers in localizing, explaining, and fixing faults
in software. The bulk of automated debugging research is on
Automated Fault Localization (AFL), that is, techniques that
produce a ranked list of suspicious locations in the program.
A recent survey cites more than 400 publications on AFL [1].
This is in stark contrast to the recent [2] (and antique [3])
finding that most practitioners have never used an AFL tool.
Parnin and Orso [4] set out to shed light on this dichotomy
and conducted a small user study with an AFL tool. Even
after inspecting the faulty statement in the list of suspicious
statements (whether coincidently or not), 9 of 10 participants
would spend another 10 minutes, on average, before stopping
to provide a diagnosis. Even when the faulty statement was
ranked artificially high, developers did not consider the AFL
tool more effective than traditional debugging.

Do we really understand how our tools can address the real-
world debugging needs of software engineering professionals
at work? Actually, not only do we know very little about how
practitioners debug; we also lack data and methods that would
allow us to check novel tools against practitioners’ needs.
Given an error, which locations would a human expert localize
as faulty, how would she explain the chain of events leading
to the error, and how would she fix it?

The best means of evaluating novel automated debugging
tools is by way of user studies. However, user studies are
expensive and take much time. In fact, our own user study cost
several thousand US dollars and two years of designing the
experiment, constructing a remote infrastructure, conducting
sandbox and pilot studies, and recruiting software engineering
professionals. These professionals together spent almost one
month with bug diagnosis and repair. This puts our experiment
perhaps among the longest-running user studies in the history
of automated debugging. Between 1981 and 2011, Parnin and
Orso [4] could identify no more than a handful of articles
that discussed a user study involving software professionals.
Just one study [5] also involved real errors in a real program.
Perhaps we can reduce the cost of user studies by involving
students? While there is some experience in favor [6], most
colleagues warn that students cannot be representative for ex-
perienced software engineering professionals [7], [8], [9], [10].
In fact, our own evidence is against students as participants.
The pilot study of our experiment was conducted with five
students. On average, a student fixed one (1) error in eight (8)
hours while a professional fixed 27 errors in 21.5 hours.

To allow the effective evaluation of automated debugging
techniques without the cost and effort involved in user studies,
we collected data in the following experiment with actual
practitioners, and publish this as the DBGBENCH dataset.

II. EXPERIMENT

We used the 27 real bugs from COREBENCH [11] which
were systematically extracted from the 10,000 most recent
commits and the associated bug reports. We asked 12 software
engineering professionals from 6 countries to debug these
software errors. For each error, they got a small but succinct
bug report, the buggy source code & executable, and a test
case that fails because of this error. We asked the developers
to point out the buggy program statements (fault localization),
explain how the error comes about (bug diagnosis), and to
develop a patch (bug fixing). From this data, we constructed
DBGBENCH, a benchmark to evaluate automated debugging
techniques w.r.t. human expert judgement. An example of the
benchmark is shown in Figure 1. Apart from the dataset,
we publish the protocol, questionnaires, and full setup on
our webpage, and encourage fellow researchers to repeat our
experiment for other programs and programming languages.

marcel.boehme@acm.org
{soremekun@cs,s9emughe@stud,zeller@cs}.uni-saarland.de
sudipta_chattopadhyay@sutd.edu.sg


Find “-mtime [+-n]” is broken (behaves as “-mtime n”)
Lets say we created 1 file each day in the last 3 days:
$ mkdir tmp
$ touch tmp/a -t $(date --date="yesterday" +"%y%m%d%H%M")
$ touch tmp/b -t $(date --date="2 days ago" +"%y%m%d%H%M")
$ touch tmp/c -t $(date --date="3 days ago" +"%y%m%d%H%M")

Running a search for files younger than 2 days, we expect
$ ./find tmp -mtime -2
tmp
tmp/a

However, with the current grep-version, I get
$ ./find tmp -mtime -2
tmp/b

Results are the same if I replace -n with +n, or just n.

(a) Bug Report and Test Case

If find is set to print files that are
strictly younger than n days (-mtime -n),
it will instead print files that are exactly
n days old. The function get comp type
actually increments the argument pointer
timearg (parser.c:3175). So, when
the function is called the first time
(parser.c:3109), timearg still points to
’-’. However, when it is called the second
time (parser.c:3038), timearg already
points to ’n’ such that it is incorrectly clas-
sified as COMP EQ (parser.c:3178;
exactly n days).

(b) Bug diagnosis and Fault Locations

Example Correct Patches
• Copy timearg and restore after first call

to get comp type.
• Pass a copy of timearg into first call of

get comp type.
• Pass a copy of timearg into call of

get relative timestamp.
• Decrement timearg after the first call to

get comp type.
Example an Incorrect Patch
• Restore timearg only if classified as

COMP LT (Incomplete Fix because it
does not solve the problem for -mtime
+n).

(c) Examples of (in-)correct Patches

Fig. 1. DBGBENCH Example: For the error find.66c536bb, we show (a) the bug report and test case that a participant receives to reproduce the error,
(b) the bug diagnosis that the participants provide (incl. fault locations), and (c) examples of ways how to patch the error (in-)correctly.

A. Automating the Diagnosis of Software Bugs

We find the very first evidence that bug diagnosis is indeed
no subjective matter. Most participants provide essentially the
same explanation for an error. Suppose, everyone provided a
different explanation or blamed different locations as the root
cause of an error: How could there ever be consensus about
the effectiveness or utility of an auto-generated bug diagnosis?
For each error, DBGBENCH provides an English explanation
of the chain of events that lead up to the error (Fig. 1-b). This
explanation is in agreement with 10 out of 12 participants,
on average. However, while agreeable participants were often
very confident about the correctness of their diagnosis the dis-
agreeable participants were only slightly confident, providing
further evidence in favor of our aggregated diagnoses.

