How Developers Diagnose
and Repalr Software Bugs

Marcel Bohme ¢ Ezekiel O. Soremekun « Sudipta Chattopadhyay
Emamurho J. Ugherughe « Andreas Zeller

https://www.st.cs.uni-saarland.de/debugging/dbgbench/

fal

a @ o ieeexplore.ieee.org & (4] ™ ™

A Survey on Software Fault Localization - IEEE Xplore Document -

IEEE.org | IEEE Xplore Digital Library | IEEE-SA | IEEE Spectrum | More Sites Cart (0) | Create Account | Personal Sign In

lEEE Xplore(‘Q > Institutional Sign In QIEEE

Digital Library

MY SETTINGS Vv GET HELP Vv WHAT CAN | ACCESS? SUBSCRIBE

Enter Search Term

Basic Search Author Search Publication Search Advanced Search Other Search Options v

Browse Journals & Magazines - IEEE Transactions on Software... - Volume: 42 Issue: 8 @

A Surveyyon Software Fault Localization Related Articles
Fault diagnosis and logic debugging using
Sign In or Purchase 2 708 Boolean satisfiability
0, MRS Ko Eggtei:)ns %)I(lt Views
A general imperfect-software-debugging model
with S-shaped fault-detection rate
Debugging concurrent Ada programs by
deterministic execution
View All
5 v W. Eric Wong ; v Ruizhi Gao ; v Yihao Li ; v Rui Abreu ; v Franz Wotawa View All Authors
Author(s)
Abstract Authors Figures References Citations Keywords Metrics Media
Abstract:

Software fault localization, the act of identifying the locations of faults in a program, is widely recognized to be one of the most tedious, time

SO L ALV WL OO - - Ve ~ - T SO SN VT NL WS PN S CLOAL 2 ~ ~ Ve AOraocUn S oonlas s oormnls) ~ oL ~ SOl

Are Automated Debugging Techniques

Actually Helping Programmers?

Chris Parnin and Alessandro Orso
Georgia Institute of Technology
College of Computing

{chris.parnin|orso}@gatech.edu

ABSTRACT

Debugging is notoriously difficult and extremely time con-
suming. Researchers have therefore invested a considerable
amount of effort in developing automated techniques and
tools for supporting various debugging tasks. Although po-
tentially useful, most of these techniques have yet to demon-
strate their practical effectiveness. One common limitation
of existing approaches, for instance, is their reliance on a
set of strong assumptions on how developers behave when
debugging (e.g., the fact that examining a faulty statement
in isolation is enough for a developer to understand and fix
the corresponding bug). In more general terms, most exist-
ing techniques just focus on selecting subsets of potentially

second activity, fault understanding, involves understanding
the root cause of the failure. Finally, fault correction is
determining how to modity the code to remove such root
cause. Fault localization, understanding, and correction are
referred to collectively with the term debugging.

Debugging is often a frustrating and time-consuming ex-
perience that can be responsible for a significant part of the
cost of software maintenance [25]. This is especially true for
today’s software, whose complexity, configurability, porta-
bility, and dynamism exacerbate debugging challenges. For
this reason, the idea of reducing the costs of debugging tasks
through techniques that can improve efficiency and effective-
ness of such tasks is ever compelling. In fact, in the last few

o 79 T ¥ Sy Y Y Yy Y e

KNOW
YOUR

CUSTOMER

New Approaches to

Understanding Customer
Value and Satisfaction

&

ROBERT B. WOODRUFF
AND
SARAH F. GARDIAL

How Do Developers Debug?

An Experiment A Benchmark

A Survey

- Surveyed developers on
- time spent on debugging
- familiarity with debugged code

- debugging techniques used

- debugging techniques needed

We distinguish between three debugging tasks: 10. When you are debugging, how often is time spent debugging other people's source

code? *
Bug Reproduction

Understanding the (user- or auto-generated) bug report and reproducing the bug. Mark only one oval.
Output: Program input that exposes the bug. Never

Bug Diagnosis® Rarely
Understanding the runtime actions leading to the error and identifying the faulty statements in the
source code. Sometimes
Output: Explanation of the bug.

HIPHE EXP | 1o Often

Bug Fixing
Restructuring the faulty source code to remove the error.
Output: Fixed program that is at least as correct.

Always

Tool Support

Debugging Time

11. How often do you use the following Bug Diagnosis techniques? *

8. How much of your *development time* do you spend reproducing, understanding, and
fixing reported bugs. * Mark only one oval per row.

