
How Developers Diagnose
and Repair Software Bugs

Marcel Böhme • Ezekiel O. Soremekun • Sudipta Chattopadhyay •  
Emamurho J. Ugherughe • Andreas Zeller

https://www.st.cs.uni-saarland.de/debugging/dbgbench/

Debugging

Are Automated Debugging Techniques
Actually Helping Programmers?

Chris Parnin and Alessandro Orso
Georgia Institute of Technology

College of Computing
{chris.parnin|orso}@gatech.edu

ABSTRACT
Debugging is notoriously di�cult and extremely time con-
suming. Researchers have therefore invested a considerable
amount of e↵ort in developing automated techniques and
tools for supporting various debugging tasks. Although po-
tentially useful, most of these techniques have yet to demon-
strate their practical e↵ectiveness. One common limitation
of existing approaches, for instance, is their reliance on a
set of strong assumptions on how developers behave when
debugging (e.g., the fact that examining a faulty statement
in isolation is enough for a developer to understand and fix
the corresponding bug). In more general terms, most exist-
ing techniques just focus on selecting subsets of potentially
faulty statements and ranking them according to some cri-
terion. By doing so, they ignore the fact that understanding
the root cause of a failure typically involves complex activ-
ities, such as navigating program dependencies and rerun-
ning the program with di↵erent inputs. The overall goal of
this research is to investigate how developers use and bene-
fit from automated debugging tools through a set of human
studies. As a first step in this direction, we perform a pre-
liminary study on a set of developers by providing them with
an automated debugging tool and two tasks to be performed
with and without the tool. Our results provide initial evi-
dence that several assumptions made by automated debug-
ging techniques do not hold in practice. Through an analysis
of the results, we also provide insights on potential directions
for future work in the area of automated debugging.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—Debugging Aids

General Terms: Experimentation

Keywords: Statistical debugging, user studies

1. INTRODUCTION
When a software failure occurs, developers who want to

eliminate the failure must perform three main activities.
The first activity, fault localization, consists of identifying
the program statement(s) responsible for the failure. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17–21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

second activity, fault understanding, involves understanding
the root cause of the failure. Finally, fault correction is
determining how to modify the code to remove such root
cause. Fault localization, understanding, and correction are
referred to collectively with the term debugging.
Debugging is often a frustrating and time-consuming ex-

perience that can be responsible for a significant part of the
cost of software maintenance [25]. This is especially true for
today’s software, whose complexity, configurability, porta-
bility, and dynamism exacerbate debugging challenges. For
this reason, the idea of reducing the costs of debugging tasks
through techniques that can improve e�ciency and e↵ective-
ness of such tasks is ever compelling. In fact, in the last few
years, there has been a great number of research techniques
that support automating or semi-automating several debug-
ging activities (e.g., [1,3,8,11,21,29–31]). Collectively, these
techniques have pushed forward the state of the art in de-
bugging. However, there are several challenges in scaling
and transitioning these techniques that must be addressed
before the techniques are placed in the hands of developers.
In particular, one common issue with most existing ap-

proaches is that they tend to assume perfect bug understand-
ing, that is, they assume that simply examining a faulty
statement in isolation is always enough for a developer to
detect, understand, and correct the corresponding bug. This
simplistic view of the debugging process can be compelling,
as it allows for collecting some objective information on the
e↵ectiveness of a debugging technique and provides a com-
mon ground for comparing alternative techniques. However,
this view has now become a de-facto metric for guiding the
definition of debugging techniques and assessing their use-
fulness, which is less than ideal. In fact, recently we are
witnessing a situation where many researchers are just fo-
cusing on giving a faulty statement the highest rank (in some
cases, with little gain over the state of the art).
Just focusing on statement selection and ranking ignores

the fact that understanding the root cause of a failure typ-
ically involves complex activities (e.g., navigating data and
control dependences in the code, examining parts of the pro-
gram state, rerunning the program with di↵erent inputs).
We believe that, given the maturity of the field, it is now
time to take into account the inherent complexity of these
debugging activities in both the definition and, especially,
the evaluation of debugging techniques. Such an evaluation
should involve studies on how real developers use existing
techniques and whether such use is actually beneficial.
Unfortunately, in 30 years since Weiser’s foundational pa-

per on program slicing [26], only a handful of empirical

How Do Developers Debug?

A Survey An Experiment A Benchmark

• Surveyed developers on

• time spent on debugging

• familiarity with debugged code

• debugging techniques used

• debugging techniques needed

A Survey

A Survey

When you are debugging, how often is time spent debugging other people's source
code? *
Mark only one oval.

Never

Rarely

Sometimes

Often

Always

10.

Tool Support

How often do you use the following Bug Diagnosis techniques? *
Mark only one oval per row.

Never Rarely Sometimes Often Always

Trace-based Debugging (using
printing; e.g., println, log4c)
Interactive or Online Debugging
(using breakpoints; e.g., gdb, jdb)
Post-Mortem or Offline Debugging
(using core dumps and stack
traces)
Delta Debugging to minimize
failure-inducing input (e.g.,
AskIgor)
Regression Debugging to identify
failure-inducing changes (e.g., git
bisect)
Statistical or Spectrum-based
Debugging to find suspicious
statements (e.g., Tarantula)
Program Slicing (e.g., Frama-C,
CodeSurfer)
Time Travel or Reversible
Debugging (e.g., UndoDB)
Algorithmic or Declarative
Debugging (e.g., Java DD)

11.

Are there other *automated* Bug Diagnosis
techniques not listed that you use Always or
Often?
Please specify in one to three words!

12.

We distinguish between three debugging tasks:

Bug Reproduction
Understanding the (user- or auto-generated) bug report and reproducing the bug.
Output: Program input that exposes the bug.

Bug Diagnosis
Understanding the runtime actions leading to the error and identifying the faulty statements in the
source code.
Output: Explanation of the bug.

Bug Fixing
Restructuring the faulty source code to remove the error.
Output: Fixed program that is at least as correct.

Debugging Time

How much of your *development time* do you spend reproducing, understanding, and
fixing reported bugs. *
Mark only one oval.

5% or less

5 - 10%

10 - 20%

20 - 30%

30 - 40%

40 - 50%

50 - 60%

60 - 70%

70 - 80%

80 - 90%

90% or more

8.

How much of your *debugging time* do you spend with each of the following tasks? *
Make sure it adds up to 100% :)
Mark only one oval per row.

Less
than
5%

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%
More
than
95%

Bug
Reproduction
Bug Diagnosis
Bug Fixing

9.

A Survey

• Advertised on Upwork, Freelancer, Github…

• 180 developers participated

• Majority with 7+ years of experience

• 1/4 students, 1/6 researchers

• Ran over 18 months

A Survey

Demographics

●● ●

● ●●
●●●●●● ●

%
D

evelopm
ent Tim

e
%

D
ebugging Tim

e

0% 25% 50% 75% 100%

Debugging

Diagnosis

Patching

Reproduction

Spending Time

Debugging Techniques Used

Statistical Debugging

Algorithmic Debugging

Time Travel Debugging

Program Slicing

Regression Debugging

Post−Mortem Debugging

Interactive Debugging

Trace−based Debugging

0% 25% 50% 75% 100%

Never

Rarely

Sometimes

Often

Always
Frequency

• Asked developers for which output an
automated diagnosis assistant would
provide if the respondent designed the tool.

• Used open card sort to obtain categories

• Here, focus on categories hardly addressed
by current tools

A Survey

What do Developers need?

• generate a diagnosis or explanation why the error
occurs (25%)

• report the most general environment or conditions
under which the bug can be reproduced (14%)

• visualize divergence from the expected value of a
variable (10%)

• visualize the range of expected values for a given
variable (4%)

A Survey

Debugging Tools Should…

• highlight the symptoms and side-effects of
an error (11%)

• classify the error according to its symptom in
a category (14%)

• evaluate criticality of the symptoms
(e.g., security risk) (2%)

A Survey

Debugging Tools Should…

• 18% of respondents would output an
auto-generated patch as debugging aid.

A Survey

Automated Repair

How Do Developers Debug?

A Survey An Experiment A Benchmark

• Based on survey, we designed and
conducted experiments with professional
software developers to find out how they
debug programs.

An Experiment

An Experiment

• How much time do developers spend on bug
diagnosis and patching?

• What makes difficult errors so difficult?

• Is there a single fault, a single diagnosis, a
single patch?

• How correct and plausible are the fixes?

Experiment Goals

An Experiment

• Set up Docker virtual environment with
most common development and debugging
tools, including gdb, vim, and Eclipse

• Set up README file, 34 slides, and
10 tutorial videos

• Used 27 reproducible errors in find and
grep from COREBENCH (17k/19k LOC)

Experiment Subjects

An Experiment

• Participants with C experience from survey

• 1 researcher and 11 professional software
engineers from six countries (Russia, India,
Slovenia, Spain, Canada, and Ukraine)

• Paid 540 US$ each for time and effort

• Problems with German minimum wage law

An Experiment

Demographics

Hang in grep -F for empty string search

Searching with grep -F for an empty string in a
multibyte locals would freeze grep.

For example,
$ export LC_ALL=en_US.UTF-8
$ echo "abcd" | ./grep -F ""
(runs forever)

grep.5fa8c7c9 bug report

An Experiment

Debug this!

Time Spent

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

Combined Bug Diagnosis Patching

Not at all difficult

Slightly difficult

Moderately difficult

Very difficult

Extremely difficult

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Debugging/Fixing Time (in min)

Type
● Crash

Functional

Infinite Loop

Resource Leak

• On average, participants spent 32 minutes diagnosing an error
and 16 minutes patching it

Single Diagnosis Assumption

• For each error, we asked participants to provide a diagnosis: the root cause
of the error and the runtime actions leading to the error (with locations)

• 85% of participants provide essentially the same diagnosis for an error.

find.24e2271e
Error Type: Functional Bug
Avg. Time: 13.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 75%

If find is set to print the found file’s base directory followed by the found file’s name (-printf ’%H %P\n’) and there exist directories of
different length, then find incorrectly splits base directory and file name during printing. Because the index state.starting path is set only for the
first working directory (ftsfind.c:278-279) the incorrect value of state.starting path is used when printing base directory and file name
(pred.c:709-718, pred.c:813). Examples of Correct Fixes: 1) Recompute state.starting path length for each argv before calling find.
2) Weaken condition that prevents state.starting path length to be reset. Example of Incorrect Fix: Always update state.starting path length
even if ent->fts level != 0 (Regression because it then carries the incorrect ”starting path length”).

find.dbcb10e9
Error Type: Crash
Avg. Time: 22.9 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 81%

If find is set to print all files that are exactly 2 days old (-mtime 2), it crashes with a segmentation fault. Variable **pend is defined as pointer
pointer (parser.c:2739) and expected to be allocated when xstrtoumax is called (parser.c:2759). However, it is still NULL after the
call such that the null pointer check for pend* is itself a null pointer dereference (parser.c:2762). Examples of Correct Fixes: 1) Add
null pointer check for pend. 2) Change definition of **pend to *pend and update references. 3) Allocate memory for **pend. Examples
of Incorrect Fixes: 1) Remove code containing null pointer dereference (Treating the Symptom). 2) Change the check involving **pend
(Treating the Symptom because the nullpointer is still dereferenced, only the program does not crash).

find.07b941b1
Error Type: Crash
Avg. Time: 23.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 80%

