Generating Distinguishing Tests using the
MINION Constraint Solver

Franz Wotawa Mihai Nica Bernhard K. Aichernig

Institute for Software Technology
Technische Universitat Graz
Inffeldgasse 16b/2, A-8010 Graz, Austria
{wotawa,nica,baichern}@ist.tugraz.at

April 9, 2010

The work described in the paper was partially funded by the Austrian Science Fund (FWF) under contract number
P20199-N15, and the EU FP7 project MOGENTES ICT-216679, Model-based Generation of Tests for Dependabli
Grazm

Embedded Systems.

1/27

Content

@ Motivation

@ Basic definitions

© Constraint representation

© Computing distinguishing tests
© Experimental results

Q@ Conclusion

Ty,

2/27

Motivation

@ In Vidroha Debroy and W. Eric Wong. Using mutation to
automatically suggest fixes for faulty programs, ICST 2010,
Session 2 Mutation Testing the authors introduce the notation
of possible fixes.

@ There might be many of them!
@ How to minimize the number of possible fixes?

Ty,

3/27

Motivation

1. begin
2. i=2 % x;
3. j=2xy; — — — —
4 ol =i+ 3; x=1, y=2, 01l =8, 02 =4
5. 02 = 1 * i;
6. end;
N\ v
‘ Debugger ‘
1

Diagnosis candidates: 3.j=2%y and 4.01=1i+j

How to distinguish the diagnosis candidates?

Ty,

4/27

Motivation - Distinguishing tests

@ Use new (distinguishing) test cases for removing diagnosis
candidates!

@ Note:

¢ A diagnosis candidate can be eliminated if the new test case is
in contradiction with its behavior.

@ (Remark: We have to compute mutants for each diagnosis
candidate!)

@ Hence, we compute distinguishing test cases for each pair of
candidates and ask the user (or another oracle) for the
expected output values.

@ The problem of distinguishing diagnosis candidates is reduced
to the problem of computing distinguishing test cases!

Ty,

5/27

Preliminaries

II... Program written in any programming language

Variable environment is a set of tuples (z,v) where z is a
variable and v is its value

[TI}(I) ... Execution of II on input environment [

[II](1) 2 O < 1I passes test case(!,O)
—(IT passes test case(I,0)) < II fails test case(1, O)

Ty,

6/27

Distinguishing test case

Definition (Distinguishing test case)

Given programs II and II'. A test case (I,()) is a distinguishing
test case if and only if there is at least one output variable where
the value computed when executing II is different from the value
computed when executing IT' on the same input 1.

(1,0) is distinguishing II from II' <
Jz: (z,v) € [HJ(I) A (z,0") € [TI'](I)Av # 0

Ty,

7/27

Example

1. begin 1. begin

2 i =2 % x; 2 i=2 % x;

3 j=3*y; 3 j=2*y;

4 ol =i+ j; 4 ol =i+ j+2;

5 02 = 1 * i; 5 02 = i * i;

6 end; 6 end;

Orignal test case: ‘x =1,y=2,0l=7,02=4 ‘
Distinguishing test case: x=1,y=1

|01=5,o2=4| |01=6,02=4|

Ty,

8/27

Computing distinguishing test cases

o Given two programs IIy, I,
@ Basic idea:

@ Convert programs into their constraint representation

@ Add constraints stating that the inputs have to be equivalent

© Add constraints stating that at least one output has to be
different

@ Use the constraint solver to compute the distinguishing test
case

@ How to represent programs using constraints?

Ty,

9/27

Converting Programs into Constraints

@ Automated process

@ Unrolling loops; Number of possible/considered iterations
known in advance

@ Algorithm convert(I1,#1t)

@ Unrolling the loops
© Computing the Static Single Assignment form (SSA)
© Converting the SSA program into constraints

@ References:

Ty,

10/27

Constraint representation — Example

o Original program:

1
2
3.
4.
5
6

int power(int a, int exp)

int e = exp;

int res = 1;

while (e > 0) {
res = res * a;
e=e-1;}

return res;

Ty,

11/27

Step 1 — Loop unrolling

if C {
B
while C { .
B N whlleBC {
! }
}
N
if C {
B
if C {
B
if C {
too many iterations
¥
}
}

Ty,

12 /27

Constraint representation — Example cont.

o Loop-free program (2 iterations):

int power_loopfree(int a, int exp)
int e = exp;
int res = 1;
if (e > 0) {
res = res * a;
e=¢e - 1;
if (e > 0) {
res = res * a;
e=¢e - 1;
return res;

)

LN WD

Ty,

13/27

Step 2 — SSA representation

@ Static Single Assignment form (SSA):

o Property: Not two left-side variables have the same name!
@ Rename variables and make them unique (index).
o Conversion of conditionals:

if C then B; else B2end if

@ Assign the value of C to a variable, i.e.,, x.C = C ;.
o Convert By and B; separately (using different variable names).
@ Introduce a function ® for each target variable:

Ti = (p(xindez(Bl)a Tindex(Ba)» I—C)

Ty,

14 /27

Step 2 cont.