Mark only one oval. .
Never Rarely Sometimes Often Always

(0]
5% or less Trace-based Debugging (using
5-10% printing; e.g., println, log4c)
10 - 20% Interactive or Online Debugging
. (using breakpoints; e.g., gdb, jdb)
20 - 30% Post-Mortem or Offline Debugging
30 - 40% (using core dumps and stack
40 - 50% traces) , o
Delta Debugging to minimize
50 - 60%

failure-inducing input (e.g.,
60 - 70% Asklgor)
Regression Debugging to identify

- 0

70 - 80% failure-inducing changes (e.g., git
80 - 90% bisect)

90% or more Statistical or Spectrum-based

Debugging to find suspicious
statements (e.g., Tarantula)

Program Slicing (e.g., Frama-C,
Make sure it adds up to 100% :) CodeSurfer)

Mark only one oval per row.

9. How much of your *debugging time* do you spend with each of the following tasks? *

Time Travel or Reversible
Debugging (e.g., UndoDB)

Less More . . .
e
than 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% than Algorithmic or Declarativ
o Debugging (e.g., Java DD)

5% 95%
Bug : 12. Are there other *fautomated* Bug Diagnosis
Reproduction . .
Buq Diaanosis techniques not listed that you use Always or

: : .g Often?

Bug Fixing

Please specify in one to three words!

Demograpnics

- Advertised on Upwork, Freelancer, Github...
- 180 developers participated
- Majority with 7+ years of experience

- 1/4 students, 1/6 researchers

- Ran over 18 months

Spending Time

0% 25% 50% /5% 100%

Debugging

awll | Juswdo|eAs%%

Diagnosis - 4|:|:|7
Patching | | | ° °
Reproduction | | | ° °

owl| buibbngeqos

Debugging lechniques Used

Trace—based Debugging -

Interactive Debugging - Frequency

Statistical Debugging -

- .
- . Pyt
Post—Mortem Debugging - _
Regression Debugging - _ Often
Program Slicing - - Sometimes
Time Travel Debugging - - Rarely
Algorithmic Debugging - - Never
-

et
o
O-
XC

0% 25% 50% /5%

What do Developers need”

- Asked developers for which output an
automated diagnosis assistant would
provide If the respondent designed the tool.

- Used open card sort to obtain categories

- Here, focus on categories hardly addressed
by current tools

Debugging Tools Should...

- generate a diagnosis or explanation why the error
occurs (25%)

- report the most general environment or conditions
under which the bug can be reproduced (14%)

- visualize divergence from the expected value of a
variable (10%)

- visualize the range of expected values for a given
variable (4%)

Debugging Tools Should...

- highlight the symptoms and side-effects of
an error (11%)

- classify the error according to its symptom In
a category (14%)

- evaluate criticality of the symptoms
(e.g., security risk) (2%)

Automated Repalr

- 18% of respondents would output an
auto-generated patch as debugging aid.

How Do Developers Debug?

An Experiment A Benchmark

An Experiment

- Based on survey, we designed and
conducted experiments with professional
software developers to find out how they
debug programs.

An Experiment

cxperiment Goals

- How much time do developers spend on bug
diagnosis and patching?

- What makes difficult errors so difficult?

An Experiment

- |s there a single fault, a single diagnosis, a
single patch?

- How correct and plausible are the fixes?

Experiment Subjects

An Experiment

- Set up Docker virtual environment with

most common development and debugging
tools, including gdb, vim, and Eclipse

. Set up README file, 34 slides, and

10 tutorial videos

- Used 27 reproducible errors in find and

grep from COREBENCH (17k/19k LOC)

Demograpnics

- Participants with C experience from survey

- 1 researcher and 11 professional software

engineers from six countries (Russia, India,
An Experiment Slovenia, Spain, Canada, and Ukraine)

. Paid 540 US$ each for time and effort

- Problems with German minimum wage law

grep.ofasc/c9 bug report

Hang 1n grep -F for empty string search

Searching with grep -F for an empty string 1in a
multibyte locals would freeze grep.

An Experiment

For example,

$ export LC_ALL=en_US.UTF-8
$ echo "abcd" | ./grep -F ""
(runs forever)

Debug this!