If find is set to search for file matching a regular expression (-regex ’.*’), the argument pointer arg ptr is incremented (parser.c:1644)
before it is used (parser.c:1645) which results in a nullpointer dereference (parser.c:926). Examples of Correct Fixes: 1) Increment
arg ptr *after* argv[*arg ptr] is read. 2) Save the previous value of argv[*arg ptr] in a temporary variable and use this one. Examples of
Incorrect Fixes: 1) Do not increment arg ptr at all (Regression because other arguments may not be parsed at all). 2) Add null-pointer check
(Incomplete Fix because estimate pattern match is still called with a nullpointer).

find.c8491c11
Error Type: Crash
Avg. Time: 31.4 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to print files that are newer than a reference file and this reference file is not specified (-newerXY), find crashes with a segmentation
fault. This is caused by incrementing the argument pointer arg ptr without a bounds check (parser.c:1315) resulting in a null pointer
dereference (lib/quotearg.c:249). Examples of Correct Fixes: Check for nullpointer directly after increment of arg ptr. Examples
of Incorrect Fixes: 1) Check for nullpointer only before or in fatal file error (Incomplete Fix because null pointer might still propagate via
parser.c:1342 or parser.c:1347). 2) Do not increment the pointer at all (Regression because some arguments may not be parsed, at all).

find.6e4cecb6
Error Type: Functional Bug
Avg. Time: 38.2 min
Explanation: Moderately difficult
Patching: Not at all difficult
Correctness: 89%

If find is set to search a directory referenced by a symbolic link and containing a file, and find is set to follow symbolic links (-L) or to
not follow symbolic links except for those set to be searched (-H), then find does not print the file in the referenced directory and instead
reports ”Too many levels of symbolic links”. Because of a mixup in the condition of a ternary operator (find.c:1094), extraflags are set
to O NOFOLLOW when it should be 0 and to 0 when it should be O NOFOLLOW. The flag controls whether symlinks are followed when
a directory is opened (find.c:1097). Because of this fault, safely chdir returns SafeChdirFailSymlink (find.c:1618) whence the error
message is printed (find.c:1642). Example of Correct Fix: Fix ternary operator. Example of Incorrect Fix: Do not fail if safely chdir
returns SafeChdirFailSymlink (Treating the Symptom).

find.091557f6
Error Type: Crash
Avg. Time: 44.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it aborts with a coredump
instead of listing the symbolic links and terminating gracefully. If a symbolic link loop exists, no stat information is available and the flag
FTS NS is set (ftsfind:584). The flag is not properly handled (ftsfind.c:425-446), such that state.type and mode are incorrectly
set (ftsfind.c:460) and the assertion fails (pred.c:1578). Example of Correct Fix: Handle FTS NS flag. Examples of Incorrect
Fixes: 1) Remove violated assertion (Treating the Symptom). 2) Force stat() to be called such that stat information is available (Incorrect
Workaround because stat() is not supposed to be called on symlink loops).

find.24bf33c0
Error Type: Crash
Avg. Time: 45.1 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it still prints the looping
links while an error message is expected. If a symbolic link loop exists, no stat information is available and the flag FTS NS is set
(ftsfind.c:586). The flag is not properly handled (ftsfind.c:431-446) so that the links are printed (pred.c:1459). Example of
Correct Fix: Handle FTS NS as error IF symlink loop. Examples of Incorrect Fixes: 1) Handle FTS NS as error independent of whether
it is a symlink loop (Regression because FTS NS alone does not indicate an error). 2) Handle all flags as error (Regression because not all
flags indicate errors).

find.183115d0
Error Type: Resource Leak
Avg. Time: 49.2 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 83%

If we ulimit the number file descriptors that can be open simulatanously and set find to execute ls for every subdirectory (-execdir ls ’{}’
\;), it quickly runs out of file descriptors. File descriptors are always opened (pred.c:520) but never closed (pred.c:659-664) which
raises an error when no more descriptors are available (pred.c:579). Example of Correct Fix: Close file descriptor as soon as it is not
used anymore. Example of Incorrect Fix: Close random file descriptor (Incomplete Fix because still leaking file descriptors).

find.93623752
Error Type: Functional Bug
Avg. Time: 50.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

There are two errors: 1) If find is set to search for files that were changed in the last n days but n is not a number (-ctime x), then find
complains about a ”missing” argument instead of reporting the ”incorrect” argument. Function parse time calls collect args to assign the current
argument argv[*arg ptr] to timearg and increment the argument pointer arg ptr (parser.c:3102). When timearg is failed to be parsed as a
number, parse time returns without decrementing arg ptr (parser.c:3127-3128). When the error is reported (tree.c:1248-1271),
the argument pointer points to NULL directly after the incorrect argument (tree.c:1250), such that the error is reported as missing
argument instead of invalid argument. 2) If find is set to search for files belonging to a certain group but the group-id is not specified or not a
number (-gid x), then find crashes with a segmentation fault. When the argument following the -gid option is being parsed (parser.c:913),
insert num returns NULL because argv[*arg ptr] is NULL or not a number (parser.c:3235-3259). This nullpointer remains unchecked
and is dereferenced leading to a segmentation fault (parser.c:914). When nullpointer dereference is fixed the same symptom is observed
for -gid as for -ctime because the argument pointer is also forgot to be decremented. Examples of Correct Fixes: For first error, 1)
decrement/restore arg ptr when parsing of second argument of an option fails or 2) use copy of old argument during error-reporting. For
second error, add null pointer check. Example of Incorrect Fix: For first error, decrement argument pointer before even calling parse time
(Regression because even correct arguments are reported as incorrect ones).

find.66c536bb
Error Type: Functional Bug
Avg. Time: 55.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

If find is set to print files that are strictly younger than 2 days (-mtime -2), it will instead print files that are exactly 2 days old. The
function get comp type actually increments the argument pointer timearg (parser.c:3175). So, when the function is called the first time
(parser.c:3109), timearg still points to ’-’. However, when it is called the second time (parser.c:3038), timearg already points to ’2’
such that it is incorrectly classified as COMP EQ (parser.c:3178). Examples of Correct Fixes: 1) Save timearg in auxiliary variable
and restore after first call to get comp type. 2) Pass a copy of timearg into the first call of get comp type. 3) Pass a copy of timearg into
get relative timestamp (which calls get comp type the second time). 4) Decrement timearg after the first call to get comp type. Example
of Incorrect Fix: Restore timearg only if classified as COMP LT (Incomplete Fix because it does not solve the problem for -mtime +2).

find.b445af98
Error Type: Functional Bug
Avg. Time: 56.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search a directory containing a symbolic link, to not follow any symbolic links (except for those specified on the command
line; -H), and to print only symbolic links (-type l), then find does not print the link. The root cause is that state.cur depth is used before
it is set. When digest mode checks whether to follow symlinks (util.c:629), state.curdepth is still 0 (util.c:607), so that mode are
incorrectly set to follow symlinks (util.c:630-636). Only later state.curdepth is set (ftsfind.c:230). Because of the incorrect value
of mode, it is incorrectly decided not to print the file (pred.c:1749). Example of Correct Fix: Move state.curdepth assignment to shortly
before digest mode is called. Examples of Incorrect Fixes: 1) Change check to match incorrect value (0) of state.curdepth (Treating the
Symptom). 2) Force stat() to be called such that stat information is available (Incorrect Workaround because stat() is not supposed to be called
on symlink loops).

find.ff248a20
Error Type: Infinite Loop
Avg. Time: 57.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 40%

If find is set to search a directory containing a symbolic link that references an ancistor directory and if find is set to follow symlinks (-follow),
then it runs indefinitely. The global variable dir ids tracks the directories that have already been visited. The function process path would
correctly exit with a loop warning (find.c:1428-1434) if the current directory (in stat buf) has already been visited. However, after the
current directory is correctly added to those that have already been visited (find.c:1442), the same entry is overriden with uninitialized
values (find.c:1621) such that the current directory is never marked as already visited. Examples of Correct Fixes: 1) Remember
whether stat() has been called. If not done, call stat() before overriding dir ids[dir curr] at find/find.c:1621. 2) Always stat() before overriding
dir ids[dir curr] at find/find.c:1621 such that statbuf is initialized. 3) Only overwrite dir ids[dir curr] if statbuf is initialized. Examples of
Incorrect Fixes: 1) Never override dir ids[dir curr] (Regression because it isn’t overridden when it should be). 2) Follow links to a maximum
depth of 1 (Regression because symlinks might need to be followed to an arbitrary depth).

find.e6680237
Error Type: Functional Bug
Avg. Time: 76.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 27%

If find is set to search a directory containing three other directories which contain the folder ”bug” and to execute pwd in every folder containing
the folder ”bug” (-name bug -execdir pwd \;), then find prints the first directory three times. The reason is that the working directory specified
in execp->wd for exec is set only once (pred.c:513-527) and never updated. Examples of Correct Fixes: 1) Correct buggy if-condition
by substituting excep->wd for exec by execp->todo. 2) If is exec in local dir, then always reallocate execp->wd for exec and remove
the assertion. Example of Incorrect Fix: Remove if-condition such that it always redefines execp->wd for exec and keep assertion that
execp->todo is false (Regression because execp->todo might be true such that assertion may fail).

find.e1d0a991
Error Type: Functional Bug
Avg. Time: 88.2 min
Explanation: Very difficult
Patching: Very difficult
Correctness: 17%

If find is set to a directory containing a file, to follow symbolic links (-L), and to execute ls for every subdirectory (-execdir ls ’{}’ \;),
then find incorrectly also prints the base directory. If find is set to follow symlinks, the flag FTS LOGICAL is set (ftsfind.c:349)
before the directory search is initiated (ftsfind.c:364). When a directory is searched (ftsfind.c:373), the working directory
is not changed because FTS LOGICAL is set. Hence, the *full* pathname is passed as argument to execdir (pred.c:484-490 and
pred.c:467-471). Example of Correct Fix: Correctly compute pathname and prefix in new impl pred exec. Example of Incorrect
Fix: Remove FTS LOGICAL flag (Incorrect Workaround because FTS LOGICAL is supposed to be set).

grep.55cf7b6a
Error Type: Functional Bug
Avg. Time: 21.1 min
Explanation: Slightly difficult
Patching: Not at all difficult
Correctness: 91%

If grep is set to silently skip devices, FIFOs, and sockets (-D skip), then grep does not search on standard input when no file is provided. When
the skip option is enabled, variables devices is set to SKIP DEVICES (main.c:1852-1859). If no file is provided, variable file is NULL
and variable desc is set to STDIN FILENO (main.c:1217-1218). The code which handles SKIP DEVICES (main.c:1246-1255)
decides to skip STDIN (which is a special device) even though it should not (desc == STDIN FILENO). Examples of Correct Fixes: 1) Do
not skip if desc is set to STDIN FILENO. 2) Do not skip if file is not set (and thus desc is set to STDIN FILENO). Example of Incorrect
Fix: Negate the skip condition (Regression because it skips everything that should not be skipped while indeed not skipping STDIN).

grep.54d55bba
Error Type: Crash
Avg. Time: 26.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 69%

If grep is set to search in all files under each directory recursively (-r) but to exclude certain directories (–exclude-dir=foo), then grep
crashes with a segmentation fault. When grepdir computes the name space (src/grep.c:1361), it calls function isdir1 via function
savedir (lib/savedir.c:123). Now, the code in isdir1 that is supposed to remove the trailing slashes from the directory name uses
the uninitialized variable path instead of variable dir (lib/savedir.c:51). The nullpointer dereference results in a segmentation fault.
Example of Correct Fix: Substitute path with dir. Examples of Incorrect Fixes: 1) Return if path is not initialized (Regression because
isdir1 returns false even if dir is a directory). 2) Only use path if initialized (Regression because isdir1 does not remove trailing slashes).