Automated Fault Localization (AFL), the identification of
a ranked list of most suspicious statements, is a major topic
in automated debugging research; a recent literature survey on
AFL cites more than 400 papers [1]. A common measure of
AFL effectiveness is the proportion of suspicious locations that
a developer would need to examine before the faulty location
is found. However, we observe that there is no single fault
location that dominates a bug diagnosis, neither semantically
nor syntactically. Often, it is the complex interaction among
several statements that bring about an error. This might explain
the negative results of Parnin and Orso [4]. The middle 50%
of bug diagnoses reference between three and four continuous
code regions that can be distributed over several files. Interest-
ingly, the produced software patches tend to be local to one
function. Still, there was an overlap between the statements
mentioned in the diagnosis and the statements changed in the
patch only for 69% of submitted patches. For a memory leak,
for instance, the diagnosis references the statements causing
the leak while the patch releases the memory potentially
anywhere in the program. This motivates further research in
auto-generated patches as aids to bug diagnosis (e.g., [12]).

Our participants perceived four of 27 bugs as very difficult
to diagnose. Asked to provide a rationale, our participants
told us that certain flags, functions, or data structures were
left undocumented. This impeded program comprehension,
a prerequisite for effective debugging and motivates further
research in automated code documentation.

B. Automating the Repair of Software Bugs
Even professional software engineers with at least seven

years experience, each of whom spent more then two days
debugging 27 bugs in only two programs, submit plausible
but incorrect patches. While 282 out of 291 of submitted
patches pass the previously failing test case, only 170 patches
(58%) are actually correct in the sense that they also pass
our code review. For each error, DBGBENCH provides high-
level examples of correct and incorrect patches (Fig. 1-c).
For incorrect patches, we provide a rationale as to why we
classify them as incorrect. It is interesting to note that the
principal causes of patch incorrectness could be addressed by
automated regression testing techniques (e.g., [13], [14]): 124
patches are incorrect because they either introduce new bugs
or they did not fix the bug completely. 34 patches are incorrect
because they treat the symptom rather than the root cause, for
instance, by deleting the failing assertion. The remaining ten
incorrect patches can be classified as incorrect workarounds.
This motivates research in combining automated regression
test generation and software repair to increase the correctness
of (auto-generated) software patches.

In terms of fix ingredients, we found that one-third of
patches exclusively affect the control-flow. Such patches may
be efficiently generated by automated repair techniques such as
SPR [15]. Only very few patches would require the synthesis
of complex functions. However, many patches actually add
new statements, like a function call to release resources. Most
patches could not be generated with simple mutation operators.
Yet, three of the four bugs that were perceived to be very
difficult to diagnose are actually caused by a simple operator
fault and, hence, perceived to be easy to fix.

III. DBGBENCH DATASET

We publish the full dataset of DBGBENCH together with the
protocol, questionnaires, setup, and virtual infrastructure on
our webpage. We encourage fellow researchers to repeat our
experiment for other programs and programming languages
and utilize DBGBENCH to evaluate their novel automated fault
localization, bug diagnosis, and software repair techniques
with respect to human expert judgement.

• http://www.st.cs.uni-saarland.de/debugging/dbgbench/

http://www.st.cs.uni-saarland.de/debugging/dbgbench/


REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, Aug. 2016.

[2] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, “Studying
the advancement in debugging practice of professional software devel-
opers,” Software Quality Journal, pp. 1–28, 2016.

[3] H. Lieberman, “The debugging scandal and what to do about it (intro-
duction to the special section),” Communications of the ACM, vol. 40,
no. 4, pp. 26–29, 1997.

[4] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 20th International Sympo-
sium on Software Testing and Analysis, ser. ISSTA, 2011, pp. 199–209.

[5] A. J. Ko and B. A. Myers, “Finding causes of program output with the
Java Whyline,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’09, 2009, pp. 1569–1578.

[6] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” in Proceedings of
the 37th International Conference on Software Engineering - Volume 1,
ser. ICSE ’15, 2015, pp. 666–676.

[7] A. J. Ko, T. D. Latoza, and M. M. Burnett, “A practical guide
to controlled experiments of software engineering tools with human
participants,” Empirical Software Engineering, vol. 20, no. 1, pp. 110–
141, Feb. 2015.

[8] M. D. Penta, R. E. K. Stirewalt, and E. Kraemer, “Designing your next
empirical study on program comprehension,” in 15th IEEE International
Conference on Program Comprehension (ICPC ’07), June 2007, pp.
281–285.

[9] G. J. Myers, “A controlled experiment in program testing and code
walkthroughs/inspections,” Communications of the ACM, vol. 21, no. 9,
pp. 760–768, Sep. 1978.

[10] B. Curtis, “By the way, did anyone study any real programmers?” in
Proceedings of the First Workshop on Empirical Studies of Programmers
on Empirical Studies of Programmers, 1986, pp. 256–262.

[11] M. Böhme and A. Roychoudhury, “Corebench: Studying complexity of
regression errors,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014, 2014, pp. 105–115.

[12] Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated patches
as debugging aids: A human study,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014, 2014, pp. 64–74.

[13] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury, “Regression tests
to expose change interaction errors,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013,
2013, pp. 334–344.

[14] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury, “Partition-
based regression verification,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 302–311.

[15] F. Long and M. Rinard, “Staged program repair with condition synthe-
sis,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015, 2015, pp. 166–178.