Extremely difficult -
Very difficult -
Moderately difficult -
Slightly difficult -

Not at all difficult -

Time Spent

On average, participants spent 32 minutes diagnosing an error
and 16 minutes patching it

Combined

10 20 30 40 50 60 70 80 90

0

Bug Diagnosis

A
A
a
2 et
A
A - 4g:+
° [|
x..
10 20 30 40 50

Debugging/Fixing Time (in min)

60

0

Patching
Type
A e (Crash
‘.‘.A = A Functional
A - B [nfinite L
‘_I‘A nfinite Loop
“" + Resource Leak
A
10 20 30 40 50 60

Single Diagnosis Assumption

-+ For each error, we asked participants to provide a diagnosis: the root cause
of the error and the runtime actions leading to the error (with locations)

- 85% of participants provide essentially the same diagnosis for an error.

grep.SfaSc7c9 It grep is set to search for fixed strings (-F), the empty string is given (7”’), and the locale 1s UTF8_, then grep runs undefinitely. When
Error Type: Infinite Loop FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Avg. Time: 38.8 min Because len=0, the check 1s_mb_middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns

Explanation: Moderately difficult true (kwsearch.c:108). However, the size of the supposed multibyte character i1s computed as mb_len=1 (kwsearch.c:115). When

Patching: Slightly difficult ~ mb_len-1 1s added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The

Correctness: 50% loop 1s continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is_mb_middle returns false for
len=0. 2) Only call is_mb_middle if len is set. 3) Jump to success if mb_len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because i1t breaks multibyte character handling). 3) Remove part of the check which causes
1s_mb_middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match_size but teturn complete
buffer until end of line (Regression because only match should be returned).

- |s this what automated debugging tools should provide?

Single Fault Assumption

. |F their C |ag nOS.S Of _:he Regions per Error y Statements per Error Statements per Region
.o O i O 30 - O
error, participants or g‘%‘ o - .
average reference 3-4 6- . %% gi .
- - @
code regions 18 22 -
38 20 -
o o g %g: 18 -
= One suspicious statement 2 4- 30+ 16-- o
does not suffice to S 54 - 14 }
22: 12 - :
understand the error 18- 10- :
1e: -
. . 2 - 18: 6 -
= But one diagnosis could 8 - 4- \
nelp! . 2 > I

Patch vs Fault Location

o)

- Only 69% of submitted =
patches modify statements
that are referenced in the

bug diagnosis.

Paul Simon

SOWCIVS To Leave Your Lover

- (Often, there are several
ways to patch an error
correctly, syntactically and
semantically.

Correctness

- 97% (282/291) of the submitted =~ ™"
patches pass the test case e .
B 20%-

- 58% (170/291) are actually - 10:/0: - — -

correct 0%

Incomplete Fix Incorrect Regression Treating the
Workaround Symptom

Bug Diagnosis Strategies

Frequency of debug strategies over different bug types

60 . . — . .
crash oo
(FR) Forward Reasoning. Programmers follow each computational step resource leak B3
in the execution of the failing test. o0 1 functional m——m -
(BR) Backward Reasoning. Programmers start from the unexpected — infinite loop | |
output following backwards to the origin. x 40 -
(CC) Code Comprehension. Programmers read the code to understand >
it and build a mental representation. e 30 | |
(IM) Input Manipulation. Programmers construct a similar test case to g ‘
compare the behavior and execution. 3
(OA) Offline analysis. Programmers analyze an error trace or a core- L 20 1]
dump (e.g. via valgrind, strace).
(IT) Intuition. Developer uses her experience from a previous patch. 10 ¢ i
0 I i |

BR CC FR IM O I'T
Debug strategy

Patch Effects

- 70% of patches affect control flow: - 64% of patches affect data flow:
- 63% change a branch condition - 30% change a variable
- 19% modify loop or function flow - 39% add a statement;

24% move one, 16% delete one
- 43% add new branches
.« 2.8% Introduce new functions

mplications

- Program understanding is crucial:
Better documentation

- Events leading to failure involve multiple steps:
Need automated event chains

An Experiment

- Automated suggestions and patches may not
help with these problems

How Do Developers Debug?

An Experiment A Benchmark

A Debugging Benchmark

DBGBENCH contains 27 errors, each with
- failing test case

- simplified bug report
A Benchmark . the identified fault locations

- an explanation of the events leading to the error

- the time taken to understand and fix the error
- examples of correct and incorrect patches.