grep.9c45c193
Error Type: Functional Bug
Avg. Time: 37.7 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 83%

If grep is set to search only specific files (–include=a.txt), then grep does not print a match even if there is one. First, main correctly adds the
include pattern with EXCLUDE INCLUDE flag set (grep.c:2136-2140). When the files are chosen for the search, files that are supposed
to be included are actually excluded because the return value of excluded file name is unnecessarily negated (grep.c:2267-2269). The
negation is unnecessary because the function exclude file name is incorrectly assumed to treat excludes and includes the same. However, the
behavior changes if the EXCLUDE INCLUDE flag is present (lib/exclude.c:410, lib/exclude.c:359). Examples of Correct
Fixes: 1) Remove negation such that included patterns are not excluded during classification. 2) Do not set EXCLUDE INCLUDE flag
for included patterns which effectively negates the faulty condition. Example of Incorrect Fix: Independent of whether a file matches the
included pattern, never exclude (Regression because it doesn’t skip files that are *not* in the included patterns).

grep.5fa8c7c9
Error Type: Infinite Loop
Avg. Time: 38.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If grep is set to search for fixed strings (-F), the empty string is given (””), and the locale is UTF8, then grep runs undefinitely. When
FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Because len=0, the check is mb middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns
true (kwsearch.c:108). However, the size of the supposed multibyte character is computed as mb len=1 (kwsearch.c:115). When
mb len-1 is added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The
loop is continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is mb middle returns false for
len=0. 2) Only call is mb middle if len is set. 3) Jump to success if mb len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because it breaks multibyte character handling). 3) Remove part of the check which causes
is mb middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match size but teturn complete
buffer until end of line (Regression because only match should be returned).

grep.db9d6340
Error Type: Infinite Loop
Avg. Time: 40.6 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 45%

If grep conducts a fixed-strings search (-F) for a pattern that contains multibyte characters, then it runs indefinitely. When EXECUTE FCT
finds a match in the middle of a multibyte character, it is supposed to continue after the multibyte character (search.c:638-639).
However, the beginning of the next multibyte character is not found, and mb start remains unchanged (search.c:228-256). After beg is
assigned mb start minus 1, the loop is continue’d (search.c:640). The loop exit condition never holds (search.c:632) because beg
never exceeds buf + size, resulting in an infinite loop. Examples of Correct Fixes: 1) Raise an error, if is mb middle is unsuccessful in
finding the beginning of the multi-byte and adjusting mb start. 2) Go to after the current match. Examples of Incorrect Fixes: 1) Remove
continue (Treating the Symptom). 2) Do not reset beg (Regression because it breaks multibyte character handling).

grep.2be0c659
Error Type: Functional Bug
Avg. Time: 47.2 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) in a file containing 8-bit characters and the current locale is Turkish UTF8, then grep prints the
wrong output. When grep conducts a case-insensitive search, it lowers the case of the input string before matching (search.c:384-392).
The lower case of an upper-case 8-bit character might occupy one more or less bytes. The latter case is not handled. When the match size
is computed (grep.c:1081), the lower-case match is used (grep.c:1060-1062). When the match is printed, the incorrect lower-case
match size which is usually larger than the actual match size is used (grep.c:1085-1091). Examples of Correct Fixes: 1) Update the
map that maps lower-case character to the normal case characters to account for cases where the number of bytes it occupies *decreases*
in the lower-case. 2) To correct the match size, lower-case as many characters in the normal-case match as result in match size lower-case
characters. Examples of Incorrect Fixes: 1) Return complete line if match exists (Regression because only the match should be returned).
2) Add the difference in length of lower-case and normal-case string to the match size (Incomplete Fix because for files that have more
multibyte characters than given in the match, grep reports longer matches than needed).

grep.8f08d8e2
Error Type: Functional Bug
Avg. Time: 48.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 75%

If grep is set to search for lines containing whole words that match a regular expression (-w), it prints only the match instead of the complete
line. When execute searches for a match, it correctly sets variable len to the length of the match (search.c:388). When it is checked if
the match aligns with word bounderies (search.c:408-414), the match length len still points to the end of the match. So, execute returns
the length of the match instead of the end of the line (grep.c:997). Examples of Correct Fixes: 1) Add statement: goto success (which
updates len with end - beg). 2) Update len with end - beg. Example of Incorrect Fix: Always return complete line (Regression because in
some settings grep should return only the match).

grep.58195fab
Error Type: Functional Bug
Avg. Time: 50.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 82%

If grep is set to search all TXT files (–include=”*.txt”) but excluding some files (–exclude=”foo.txt”), then grep also searches files that are not
TXT ignoring the include option. Because included patterns is not initialized with EXCLUDE WILDCARDS (src/grep.c:2137), the
exclude pattern is not added in add exclude (lib/exclude.c:449). Files are matched exactly (treating ”*.txt” as file name) instead of using
wildcards (lib/exclude.c:417-427). These files are then incorrectly classified as included/excluded (src/grep.c:2261-2271).
Examples of Correct Fixes: 1) Add EXCLUDE WILDCARDS flag for includes. 2) Add EXCLUDE INCLUDE flags for excludes if there
are includes. Examples of Incorrect Fixes: 1) Substitute EXCLUDE INCLUDE with EXCLUDE WILDCARDS for includes (Regression
because EXCLUDE INCLUDE flags must also be set for includes). 2) Negate condition that decides whether to exclude (Regression because
files that are specified to be excluded are now included).

grep.c1cb19fe
Error Type: Functional Bug
Avg. Time: 58.4 min
Explanation: Very difficult
Patching: Slightly difficult
Correctness: 71%

If grep searches for string specified in a bracket expression, then for some UTF8 locales (ru RU.UTF-8) grep does not print a match. For some
locales dfaparse sets the global flag hard LC COLLATE (dfa.c:1418) to denote that characters are ordered in a strange way (e.g. Russian
cyrilic). If hard LC COLLATE is set, then lex prepares the info about the letters in the bracket expression and finally calls in coll range
(dfa.c:1103-1116). Now, in coll range uses the correct function strcoll to compare the letters, but the condition is incorrect and the
wrong character are selected to be in the range that is specified by the bracket expression. Hence, there is no match reported. Example of
Correct Fix: Fix the simple operator fault. Examples of Incorrect Fixes: 1) Fix locale, such that multibyte characters do not need to be
handled (Regression because LC ALL is supposed to be handled). 2) Implement in coll range as locale implemented match (Regression
because match is supposed to be locale dependent).

grep.7aa698d3
Error Type: Functional Bug
Avg. Time: 59.9 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) on an input that contains multibyte characters and the locale is UTF8, then grep prints a match of
incorrect length. When conducting the case-insensitive search, EXECUTE FCT first computes a lower-case of the input (search.c:388).
The length of the match is computed for the match in the lower-case input (search.c:555). However, the lower-case of a multibyte
character can take 1 byte less. So, the length of the normal-case and lower-case input differ. The computed value of match size could be half
the expected value (grep.c:1081-1085). Hence, the match in the normal-case input is printed with incorrect length (grep.c:1091).
Example of Correct Fix: Add a mapping between normal-case and lower-case string to compute the length of the match in the normal-case
string from the length of the match in the lower-case string. Examples of Incorrect Fixes: 1) Do not lower the case (Regression because
a case-insensitive search is case-sensitive). 2) If matched string contains a multibyte char, double the match size (Incomplete Fix because it
works only of all are multibyte characters). 3) Print complete line if there is a match (Regression because only match should be returned).

grep.3220317a
Error Type: Crash
Avg. Time: 63.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 20%

If grep searches for a bracket expression containing a multibyte character in a file that contains multibyte characters and the current locale
is UTF8, then grep crashes with a segmentation fault. When parse bracket exp parses the next character, array index c is assigned EOF
(-1) if the character is multibyte (dfa.c:498, dfa.c:363) while wc is assigned the correct index. However, when parse bracket exp
calls setbit case fold (dfa.c:697) it uses c which overflows during the cast from int to unsigned. After setbit case fold has called setbit
(dfa.c:274), the array is accessed at a too large index which causes a segmentation fault (dfa.c:168). Example of Correct Fix: Use
wc instead of c (which equals c if the character is not multibyte). Examples of Incorrect Fixes: 1) Check for overflow condition c=EOF
(Treating the Symptom because multibyte characters are still handled incorrectly). 2) Use an arbitrary value instead of c (Treating the Symptom
because while it does not crash, the bracket expression is not correctly handled).

grep.3c3bdace
Error Type: Crash
Avg. Time: 64.8 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 70%

If grep searches for a certain extended regular expression (-E ’(ˆ|)*(| $)’), then it crashes with a coredump. When dfaanalyze allocates memory
for merged.elems (dfa.c:1728), it allocates insufficient memory because merged.elems can grow to twice the original size (dfa.c:1455).
Then memory is corrupted when the array is accessed out of bounds (dfa.c:1453). Only later the program crashes because of the corrupted
memory (dfa.c:1917). Examples of Correct Fixes: 1) Allocate twice or 3x as much for merged.elems. 2) Reallocate as needed. Example
of Incorrect Fix: Always reset the number of elements (nelem) to 0 (Regression because we always override the first element).

grep.c96b0f2c
Error Type: Functional Bug
Avg. Time: 67.6 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 50%

If grep conducts a case-insensitive search (-i) for the empty line (’ˆ$’) and an UTF-8 locale is set, then grep reports matches even for
non-empty lines. For case-sensitive searches or 8-bit locales, execute is called with the complete buffer and correctly returns no match
(grep.c:1045-1046). Otherwise, execute is called for each line (grep.c:1048-1063). However, execute does not handle the case
when no match is found (search.c:388), which is why the non-match is printed (grep.c:1091). Examples of Correct Fixes: 1) Handle
case where no match was found by breaking loop if next beg == buflim. 2) Skip printing if match is empty and we are not in inversion mode
(-v). Example of Incorrect Fix: Skip printing if match is empty even if in inversion mode (Regression because it breaks inversion mode).

Fig. 9. Complete list of errors and their average debugging time, difficulty, and patch correctness, with human-generated explanations of the runtime actions
leading to the error, and examples of correct and incorrect fixes, sorted according to average debugging time (zoom required).

Better Diagnosis Tools. From both our studies, it became
clear that automatically predicting a location (or a set
of locations) does not provide sufficient support for
developers. Descriptions that describe the circumstances
of the error and the cause-effect chain of how it came to
be (including associated variables and locations) would
likely be much more helpful; but while humans can easily
narrate these (Figure 9), producing these from automated
tools is still a long way to go.

Better Repair Tools. Given the several incorrect or incom-
plete fixes we found in our observational study, it is
evident that much better support for repairs is needed.
Tools and approaches that validate a repair for correct-
ness, determine whether a repair addresses the cause or
a symptom, and can choose between multiple repairs
would certainly be appreciated. Strong automated support
for repairing bugs might require much better tests or

specifications, as experience with automated repair tools
suggests [42].

Expectations on Automatic Debugging Tools. In our retro-
spective study, we also asked respondents about proper-
ties that make an automatic patch acceptable, as well as
additional expectations on automated bug diagnosis tools;
these answers and their consequences will be discussed
in an extended version of this paper.

ACKNOWLEDGMENTS

The authors would like to thank all participants and re-
spondents for their commitment towards this project and their
dedication in fixing even the hardest bugs. Curd Becker of
CISPA/Saarland University provided valuable technical sup-
port throughout the project.

• Is this what automated debugging tools should provide?

Single Fault Assumption

• In their diagnosis of the
error, participants on
average reference 3–4
code regions

➡ One suspicious statement
does not suffice to
understand the error

➡ But one diagnosis could
help!

●

●

●●

●

●

●

●
●

●●

●

●●

●

●
●

●●

●●

●

●

●

Regions per Error Statements per Error Statements per Region

2

4

6

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Lo
ca

tio
ns

Patch vs Fault Location

• Only 69% of submitted
patches modify statements
that are referenced in the
bug diagnosis.

• Often, there are several
ways to patch an error
correctly, syntactically and
semantically.

Correctness

• 97% (282/291) of the submitted
patches pass the test case

• 58% (170/291) are actually
correct 0%

10%

20%

30%

40%

50%

Incomplete Fix Incorrect
Workaround

Regression Treating the
Symptom

Fr
eq

ue
nc

y

Bug Diagnosis StrategiesC. Bug Diagnosis Strategies

For each error, we asked participants which concrete steps
they took to understand the runtime actions leading to the
error. We observed the following bug diagnosis strategies.

Classification. We extend the bug diagnosis strategies that
have been identified by Romero and colleagues [5], [24]:

• (FR) Forward Reasoning. Programmers follow each computational step
in the execution of the failing test.

• (BR) Backward Reasoning. Programmers start from the unexpected
output following backwards to the origin.

• (CC) Code Comprehension. Programmers read the code to understand
it and build a mental representation.

• (IM) Input Manipulation. Programmers construct a similar test case to
compare the behavior and execution.

• (OA) Offline analysis. Programmers analyze an error trace or a core-
dump (e.g. via valgrind, strace).

• (IT) Intuition. Developer uses her experience from a previous patch.

Specifically, we identified the Input Manipulation (IM) bug
diagnosis strategy. Developers would first modify the failing
test case to construct a passing one. This gives insight into
the circumstances required to observe the error. Next, they
would compare the program states in both executions. IM
is reminiscent of classic work on automated debugging [25]
which might again reflect the potential lack of knowledge
about automated techniques that have been available from the
research community for over a decade.

 0

 10

 20

 30

 40

 50

 60

BR CC FR IM OA IT

Fr
eq

ue
nc

y
(%

)

Debug strategy

Frequency of debug strategies over different bug types

crash
resource leak

functional
infinite loop

Fig. 8. Frequency of diagnosis strategies for different error types.

Frequency. Forward reasoning and code comprehension
(FR+CC) are the most frequently used diagnosis strategies.
The frequency of bug diagnosis strategies is shown in Figure 8
for the different error types. We also observe that past experi-
ence (IT) is used least frequently. Therefore, we consider the
set of diagnosis strategies to be representative for debugging
real and unknown errors. Many participants used input mod-
ification (IM) as diagnosis strategy. Therefore, the integration
of automated techniques that implement IM (e.g. [25]) into
mainstream debugger will help improve debugger productivity.

Error Type. We can see in Figure 8 that most infinite loops
(58%) are diagnosed with forward reasoning (FR). Intuitively,
there is no last executed statement which can be used to reason
backwards from. Two in five crashes (40%) are diagnosed
with backward reasoning (BR). Intuitively, the crash location
is most often a good starting point to understand how the
crash came about. Two in five functional errors (40%) are
diagnosed with forward reasoning (FR). If the symptom is an
unexpected output, the actual fault location can be very far
from print statement responsible for the unexpected output.
It may be better to start stepping from a location where the
state is not infected, yet. Input modification is used for 10% of

functional errors to understand what distinguishes the failing
from a passing execution.

Tools. Every participant used a combination of trace-based
and interactive debugging. For resource leaks, participants fur-
ther used tools such as valgrind and strace. We also observed
that participants use bug diagnosis techniques that have been
automated previously [25], albeit with manual effort, to narrow
down the pertinent sequence of events.

D. Repair Ingredients

Participants submitted a sum total of 291 patches where
one third (34%) exclusively affects the control-flow, one third
(30%) exclusively affects the data-flow, and the remaining
patches (36%) affect both.

Control-Flow. In automated repair research, the patching
of control-flow is considered tractable because the search
space is binary [26]: Either a set of statements is executed or
not. The frequency with which participants patch the control-
flow provides some insight about the effectiveness of such
an approach. The control-flow is modified by seven in ten
patches (69%). Of all the patches that affect the control-flow,
a branch condition is changed by 63%. The loop or function
flow is modified by every fifth patch that affects the control-
flow (19%).7 A new if-or-else branch is added by two of every
five patches affecting the control-flow (43%). In many cases,
an existing statement is then moved into the new branch or a
new function call is added.

Data-Flow. The data-flow is modified by two of every
three patches (64%). Of all patches that change the data-
flow, a variable value or function parameter is changed by
30%. The RSRepair [27] and GenProg [28] automated repair
systems copy and move existing program statement while
Kali [29] effectively deletes existing statements. In our study,
participants add, move, or delete a statement in 39%, 24%,
and 16% of their patches that affect the data-flow, respectively.
Every fifth patch that affects the data-flow (21%) actually adds
a new function call, for instance to report an error or to release
resources. A completely new variable is declared in every sixth
patch that affects the control flow (14%). Only 2.8% of all
patches introduce complex functions that would need to be
synthesized.

Patch Complexity. Mutation testing [30] is based on the
assumption that test case finding simple errors that are ar-
tificially injected are also effective in finding more complex
errors. Errors are injected using simple changes for instance by
deleting a statement, changing an arithmetic or binary operator,
or substituting variables and constants. These ideas have also
been applied to automated program repair [31]. However, in
our study, we find that only every ninth patch (12%) actually
changes an arithmetic or binary operator. Every fifth patch
(17%) substitutes a variable or constant by another. Most
patches affect only one statement (median 1). Yet, on average,
every patch applies about two changes to modify either data-
flow or control-flow.

7Examples of changing the loop or function flow are adding a return, exit,
continue, or goto statement.

 0

 10

 20

 30

 40

 50

 60

BR CC FR IM OA IT

Fr
eq

ue
nc

y
(%

)

Debug strategy

Frequency of debug strategies over different bug types

crash
resource leak

functional
infinite loop

Patch Effects

• 70% of patches affect control flow:

• 63% change a branch condition

• 19% modify loop or function flow

• 43% add new branches

• 64% of patches affect data flow:

• 30% change a variable

• 39% add a statement; 
24% move one, 16% delete one

• 2.8% introduce new functions

Implications

An Experiment

• Program understanding is crucial: 
Better documentation

• Events leading to failure involve multiple steps: 
Need automated event chains

• Automated suggestions and patches may not
help with these problems

How Do Developers Debug?

A Survey An Experiment A Benchmark

A Debugging Benchmark

A Benchmark

DBGBENCH contains 27 errors, each with
• failing test case
• simplified bug report
• the identified fault locations
• an explanation of the events leading to the error
• the time taken to understand and fix the error
• examples of correct and incorrect patches.

A Debugging Benchmark

A Benchmark

find.24e2271e
Error Type: Functional Bug
Avg. Time: 13.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 75%

If find is set to print the found file’s base directory followed by the found file’s name (-printf ’%H %P\n’) and there exist directories of
different length, then find incorrectly splits base directory and file name during printing. Because the index state.starting path is set only for the
first working directory (ftsfind.c:278-279) the incorrect value of state.starting path is used when printing base directory and file name
(pred.c:709-718, pred.c:813). Examples of Correct Fixes: 1) Recompute state.starting path length for each argv before calling find.
2) Weaken condition that prevents state.starting path length to be reset. Example of Incorrect Fix: Always update state.starting path length
even if ent->fts level != 0 (Regression because it then carries the incorrect ”starting path length”).

find.dbcb10e9
Error Type: Crash
Avg. Time: 22.9 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 81%

If find is set to print all files that are exactly 2 days old (-mtime 2), it crashes with a segmentation fault. Variable **pend is defined as pointer
pointer (parser.c:2739) and expected to be allocated when xstrtoumax is called (parser.c:2759). However, it is still NULL after the
call such that the null pointer check for pend* is itself a null pointer dereference (parser.c:2762). Examples of Correct Fixes: 1) Add
null pointer check for pend. 2) Change definition of **pend to *pend and update references. 3) Allocate memory for **pend. Examples
of Incorrect Fixes: 1) Remove code containing null pointer dereference (Treating the Symptom). 2) Change the check involving **pend
(Treating the Symptom because the nullpointer is still dereferenced, only the program does not crash).

find.07b941b1
Error Type: Crash
Avg. Time: 23.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 80%

If find is set to search for file matching a regular expression (-regex ’.*’), the argument pointer arg ptr is incremented (parser.c:1644)
before it is used (parser.c:1645) which results in a nullpointer dereference (parser.c:926). Examples of Correct Fixes: 1) Increment
arg ptr *after* argv[*arg ptr] is read. 2) Save the previous value of argv[*arg ptr] in a temporary variable and use this one. Examples of
Incorrect Fixes: 1) Do not increment arg ptr at all (Regression because other arguments may not be parsed at all). 2) Add null-pointer check
(Incomplete Fix because estimate pattern match is still called with a nullpointer).

find.c8491c11
Error Type: Crash
Avg. Time: 31.4 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to print files that are newer than a reference file and this reference file is not specified (-newerXY), find crashes with a segmentation
fault. This is caused by incrementing the argument pointer arg ptr without a bounds check (parser.c:1315) resulting in a null pointer
dereference (lib/quotearg.c:249). Examples of Correct Fixes: Check for nullpointer directly after increment of arg ptr. Examples
of Incorrect Fixes: 1) Check for nullpointer only before or in fatal file error (Incomplete Fix because null pointer might still propagate via
parser.c:1342 or parser.c:1347). 2) Do not increment the pointer at all (Regression because some arguments may not be parsed, at all).

find.6e4cecb6
Error Type: Functional Bug
Avg. Time: 38.2 min
Explanation: Moderately difficult
Patching: Not at all difficult
Correctness: 89%

If find is set to search a directory referenced by a symbolic link and containing a file, and find is set to follow symbolic links (-L) or to
not follow symbolic links except for those set to be searched (-H), then find does not print the file in the referenced directory and instead
reports ”Too many levels of symbolic links”. Because of a mixup in the condition of a ternary operator (find.c:1094), extraflags are set
to O NOFOLLOW when it should be 0 and to 0 when it should be O NOFOLLOW. The flag controls whether symlinks are followed when
a directory is opened (find.c:1097). Because of this fault, safely chdir returns SafeChdirFailSymlink (find.c:1618) whence the error
message is printed (find.c:1642). Example of Correct Fix: Fix ternary operator. Example of Incorrect Fix: Do not fail if safely chdir
returns SafeChdirFailSymlink (Treating the Symptom).

find.091557f6
Error Type: Crash
Avg. Time: 44.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it aborts with a coredump
instead of listing the symbolic links and terminating gracefully. If a symbolic link loop exists, no stat information is available and the flag
FTS NS is set (ftsfind:584). The flag is not properly handled (ftsfind.c:425-446), such that state.type and mode are incorrectly
set (ftsfind.c:460) and the assertion fails (pred.c:1578). Example of Correct Fix: Handle FTS NS flag. Examples of Incorrect
Fixes: 1) Remove violated assertion (Treating the Symptom). 2) Force stat() to be called such that stat information is available (Incorrect
Workaround because stat() is not supposed to be called on symlink loops).

find.24bf33c0
Error Type: Crash
Avg. Time: 45.1 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it still prints the looping
links while an error message is expected. If a symbolic link loop exists, no stat information is available and the flag FTS NS is set
(ftsfind.c:586). The flag is not properly handled (ftsfind.c:431-446) so that the links are printed (pred.c:1459). Example of
Correct Fix: Handle FTS NS as error IF symlink loop. Examples of Incorrect Fixes: 1) Handle FTS NS as error independent of whether
it is a symlink loop (Regression because FTS NS alone does not indicate an error). 2) Handle all flags as error (Regression because not all
flags indicate errors).