A Debugging Benchmark

A Benchmark

grep.Sfa8c7c9 If grep is set to search for fixed sfrings (-F), the empty string is given (””), and the locale is UTFS_, then grep runs undefinitely. When
Error Type: Infinite Loop FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Avg. Time: 38.8 min Because len=0, the check is_mb_middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns

Explanation: Moderately difficult true (kwsearch.c:108). However, the size of the supposed multibyte character is computed as mb_len=1 (kwsearch.c:115). When

Patching: Slightly difficult ~ mb_len-1 is added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The

Correctness: 50% loop i1s continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is_mb_middle returns false for
len=0. 2) Only call is_mb_middle if len is set. 3) Jump to success if mb_len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because it breaks multibyte character handling). 3) Remove part of the check which causes
1s_mb_middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match_size but teturn complete
buffer until end of line (Regression because only match should be returned).

A Debugging Benchmark

You can use the diagnoses in DBGBENCH to

- evaluate automated fault localization techniques
- evaluate automated bug diagnosis techniques

A Benchmark - evaluate automated repair techniques

You can use the data in DBGBENCH to

- measure how much faster developers can be |f
assisted with automated tools.

| NN > i 1 it « ® o= & st.cs.uni-saarland.de & (4] L = =)

1 v A © DBGBENCH &l

B]21C1 2] =1\ [0 o PYSEE—

About DBGBENCH Contact:

How do practitioners debug computer programs? In a retrospective study with 180 respondents and an observational)) .
i e E -t] _) SE chair at Saarland University
study with 12 practitioners, we collect and discuss data on how developers spend their time on diagnosis and fixing

bugs, with key findings on tools and strategies used, as well as highlighting the need for automated assistance. To Marcel B6hme

facilitate and guide future research, we provide a highly usable debt&ging benchmark providing fault locations,

patches and explanations for common bugs as provided by the practitioners. Ezekiel O. Soremekun
U sage Sudipta Chattopadhyay
DBGBENCH allows to evaluate novel automated debugging and patching technigues and assistants: Emamurho J. Ugherughe

« Evaluating Fault Localization Techniques: The human-generated fault locations can be used to evaluate
automated fault localization techniques. We suggest to measure the accuracy in finding at least one Andreas Zeller
statement in each contiguous region that participants localized.

« Evaluating Bug Diagnosis Techniques: The human-generated explanations can be used to evaluate
automated bug diagnosis techniques. We suggest to measure the accuracy in finding the pertinent variable
values, function calls, events, or cause-effect chains mentioned in the aggregated human-generated bug
diagnosis.

« Evaluating Automated Repair Techniques: The examples of correct and incorrect patches can be used to
evaluate automated repair and code review techniques. These high-level explanations serve as ground-truth
to determine the correctness (not plausibility) of an auto-generated patch.

« Evaluating the Effectiveness of Debugging Assistants: The time that our participants take to understand
and patch each error can be used to measure how much faster developers can be if assisted with automated
tools.

Downloads

« Download the DBGBENCH technical report titled: How Developers Diagnose and Repair Software Bugs

https://www.st.cs.uni-saarland.de/debugging/dbgbench/

Debugging Tools Should...

generate a diagnosis or explanation why the error
occurs (25%)

report the most general environment or conditions
under which the bug can be reproduced (14%)

A Survey

visualize divergence from the expected value of a
variable (10%)

visualize the range of expected values for a given
variable (4%)

Implications

- Program understanding is crucial:
Better documentation

An Experiment

Need automated event chains

- Automated suggestions and patches may not
help with these problems

- Events leading to failure involve multiple steps:

grep.bfasc’/c9 bug report

An Experiment

Hang in grep -F for empty string search

Searching with grep -F for an empty string in a
multibyte locals would freeze grep.

For example,

$ export LC_ALL=en_US.UTF-8
$ echo "abcd" | ./grep -F ""
(runs forever)

A Debugging Benchmark

A Benchmark

grep.Sfa8c7c9 If grep is set to scarch for fixed strings (-F), the empty string is given (™), and the locale is UTFS: then grep runs undefinitely. When
Error Type: Infinite Loop FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Avg. Time: 38.8 min Because len=0, the check is_mb_middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns

Explanation: Moderately difficult true (kwsearch.c:108). However, the size of the supposed multibyte character is computed as mb_len=1 (kwsearch.c:115). When

Patching: Slightly difficult mb_len-1 is added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The

Correctness: 50% loop is continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is_mb_middle returns false for
len=0. 2) Only call is_mb_middle if len is set. 3) Jump to success if mb_len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because it breaks multibyte character handling). 3) Remove part of the check which causes
is_mb_middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match_size but teturn complete
buffer until end of line (Regression because only match should be returned).

https://www.st.cs.uni-saarland.de/debugging/dbgbench/