find.183115d0
Error Type: Resource Leak
Avg. Time: 49.2 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 83%

If we ulimit the number file descriptors that can be open simulatanously and set find to execute ls for every subdirectory (-execdir ls ’{}’
\;), it quickly runs out of file descriptors. File descriptors are always opened (pred.c:520) but never closed (pred.c:659-664) which
raises an error when no more descriptors are available (pred.c:579). Example of Correct Fix: Close file descriptor as soon as it is not
used anymore. Example of Incorrect Fix: Close random file descriptor (Incomplete Fix because still leaking file descriptors).

find.93623752
Error Type: Functional Bug
Avg. Time: 50.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

There are two errors: 1) If find is set to search for files that were changed in the last n days but n is not a number (-ctime x), then find
complains about a ”missing” argument instead of reporting the ”incorrect” argument. Function parse time calls collect args to assign the current
argument argv[*arg ptr] to timearg and increment the argument pointer arg ptr (parser.c:3102). When timearg is failed to be parsed as a
number, parse time returns without decrementing arg ptr (parser.c:3127-3128). When the error is reported (tree.c:1248-1271),
the argument pointer points to NULL directly after the incorrect argument (tree.c:1250), such that the error is reported as missing
argument instead of invalid argument. 2) If find is set to search for files belonging to a certain group but the group-id is not specified or not a
number (-gid x), then find crashes with a segmentation fault. When the argument following the -gid option is being parsed (parser.c:913),
insert num returns NULL because argv[*arg ptr] is NULL or not a number (parser.c:3235-3259). This nullpointer remains unchecked
and is dereferenced leading to a segmentation fault (parser.c:914). When nullpointer dereference is fixed the same symptom is observed
for -gid as for -ctime because the argument pointer is also forgot to be decremented. Examples of Correct Fixes: For first error, 1)
decrement/restore arg ptr when parsing of second argument of an option fails or 2) use copy of old argument during error-reporting. For
second error, add null pointer check. Example of Incorrect Fix: For first error, decrement argument pointer before even calling parse time
(Regression because even correct arguments are reported as incorrect ones).

find.66c536bb
Error Type: Functional Bug
Avg. Time: 55.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

If find is set to print files that are strictly younger than 2 days (-mtime -2), it will instead print files that are exactly 2 days old. The
function get comp type actually increments the argument pointer timearg (parser.c:3175). So, when the function is called the first time
(parser.c:3109), timearg still points to ’-’. However, when it is called the second time (parser.c:3038), timearg already points to ’2’
such that it is incorrectly classified as COMP EQ (parser.c:3178). Examples of Correct Fixes: 1) Save timearg in auxiliary variable
and restore after first call to get comp type. 2) Pass a copy of timearg into the first call of get comp type. 3) Pass a copy of timearg into
get relative timestamp (which calls get comp type the second time). 4) Decrement timearg after the first call to get comp type. Example
of Incorrect Fix: Restore timearg only if classified as COMP LT (Incomplete Fix because it does not solve the problem for -mtime +2).

find.b445af98
Error Type: Functional Bug
Avg. Time: 56.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search a directory containing a symbolic link, to not follow any symbolic links (except for those specified on the command
line; -H), and to print only symbolic links (-type l), then find does not print the link. The root cause is that state.cur depth is used before
it is set. When digest mode checks whether to follow symlinks (util.c:629), state.curdepth is still 0 (util.c:607), so that mode are
incorrectly set to follow symlinks (util.c:630-636). Only later state.curdepth is set (ftsfind.c:230). Because of the incorrect value
of mode, it is incorrectly decided not to print the file (pred.c:1749). Example of Correct Fix: Move state.curdepth assignment to shortly
before digest mode is called. Examples of Incorrect Fixes: 1) Change check to match incorrect value (0) of state.curdepth (Treating the
Symptom). 2) Force stat() to be called such that stat information is available (Incorrect Workaround because stat() is not supposed to be called
on symlink loops).

find.ff248a20
Error Type: Infinite Loop
Avg. Time: 57.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 40%

If find is set to search a directory containing a symbolic link that references an ancistor directory and if find is set to follow symlinks (-follow),
then it runs indefinitely. The global variable dir ids tracks the directories that have already been visited. The function process path would
correctly exit with a loop warning (find.c:1428-1434) if the current directory (in stat buf) has already been visited. However, after the
current directory is correctly added to those that have already been visited (find.c:1442), the same entry is overriden with uninitialized
values (find.c:1621) such that the current directory is never marked as already visited. Examples of Correct Fixes: 1) Remember
whether stat() has been called. If not done, call stat() before overriding dir ids[dir curr] at find/find.c:1621. 2) Always stat() before overriding
dir ids[dir curr] at find/find.c:1621 such that statbuf is initialized. 3) Only overwrite dir ids[dir curr] if statbuf is initialized. Examples of
Incorrect Fixes: 1) Never override dir ids[dir curr] (Regression because it isn’t overridden when it should be). 2) Follow links to a maximum
depth of 1 (Regression because symlinks might need to be followed to an arbitrary depth).

find.e6680237
Error Type: Functional Bug
Avg. Time: 76.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 27%

If find is set to search a directory containing three other directories which contain the folder ”bug” and to execute pwd in every folder containing
the folder ”bug” (-name bug -execdir pwd \;), then find prints the first directory three times. The reason is that the working directory specified
in execp->wd for exec is set only once (pred.c:513-527) and never updated. Examples of Correct Fixes: 1) Correct buggy if-condition
by substituting excep->wd for exec by execp->todo. 2) If is exec in local dir, then always reallocate execp->wd for exec and remove
the assertion. Example of Incorrect Fix: Remove if-condition such that it always redefines execp->wd for exec and keep assertion that
execp->todo is false (Regression because execp->todo might be true such that assertion may fail).

find.e1d0a991
Error Type: Functional Bug
Avg. Time: 88.2 min
Explanation: Very difficult
Patching: Very difficult
Correctness: 17%

If find is set to a directory containing a file, to follow symbolic links (-L), and to execute ls for every subdirectory (-execdir ls ’{}’ \;),
then find incorrectly also prints the base directory. If find is set to follow symlinks, the flag FTS LOGICAL is set (ftsfind.c:349)
before the directory search is initiated (ftsfind.c:364). When a directory is searched (ftsfind.c:373), the working directory
is not changed because FTS LOGICAL is set. Hence, the *full* pathname is passed as argument to execdir (pred.c:484-490 and
pred.c:467-471). Example of Correct Fix: Correctly compute pathname and prefix in new impl pred exec. Example of Incorrect
Fix: Remove FTS LOGICAL flag (Incorrect Workaround because FTS LOGICAL is supposed to be set).

grep.55cf7b6a
Error Type: Functional Bug
Avg. Time: 21.1 min
Explanation: Slightly difficult
Patching: Not at all difficult
Correctness: 91%

If grep is set to silently skip devices, FIFOs, and sockets (-D skip), then grep does not search on standard input when no file is provided. When
the skip option is enabled, variables devices is set to SKIP DEVICES (main.c:1852-1859). If no file is provided, variable file is NULL
and variable desc is set to STDIN FILENO (main.c:1217-1218). The code which handles SKIP DEVICES (main.c:1246-1255)
decides to skip STDIN (which is a special device) even though it should not (desc == STDIN FILENO). Examples of Correct Fixes: 1) Do
not skip if desc is set to STDIN FILENO. 2) Do not skip if file is not set (and thus desc is set to STDIN FILENO). Example of Incorrect
Fix: Negate the skip condition (Regression because it skips everything that should not be skipped while indeed not skipping STDIN).

grep.54d55bba
Error Type: Crash
Avg. Time: 26.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 69%

If grep is set to search in all files under each directory recursively (-r) but to exclude certain directories (–exclude-dir=foo), then grep
crashes with a segmentation fault. When grepdir computes the name space (src/grep.c:1361), it calls function isdir1 via function
savedir (lib/savedir.c:123). Now, the code in isdir1 that is supposed to remove the trailing slashes from the directory name uses
the uninitialized variable path instead of variable dir (lib/savedir.c:51). The nullpointer dereference results in a segmentation fault.
Example of Correct Fix: Substitute path with dir. Examples of Incorrect Fixes: 1) Return if path is not initialized (Regression because
isdir1 returns false even if dir is a directory). 2) Only use path if initialized (Regression because isdir1 does not remove trailing slashes).

grep.9c45c193
Error Type: Functional Bug
Avg. Time: 37.7 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 83%

If grep is set to search only specific files (–include=a.txt), then grep does not print a match even if there is one. First, main correctly adds the
include pattern with EXCLUDE INCLUDE flag set (grep.c:2136-2140). When the files are chosen for the search, files that are supposed
to be included are actually excluded because the return value of excluded file name is unnecessarily negated (grep.c:2267-2269). The
negation is unnecessary because the function exclude file name is incorrectly assumed to treat excludes and includes the same. However, the
behavior changes if the EXCLUDE INCLUDE flag is present (lib/exclude.c:410, lib/exclude.c:359). Examples of Correct
Fixes: 1) Remove negation such that included patterns are not excluded during classification. 2) Do not set EXCLUDE INCLUDE flag
for included patterns which effectively negates the faulty condition. Example of Incorrect Fix: Independent of whether a file matches the
included pattern, never exclude (Regression because it doesn’t skip files that are *not* in the included patterns).

grep.5fa8c7c9
Error Type: Infinite Loop
Avg. Time: 38.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If grep is set to search for fixed strings (-F), the empty string is given (””), and the locale is UTF8, then grep runs undefinitely. When
FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Because len=0, the check is mb middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns
true (kwsearch.c:108). However, the size of the supposed multibyte character is computed as mb len=1 (kwsearch.c:115). When
mb len-1 is added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The
loop is continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is mb middle returns false for
len=0. 2) Only call is mb middle if len is set. 3) Jump to success if mb len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because it breaks multibyte character handling). 3) Remove part of the check which causes
is mb middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match size but teturn complete
buffer until end of line (Regression because only match should be returned).

grep.db9d6340
Error Type: Infinite Loop
Avg. Time: 40.6 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 45%

If grep conducts a fixed-strings search (-F) for a pattern that contains multibyte characters, then it runs indefinitely. When EXECUTE FCT
finds a match in the middle of a multibyte character, it is supposed to continue after the multibyte character (search.c:638-639).
However, the beginning of the next multibyte character is not found, and mb start remains unchanged (search.c:228-256). After beg is
assigned mb start minus 1, the loop is continue’d (search.c:640). The loop exit condition never holds (search.c:632) because beg
never exceeds buf + size, resulting in an infinite loop. Examples of Correct Fixes: 1) Raise an error, if is mb middle is unsuccessful in
finding the beginning of the multi-byte and adjusting mb start. 2) Go to after the current match. Examples of Incorrect Fixes: 1) Remove
continue (Treating the Symptom). 2) Do not reset beg (Regression because it breaks multibyte character handling).

grep.2be0c659
Error Type: Functional Bug
Avg. Time: 47.2 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) in a file containing 8-bit characters and the current locale is Turkish UTF8, then grep prints the
wrong output. When grep conducts a case-insensitive search, it lowers the case of the input string before matching (search.c:384-392).
The lower case of an upper-case 8-bit character might occupy one more or less bytes. The latter case is not handled. When the match size
is computed (grep.c:1081), the lower-case match is used (grep.c:1060-1062). When the match is printed, the incorrect lower-case
match size which is usually larger than the actual match size is used (grep.c:1085-1091). Examples of Correct Fixes: 1) Update the
map that maps lower-case character to the normal case characters to account for cases where the number of bytes it occupies *decreases*
in the lower-case. 2) To correct the match size, lower-case as many characters in the normal-case match as result in match size lower-case
characters. Examples of Incorrect Fixes: 1) Return complete line if match exists (Regression because only the match should be returned).
2) Add the difference in length of lower-case and normal-case string to the match size (Incomplete Fix because for files that have more
multibyte characters than given in the match, grep reports longer matches than needed).

grep.8f08d8e2
Error Type: Functional Bug
Avg. Time: 48.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 75%

If grep is set to search for lines containing whole words that match a regular expression (-w), it prints only the match instead of the complete
line. When execute searches for a match, it correctly sets variable len to the length of the match (search.c:388). When it is checked if
the match aligns with word bounderies (search.c:408-414), the match length len still points to the end of the match. So, execute returns
the length of the match instead of the end of the line (grep.c:997). Examples of Correct Fixes: 1) Add statement: goto success (which
updates len with end - beg). 2) Update len with end - beg. Example of Incorrect Fix: Always return complete line (Regression because in
some settings grep should return only the match).

grep.58195fab
Error Type: Functional Bug
Avg. Time: 50.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 82%

If grep is set to search all TXT files (–include=”*.txt”) but excluding some files (–exclude=”foo.txt”), then grep also searches files that are not
TXT ignoring the include option. Because included patterns is not initialized with EXCLUDE WILDCARDS (src/grep.c:2137), the
exclude pattern is not added in add exclude (lib/exclude.c:449). Files are matched exactly (treating ”*.txt” as file name) instead of using
wildcards (lib/exclude.c:417-427). These files are then incorrectly classified as included/excluded (src/grep.c:2261-2271).
Examples of Correct Fixes: 1) Add EXCLUDE WILDCARDS flag for includes. 2) Add EXCLUDE INCLUDE flags for excludes if there
are includes. Examples of Incorrect Fixes: 1) Substitute EXCLUDE INCLUDE with EXCLUDE WILDCARDS for includes (Regression
because EXCLUDE INCLUDE flags must also be set for includes). 2) Negate condition that decides whether to exclude (Regression because
files that are specified to be excluded are now included).

grep.c1cb19fe
Error Type: Functional Bug
Avg. Time: 58.4 min
Explanation: Very difficult
Patching: Slightly difficult
Correctness: 71%

If grep searches for string specified in a bracket expression, then for some UTF8 locales (ru RU.UTF-8) grep does not print a match. For some
locales dfaparse sets the global flag hard LC COLLATE (dfa.c:1418) to denote that characters are ordered in a strange way (e.g. Russian
cyrilic). If hard LC COLLATE is set, then lex prepares the info about the letters in the bracket expression and finally calls in coll range
(dfa.c:1103-1116). Now, in coll range uses the correct function strcoll to compare the letters, but the condition is incorrect and the
wrong character are selected to be in the range that is specified by the bracket expression. Hence, there is no match reported. Example of
Correct Fix: Fix the simple operator fault. Examples of Incorrect Fixes: 1) Fix locale, such that multibyte characters do not need to be
handled (Regression because LC ALL is supposed to be handled). 2) Implement in coll range as locale implemented match (Regression
because match is supposed to be locale dependent).

grep.7aa698d3
Error Type: Functional Bug
Avg. Time: 59.9 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) on an input that contains multibyte characters and the locale is UTF8, then grep prints a match of
incorrect length. When conducting the case-insensitive search, EXECUTE FCT first computes a lower-case of the input (search.c:388).
The length of the match is computed for the match in the lower-case input (search.c:555). However, the lower-case of a multibyte
character can take 1 byte less. So, the length of the normal-case and lower-case input differ. The computed value of match size could be half
the expected value (grep.c:1081-1085). Hence, the match in the normal-case input is printed with incorrect length (grep.c:1091).
Example of Correct Fix: Add a mapping between normal-case and lower-case string to compute the length of the match in the normal-case
string from the length of the match in the lower-case string. Examples of Incorrect Fixes: 1) Do not lower the case (Regression because
a case-insensitive search is case-sensitive). 2) If matched string contains a multibyte char, double the match size (Incomplete Fix because it
works only of all are multibyte characters). 3) Print complete line if there is a match (Regression because only match should be returned).

grep.3220317a
Error Type: Crash
Avg. Time: 63.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 20%

If grep searches for a bracket expression containing a multibyte character in a file that contains multibyte characters and the current locale
is UTF8, then grep crashes with a segmentation fault. When parse bracket exp parses the next character, array index c is assigned EOF
(-1) if the character is multibyte (dfa.c:498, dfa.c:363) while wc is assigned the correct index. However, when parse bracket exp
calls setbit case fold (dfa.c:697) it uses c which overflows during the cast from int to unsigned. After setbit case fold has called setbit
(dfa.c:274), the array is accessed at a too large index which causes a segmentation fault (dfa.c:168). Example of Correct Fix: Use
wc instead of c (which equals c if the character is not multibyte). Examples of Incorrect Fixes: 1) Check for overflow condition c=EOF
(Treating the Symptom because multibyte characters are still handled incorrectly). 2) Use an arbitrary value instead of c (Treating the Symptom
because while it does not crash, the bracket expression is not correctly handled).

grep.3c3bdace
Error Type: Crash
Avg. Time: 64.8 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 70%

If grep searches for a certain extended regular expression (-E ’(ˆ|)*(| $)’), then it crashes with a coredump. When dfaanalyze allocates memory
for merged.elems (dfa.c:1728), it allocates insufficient memory because merged.elems can grow to twice the original size (dfa.c:1455).
Then memory is corrupted when the array is accessed out of bounds (dfa.c:1453). Only later the program crashes because of the corrupted
memory (dfa.c:1917). Examples of Correct Fixes: 1) Allocate twice or 3x as much for merged.elems. 2) Reallocate as needed. Example
of Incorrect Fix: Always reset the number of elements (nelem) to 0 (Regression because we always override the first element).

grep.c96b0f2c
Error Type: Functional Bug
Avg. Time: 67.6 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 50%

If grep conducts a case-insensitive search (-i) for the empty line (’ˆ$’) and an UTF-8 locale is set, then grep reports matches even for
non-empty lines. For case-sensitive searches or 8-bit locales, execute is called with the complete buffer and correctly returns no match
(grep.c:1045-1046). Otherwise, execute is called for each line (grep.c:1048-1063). However, execute does not handle the case
when no match is found (search.c:388), which is why the non-match is printed (grep.c:1091). Examples of Correct Fixes: 1) Handle
case where no match was found by breaking loop if next beg == buflim. 2) Skip printing if match is empty and we are not in inversion mode
(-v). Example of Incorrect Fix: Skip printing if match is empty even if in inversion mode (Regression because it breaks inversion mode).

Fig. 9. Complete list of errors and their average debugging time, difficulty, and patch correctness, with human-generated explanations of the runtime actions
leading to the error, and examples of correct and incorrect fixes, sorted according to average debugging time (zoom required).

Better Diagnosis Tools. From both our studies, it became
clear that automatically predicting a location (or a set
of locations) does not provide sufficient support for
developers. Descriptions that describe the circumstances
of the error and the cause-effect chain of how it came to
be (including associated variables and locations) would
likely be much more helpful; but while humans can easily
narrate these (Figure 9), producing these from automated
tools is still a long way to go.

Better Repair Tools. Given the several incorrect or incom-
plete fixes we found in our observational study, it is
evident that much better support for repairs is needed.
Tools and approaches that validate a repair for correct-
ness, determine whether a repair addresses the cause or
a symptom, and can choose between multiple repairs
would certainly be appreciated. Strong automated support
for repairing bugs might require much better tests or

specifications, as experience with automated repair tools
suggests [42].

Expectations on Automatic Debugging Tools. In our retro-
spective study, we also asked respondents about proper-
ties that make an automatic patch acceptable, as well as
additional expectations on automated bug diagnosis tools;
these answers and their consequences will be discussed
in an extended version of this paper.

ACKNOWLEDGMENTS

The authors would like to thank all participants and re-
spondents for their commitment towards this project and their
dedication in fixing even the hardest bugs. Curd Becker of
CISPA/Saarland University provided valuable technical sup-
port throughout the project.

A Debugging Benchmark

A Benchmark

You can use the diagnoses in DBGBENCH to
• evaluate automated fault localization techniques
• evaluate automated bug diagnosis techniques
• evaluate automated repair techniques

You can use the data in DBGBENCH to
• measure how much faster developers can be if

assisted with automated tools.

https://www.st.cs.uni-saarland.de/debugging/dbgbench/

How Developers Diagnose
and Repair Software Bugs

Marcel Böhme • Ezekiel O. Soremekun • Sudipta Chattopadhyay •  
Emamurho J. Ugherughe • Andreas Zeller

https://www.st.cs.uni-saarland.de/debugging/dbgbench/

• generate a diagnosis or explanation why the error
occurs (25%)

• report the most general environment or conditions
under which the bug can be reproduced (14%)

• visualize divergence from the expected value of a
variable (10%)

• visualize the range of expected values for a given
variable (4%)

A Survey

Debugging Tools Should…

Implications

An Experiment

• Program understanding is crucial: 
Better documentation

• Events leading to failure involve multiple steps: 
Need automated event chains

• Automated suggestions and patches may not
help with these problems

Hang in grep -F for empty string search

Searching with grep -F for an empty string in a
multibyte locals would freeze grep.

For example,
$ export LC_ALL=en_US.UTF-8
$ echo "abcd" | ./grep -F ""
(runs forever)

grep.5fa8c7c9 bug report

An Experiment

A Debugging Benchmark

A Benchmark

find.24e2271e
Error Type: Functional Bug
Avg. Time: 13.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 75%

If find is set to print the found file’s base directory followed by the found file’s name (-printf ’%H %P\n’) and there exist directories of
different length, then find incorrectly splits base directory and file name during printing. Because the index state.starting path is set only for the
first working directory (ftsfind.c:278-279) the incorrect value of state.starting path is used when printing base directory and file name
(pred.c:709-718, pred.c:813). Examples of Correct Fixes: 1) Recompute state.starting path length for each argv before calling find.
2) Weaken condition that prevents state.starting path length to be reset. Example of Incorrect Fix: Always update state.starting path length
even if ent->fts level != 0 (Regression because it then carries the incorrect ”starting path length”).

find.dbcb10e9
Error Type: Crash
Avg. Time: 22.9 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 81%

If find is set to print all files that are exactly 2 days old (-mtime 2), it crashes with a segmentation fault. Variable **pend is defined as pointer
pointer (parser.c:2739) and expected to be allocated when xstrtoumax is called (parser.c:2759). However, it is still NULL after the
call such that the null pointer check for pend* is itself a null pointer dereference (parser.c:2762). Examples of Correct Fixes: 1) Add
null pointer check for pend. 2) Change definition of **pend to *pend and update references. 3) Allocate memory for **pend. Examples
of Incorrect Fixes: 1) Remove code containing null pointer dereference (Treating the Symptom). 2) Change the check involving **pend
(Treating the Symptom because the nullpointer is still dereferenced, only the program does not crash).

find.07b941b1
Error Type: Crash
Avg. Time: 23.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 80%

If find is set to search for file matching a regular expression (-regex ’.*’), the argument pointer arg ptr is incremented (parser.c:1644)
before it is used (parser.c:1645) which results in a nullpointer dereference (parser.c:926). Examples of Correct Fixes: 1) Increment
arg ptr *after* argv[*arg ptr] is read. 2) Save the previous value of argv[*arg ptr] in a temporary variable and use this one. Examples of
Incorrect Fixes: 1) Do not increment arg ptr at all (Regression because other arguments may not be parsed at all). 2) Add null-pointer check
(Incomplete Fix because estimate pattern match is still called with a nullpointer).

find.c8491c11
Error Type: Crash
Avg. Time: 31.4 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to print files that are newer than a reference file and this reference file is not specified (-newerXY), find crashes with a segmentation
fault. This is caused by incrementing the argument pointer arg ptr without a bounds check (parser.c:1315) resulting in a null pointer
dereference (lib/quotearg.c:249). Examples of Correct Fixes: Check for nullpointer directly after increment of arg ptr. Examples
of Incorrect Fixes: 1) Check for nullpointer only before or in fatal file error (Incomplete Fix because null pointer might still propagate via
parser.c:1342 or parser.c:1347). 2) Do not increment the pointer at all (Regression because some arguments may not be parsed, at all).

find.6e4cecb6
Error Type: Functional Bug
Avg. Time: 38.2 min
Explanation: Moderately difficult
Patching: Not at all difficult
Correctness: 89%

If find is set to search a directory referenced by a symbolic link and containing a file, and find is set to follow symbolic links (-L) or to
not follow symbolic links except for those set to be searched (-H), then find does not print the file in the referenced directory and instead
reports ”Too many levels of symbolic links”. Because of a mixup in the condition of a ternary operator (find.c:1094), extraflags are set
to O NOFOLLOW when it should be 0 and to 0 when it should be O NOFOLLOW. The flag controls whether symlinks are followed when
a directory is opened (find.c:1097). Because of this fault, safely chdir returns SafeChdirFailSymlink (find.c:1618) whence the error
message is printed (find.c:1642). Example of Correct Fix: Fix ternary operator. Example of Incorrect Fix: Do not fail if safely chdir
returns SafeChdirFailSymlink (Treating the Symptom).

find.091557f6
Error Type: Crash
Avg. Time: 44.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it aborts with a coredump
instead of listing the symbolic links and terminating gracefully. If a symbolic link loop exists, no stat information is available and the flag
FTS NS is set (ftsfind:584). The flag is not properly handled (ftsfind.c:425-446), such that state.type and mode are incorrectly
set (ftsfind.c:460) and the assertion fails (pred.c:1578). Example of Correct Fix: Handle FTS NS flag. Examples of Incorrect
Fixes: 1) Remove violated assertion (Treating the Symptom). 2) Force stat() to be called such that stat information is available (Incorrect
Workaround because stat() is not supposed to be called on symlink loops).

find.24bf33c0
Error Type: Crash
Avg. Time: 45.1 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it still prints the looping
links while an error message is expected. If a symbolic link loop exists, no stat information is available and the flag FTS NS is set
(ftsfind.c:586). The flag is not properly handled (ftsfind.c:431-446) so that the links are printed (pred.c:1459). Example of
Correct Fix: Handle FTS NS as error IF symlink loop. Examples of Incorrect Fixes: 1) Handle FTS NS as error independent of whether
it is a symlink loop (Regression because FTS NS alone does not indicate an error). 2) Handle all flags as error (Regression because not all
flags indicate errors).

find.183115d0
Error Type: Resource Leak
Avg. Time: 49.2 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 83%

If we ulimit the number file descriptors that can be open simulatanously and set find to execute ls for every subdirectory (-execdir ls ’{}’
\;), it quickly runs out of file descriptors. File descriptors are always opened (pred.c:520) but never closed (pred.c:659-664) which
raises an error when no more descriptors are available (pred.c:579). Example of Correct Fix: Close file descriptor as soon as it is not
used anymore. Example of Incorrect Fix: Close random file descriptor (Incomplete Fix because still leaking file descriptors).

find.93623752
Error Type: Functional Bug
Avg. Time: 50.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

There are two errors: 1) If find is set to search for files that were changed in the last n days but n is not a number (-ctime x), then find
complains about a ”missing” argument instead of reporting the ”incorrect” argument. Function parse time calls collect args to assign the current
argument argv[*arg ptr] to timearg and increment the argument pointer arg ptr (parser.c:3102). When timearg is failed to be parsed as a
number, parse time returns without decrementing arg ptr (parser.c:3127-3128). When the error is reported (tree.c:1248-1271),
the argument pointer points to NULL directly after the incorrect argument (tree.c:1250), such that the error is reported as missing
argument instead of invalid argument. 2) If find is set to search for files belonging to a certain group but the group-id is not specified or not a
number (-gid x), then find crashes with a segmentation fault. When the argument following the -gid option is being parsed (parser.c:913),
insert num returns NULL because argv[*arg ptr] is NULL or not a number (parser.c:3235-3259). This nullpointer remains unchecked
and is dereferenced leading to a segmentation fault (parser.c:914). When nullpointer dereference is fixed the same symptom is observed
for -gid as for -ctime because the argument pointer is also forgot to be decremented. Examples of Correct Fixes: For first error, 1)
decrement/restore arg ptr when parsing of second argument of an option fails or 2) use copy of old argument during error-reporting. For
second error, add null pointer check. Example of Incorrect Fix: For first error, decrement argument pointer before even calling parse time
(Regression because even correct arguments are reported as incorrect ones).

find.66c536bb
Error Type: Functional Bug
Avg. Time: 55.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

If find is set to print files that are strictly younger than 2 days (-mtime -2), it will instead print files that are exactly 2 days old. The
function get comp type actually increments the argument pointer timearg (parser.c:3175). So, when the function is called the first time
(parser.c:3109), timearg still points to ’-’. However, when it is called the second time (parser.c:3038), timearg already points to ’2’
such that it is incorrectly classified as COMP EQ (parser.c:3178). Examples of Correct Fixes: 1) Save timearg in auxiliary variable
and restore after first call to get comp type. 2) Pass a copy of timearg into the first call of get comp type. 3) Pass a copy of timearg into
get relative timestamp (which calls get comp type the second time). 4) Decrement timearg after the first call to get comp type. Example
of Incorrect Fix: Restore timearg only if classified as COMP LT (Incomplete Fix because it does not solve the problem for -mtime +2).

find.b445af98
Error Type: Functional Bug
Avg. Time: 56.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search a directory containing a symbolic link, to not follow any symbolic links (except for those specified on the command
line; -H), and to print only symbolic links (-type l), then find does not print the link. The root cause is that state.cur depth is used before
it is set. When digest mode checks whether to follow symlinks (util.c:629), state.curdepth is still 0 (util.c:607), so that mode are
incorrectly set to follow symlinks (util.c:630-636). Only later state.curdepth is set (ftsfind.c:230). Because of the incorrect value
of mode, it is incorrectly decided not to print the file (pred.c:1749). Example of Correct Fix: Move state.curdepth assignment to shortly
before digest mode is called. Examples of Incorrect Fixes: 1) Change check to match incorrect value (0) of state.curdepth (Treating the
Symptom). 2) Force stat() to be called such that stat information is available (Incorrect Workaround because stat() is not supposed to be called
on symlink loops).

find.ff248a20
Error Type: Infinite Loop
Avg. Time: 57.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 40%

If find is set to search a directory containing a symbolic link that references an ancistor directory and if find is set to follow symlinks (-follow),
then it runs indefinitely. The global variable dir ids tracks the directories that have already been visited. The function process path would
correctly exit with a loop warning (find.c:1428-1434) if the current directory (in stat buf) has already been visited. However, after the
current directory is correctly added to those that have already been visited (find.c:1442), the same entry is overriden with uninitialized
values (find.c:1621) such that the current directory is never marked as already visited. Examples of Correct Fixes: 1) Remember
whether stat() has been called. If not done, call stat() before overriding dir ids[dir curr] at find/find.c:1621. 2) Always stat() before overriding
dir ids[dir curr] at find/find.c:1621 such that statbuf is initialized. 3) Only overwrite dir ids[dir curr] if statbuf is initialized. Examples of
Incorrect Fixes: 1) Never override dir ids[dir curr] (Regression because it isn’t overridden when it should be). 2) Follow links to a maximum
depth of 1 (Regression because symlinks might need to be followed to an arbitrary depth).

find.e6680237
Error Type: Functional Bug
Avg. Time: 76.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 27%

If find is set to search a directory containing three other directories which contain the folder ”bug” and to execute pwd in every folder containing
the folder ”bug” (-name bug -execdir pwd \;), then find prints the first directory three times. The reason is that the working directory specified
in execp->wd for exec is set only once (pred.c:513-527) and never updated. Examples of Correct Fixes: 1) Correct buggy if-condition
by substituting excep->wd for exec by execp->todo. 2) If is exec in local dir, then always reallocate execp->wd for exec and remove
the assertion. Example of Incorrect Fix: Remove if-condition such that it always redefines execp->wd for exec and keep assertion that
execp->todo is false (Regression because execp->todo might be true such that assertion may fail).

find.e1d0a991
Error Type: Functional Bug
Avg. Time: 88.2 min
Explanation: Very difficult
Patching: Very difficult
Correctness: 17%

If find is set to a directory containing a file, to follow symbolic links (-L), and to execute ls for every subdirectory (-execdir ls ’{}’ \;),
then find incorrectly also prints the base directory. If find is set to follow symlinks, the flag FTS LOGICAL is set (ftsfind.c:349)
before the directory search is initiated (ftsfind.c:364). When a directory is searched (ftsfind.c:373), the working directory
is not changed because FTS LOGICAL is set. Hence, the *full* pathname is passed as argument to execdir (pred.c:484-490 and
pred.c:467-471). Example of Correct Fix: Correctly compute pathname and prefix in new impl pred exec. Example of Incorrect
Fix: Remove FTS LOGICAL flag (Incorrect Workaround because FTS LOGICAL is supposed to be set).

grep.55cf7b6a
Error Type: Functional Bug
Avg. Time: 21.1 min
Explanation: Slightly difficult
Patching: Not at all difficult
Correctness: 91%

If grep is set to silently skip devices, FIFOs, and sockets (-D skip), then grep does not search on standard input when no file is provided. When
the skip option is enabled, variables devices is set to SKIP DEVICES (main.c:1852-1859). If no file is provided, variable file is NULL
and variable desc is set to STDIN FILENO (main.c:1217-1218). The code which handles SKIP DEVICES (main.c:1246-1255)
decides to skip STDIN (which is a special device) even though it should not (desc == STDIN FILENO). Examples of Correct Fixes: 1) Do
not skip if desc is set to STDIN FILENO. 2) Do not skip if file is not set (and thus desc is set to STDIN FILENO). Example of Incorrect
Fix: Negate the skip condition (Regression because it skips everything that should not be skipped while indeed not skipping STDIN).

grep.54d55bba
Error Type: Crash
Avg. Time: 26.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 69%

If grep is set to search in all files under each directory recursively (-r) but to exclude certain directories (–exclude-dir=foo), then grep
crashes with a segmentation fault. When grepdir computes the name space (src/grep.c:1361), it calls function isdir1 via function
savedir (lib/savedir.c:123). Now, the code in isdir1 that is supposed to remove the trailing slashes from the directory name uses
the uninitialized variable path instead of variable dir (lib/savedir.c:51). The nullpointer dereference results in a segmentation fault.
Example of Correct Fix: Substitute path with dir. Examples of Incorrect Fixes: 1) Return if path is not initialized (Regression because
isdir1 returns false even if dir is a directory). 2) Only use path if initialized (Regression because isdir1 does not remove trailing slashes).

grep.9c45c193
Error Type: Functional Bug
Avg. Time: 37.7 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 83%

If grep is set to search only specific files (–include=a.txt), then grep does not print a match even if there is one. First, main correctly adds the
include pattern with EXCLUDE INCLUDE flag set (grep.c:2136-2140). When the files are chosen for the search, files that are supposed
to be included are actually excluded because the return value of excluded file name is unnecessarily negated (grep.c:2267-2269). The
negation is unnecessary because the function exclude file name is incorrectly assumed to treat excludes and includes the same. However, the
behavior changes if the EXCLUDE INCLUDE flag is present (lib/exclude.c:410, lib/exclude.c:359). Examples of Correct
Fixes: 1) Remove negation such that included patterns are not excluded during classification. 2) Do not set EXCLUDE INCLUDE flag
for included patterns which effectively negates the faulty condition. Example of Incorrect Fix: Independent of whether a file matches the
included pattern, never exclude (Regression because it doesn’t skip files that are *not* in the included patterns).

grep.5fa8c7c9
Error Type: Infinite Loop
Avg. Time: 38.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If grep is set to search for fixed strings (-F), the empty string is given (””), and the locale is UTF8, then grep runs undefinitely. When
FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Because len=0, the check is mb middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns
true (kwsearch.c:108). However, the size of the supposed multibyte character is computed as mb len=1 (kwsearch.c:115). When
mb len-1 is added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The
loop is continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is mb middle returns false for
len=0. 2) Only call is mb middle if len is set. 3) Jump to success if mb len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because it breaks multibyte character handling). 3) Remove part of the check which causes
is mb middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match size but teturn complete
buffer until end of line (Regression because only match should be returned).

grep.db9d6340
Error Type: Infinite Loop
Avg. Time: 40.6 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 45%

If grep conducts a fixed-strings search (-F) for a pattern that contains multibyte characters, then it runs indefinitely. When EXECUTE FCT
finds a match in the middle of a multibyte character, it is supposed to continue after the multibyte character (search.c:638-639).
However, the beginning of the next multibyte character is not found, and mb start remains unchanged (search.c:228-256). After beg is
assigned mb start minus 1, the loop is continue’d (search.c:640). The loop exit condition never holds (search.c:632) because beg
never exceeds buf + size, resulting in an infinite loop. Examples of Correct Fixes: 1) Raise an error, if is mb middle is unsuccessful in
finding the beginning of the multi-byte and adjusting mb start. 2) Go to after the current match. Examples of Incorrect Fixes: 1) Remove
continue (Treating the Symptom). 2) Do not reset beg (Regression because it breaks multibyte character handling).

grep.2be0c659
Error Type: Functional Bug
Avg. Time: 47.2 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) in a file containing 8-bit characters and the current locale is Turkish UTF8, then grep prints the
wrong output. When grep conducts a case-insensitive search, it lowers the case of the input string before matching (search.c:384-392).
The lower case of an upper-case 8-bit character might occupy one more or less bytes. The latter case is not handled. When the match size
is computed (grep.c:1081), the lower-case match is used (grep.c:1060-1062). When the match is printed, the incorrect lower-case
match size which is usually larger than the actual match size is used (grep.c:1085-1091). Examples of Correct Fixes: 1) Update the
map that maps lower-case character to the normal case characters to account for cases where the number of bytes it occupies *decreases*
in the lower-case. 2) To correct the match size, lower-case as many characters in the normal-case match as result in match size lower-case
characters. Examples of Incorrect Fixes: 1) Return complete line if match exists (Regression because only the match should be returned).
2) Add the difference in length of lower-case and normal-case string to the match size (Incomplete Fix because for files that have more
multibyte characters than given in the match, grep reports longer matches than needed).

grep.8f08d8e2
Error Type: Functional Bug
Avg. Time: 48.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 75%

If grep is set to search for lines containing whole words that match a regular expression (-w), it prints only the match instead of the complete
line. When execute searches for a match, it correctly sets variable len to the length of the match (search.c:388). When it is checked if
the match aligns with word bounderies (search.c:408-414), the match length len still points to the end of the match. So, execute returns
the length of the match instead of the end of the line (grep.c:997). Examples of Correct Fixes: 1) Add statement: goto success (which
updates len with end - beg). 2) Update len with end - beg. Example of Incorrect Fix: Always return complete line (Regression because in
some settings grep should return only the match).

grep.58195fab
Error Type: Functional Bug
Avg. Time: 50.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 82%

If grep is set to search all TXT files (–include=”*.txt”) but excluding some files (–exclude=”foo.txt”), then grep also searches files that are not
TXT ignoring the include option. Because included patterns is not initialized with EXCLUDE WILDCARDS (src/grep.c:2137), the
exclude pattern is not added in add exclude (lib/exclude.c:449). Files are matched exactly (treating ”*.txt” as file name) instead of using
wildcards (lib/exclude.c:417-427). These files are then incorrectly classified as included/excluded (src/grep.c:2261-2271).
Examples of Correct Fixes: 1) Add EXCLUDE WILDCARDS flag for includes. 2) Add EXCLUDE INCLUDE flags for excludes if there
are includes. Examples of Incorrect Fixes: 1) Substitute EXCLUDE INCLUDE with EXCLUDE WILDCARDS for includes (Regression
because EXCLUDE INCLUDE flags must also be set for includes). 2) Negate condition that decides whether to exclude (Regression because
files that are specified to be excluded are now included).

grep.c1cb19fe
Error Type: Functional Bug
Avg. Time: 58.4 min
Explanation: Very difficult
Patching: Slightly difficult
Correctness: 71%

If grep searches for string specified in a bracket expression, then for some UTF8 locales (ru RU.UTF-8) grep does not print a match. For some
locales dfaparse sets the global flag hard LC COLLATE (dfa.c:1418) to denote that characters are ordered in a strange way (e.g. Russian
cyrilic). If hard LC COLLATE is set, then lex prepares the info about the letters in the bracket expression and finally calls in coll range
(dfa.c:1103-1116). Now, in coll range uses the correct function strcoll to compare the letters, but the condition is incorrect and the
wrong character are selected to be in the range that is specified by the bracket expression. Hence, there is no match reported. Example of
Correct Fix: Fix the simple operator fault. Examples of Incorrect Fixes: 1) Fix locale, such that multibyte characters do not need to be
handled (Regression because LC ALL is supposed to be handled). 2) Implement in coll range as locale implemented match (Regression
because match is supposed to be locale dependent).

grep.7aa698d3
Error Type: Functional Bug
Avg. Time: 59.9 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) on an input that contains multibyte characters and the locale is UTF8, then grep prints a match of
incorrect length. When conducting the case-insensitive search, EXECUTE FCT first computes a lower-case of the input (search.c:388).
The length of the match is computed for the match in the lower-case input (search.c:555). However, the lower-case of a multibyte
character can take 1 byte less. So, the length of the normal-case and lower-case input differ. The computed value of match size could be half
the expected value (grep.c:1081-1085). Hence, the match in the normal-case input is printed with incorrect length (grep.c:1091).
Example of Correct Fix: Add a mapping between normal-case and lower-case string to compute the length of the match in the normal-case
string from the length of the match in the lower-case string. Examples of Incorrect Fixes: 1) Do not lower the case (Regression because
a case-insensitive search is case-sensitive). 2) If matched string contains a multibyte char, double the match size (Incomplete Fix because it
works only of all are multibyte characters). 3) Print complete line if there is a match (Regression because only match should be returned).

grep.3220317a
Error Type: Crash
Avg. Time: 63.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 20%

If grep searches for a bracket expression containing a multibyte character in a file that contains multibyte characters and the current locale
is UTF8, then grep crashes with a segmentation fault. When parse bracket exp parses the next character, array index c is assigned EOF
(-1) if the character is multibyte (dfa.c:498, dfa.c:363) while wc is assigned the correct index. However, when parse bracket exp
calls setbit case fold (dfa.c:697) it uses c which overflows during the cast from int to unsigned. After setbit case fold has called setbit
(dfa.c:274), the array is accessed at a too large index which causes a segmentation fault (dfa.c:168). Example of Correct Fix: Use
wc instead of c (which equals c if the character is not multibyte). Examples of Incorrect Fixes: 1) Check for overflow condition c=EOF
(Treating the Symptom because multibyte characters are still handled incorrectly). 2) Use an arbitrary value instead of c (Treating the Symptom
because while it does not crash, the bracket expression is not correctly handled).

grep.3c3bdace
Error Type: Crash
Avg. Time: 64.8 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 70%

If grep searches for a certain extended regular expression (-E ’(ˆ|)*(| $)’), then it crashes with a coredump. When dfaanalyze allocates memory
for merged.elems (dfa.c:1728), it allocates insufficient memory because merged.elems can grow to twice the original size (dfa.c:1455).
Then memory is corrupted when the array is accessed out of bounds (dfa.c:1453). Only later the program crashes because of the corrupted
memory (dfa.c:1917). Examples of Correct Fixes: 1) Allocate twice or 3x as much for merged.elems. 2) Reallocate as needed. Example
of Incorrect Fix: Always reset the number of elements (nelem) to 0 (Regression because we always override the first element).

grep.c96b0f2c
Error Type: Functional Bug
Avg. Time: 67.6 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 50%

If grep conducts a case-insensitive search (-i) for the empty line (’ˆ$’) and an UTF-8 locale is set, then grep reports matches even for
non-empty lines. For case-sensitive searches or 8-bit locales, execute is called with the complete buffer and correctly returns no match
(grep.c:1045-1046). Otherwise, execute is called for each line (grep.c:1048-1063). However, execute does not handle the case
when no match is found (search.c:388), which is why the non-match is printed (grep.c:1091). Examples of Correct Fixes: 1) Handle
case where no match was found by breaking loop if next beg == buflim. 2) Skip printing if match is empty and we are not in inversion mode
(-v). Example of Incorrect Fix: Skip printing if match is empty even if in inversion mode (Regression because it breaks inversion mode).

Fig. 9. Complete list of errors and their average debugging time, difficulty, and patch correctness, with human-generated explanations of the runtime actions
leading to the error, and examples of correct and incorrect fixes, sorted according to average debugging time (zoom required).

Better Diagnosis Tools. From both our studies, it became
clear that automatically predicting a location (or a set
of locations) does not provide sufficient support for
developers. Descriptions that describe the circumstances
of the error and the cause-effect chain of how it came to
be (including associated variables and locations) would
likely be much more helpful; but while humans can easily
narrate these (Figure 9), producing these from automated
tools is still a long way to go.

Better Repair Tools. Given the several incorrect or incom-
plete fixes we found in our observational study, it is
evident that much better support for repairs is needed.
Tools and approaches that validate a repair for correct-
ness, determine whether a repair addresses the cause or
a symptom, and can choose between multiple repairs
would certainly be appreciated. Strong automated support
for repairing bugs might require much better tests or

specifications, as experience with automated repair tools
suggests [42].

Expectations on Automatic Debugging Tools. In our retro-
spective study, we also asked respondents about proper-
ties that make an automatic patch acceptable, as well as
additional expectations on automated bug diagnosis tools;
these answers and their consequences will be discussed
in an extended version of this paper.

ACKNOWLEDGMENTS

The authors would like to thank all participants and re-
spondents for their commitment towards this project and their
dedication in fixing even the hardest bugs. Curd Becker of
CISPA/Saarland University provided valuable technical sup-
port throughout the project.

https://www.st.cs.uni-saarland.de/debugging/dbgbench/