@ Semantics of ®:

. .\ def | v_j if condi=true
(v-], vk, cond 1) = { vk otherwise

int power_SSA(int a, int exp)
1 int e.0 = exp;

2 int res 0 = 1;

3 bool cond 0 = (e_.0 > 0);

4. int res_1 = res 0 * a;

5. int e.1 = e 0 - 1;

6 bool cond_1 = cond 0 A (e_.1 > 0);
7 int res 2 = res_1 * a;

3 int e2 = el - 1;

9. int res_.3 = ®(res_2, res_1, cond_1);
10. int e3 = d(e_2, e_1, cond_1);

11. int res 4 = ®(res_3, res_0, cond 0);
12. int e4 = ®(e_3, e.0, cond.0);

Ty,

15 /27

Step 3 — Conversion into Constraints

SSA Statement MINION Constraint
e 0 = exp; auxVar = ComputeExpression(exp),
eq(e_0, auxVar)
cond_0 = (e-0 > 0); reify(ineq(0,e-0,-1),cond_0)
cond_1 = cond 0 A (el > 0); reify(ineq(0,e_1,-1),cond_aux)
reify(watchsumgeq([cond_0,cond_aux], 2),cond_1)

res_4 = ®(res_3, res_0, cond_0); watched-or(eq(cond_0,0), eq(res_4,res_3))

watched-or(eq(cond_0,1), eq(res_4,res_0))

Ty,

16 /27

Step 3 cont.

Algorithm ComputeExpression(Eexpr)

Input: An expression Eeypr and an empty set M for storing the
MINION constraints.

Output: A set of minion constraints representing the expression
stored in M, and a variable or constant where the result of the
conversion is finally stored.

00000

If Ecxpr is a variable or constant, then return Eeypy.

Otherwise, Eexpy is of the form EL . op EZ, ..

Let aux; = ComputeExpression (E}expr)
Let auzy = ComputeExpression (EZ,,)

Generate a new MINON variable result and create MINON
constraints accordingly to the given operator op, which define
the relationship between auxq, auxo, and result, and add
them to M.

Q Return result. ﬂ!?.

17 /27

Step 3 cont.

@ Example: Given expression a_0 + b_.0 - c_0
@ Minion constraints:

sumleq([a_0,b_0],aux1)
sumgeq([a_0,b_0] ,auxl)
weightedsumleq([1,-1], [auxl,c_0], aux2)
weightedsumgeq([1,-1], [auxl,c_0], aux2)

Ty,

18 /27

Summary conversion process

Handles loop, conditionals, assignments, and function calls as
well as arrays

Currently not for OO constructs
Completely automated
To be used for testing and debugging (with some extensions)

Correct under given restricting assumptions

But how to compute distinguish test cases?

Ty,

19/27

Algorithm: Compute distinguishing test case

Inputs: Two programs II; and Il having the same input
variables (I V) and output variables (OUT), and a
maximum number of iterations #1t.

Outputs: A distinguishing test case.

Call convert(I1;,#1t) and store the result in M.
Call convert(Ily,#1t) and store the result in Mo.
Rename all variables = used in constraints M; to x_P1.
Rename all variables = used in constraints Ms to x_P2.

Let M be M, U M,.
For all input variables x € IN do:
@ Add the constraint z_P1 = x_P2 to M.
For all output variables z € OUT do:
©® Add the constraint z_P1 # x_P2 to M.
Return the values of the input variables obtained when callin
a constraint solver on M as result. ﬁ Griza

© © 60060O0CO

20/27

Experimental results

MINION version 0.8 constraint solver
Maximum time for computing solutions set to 2 hours
Only integer variables (range -250 to 250)

Intel Pentium Dual Core 2 GHz computer, 4 GB RAM,
Windows Vista

e © ¢ ¢

(]

No out-of-memory exceptions observed
@ lterations: 2, 4, and 7

@ Only small programs (Note: For debugging we used programs
up to 1kLOC)

Ty,

21/27

Experimental results cont.

Name LOC | #1/0 | #It Vi V2 V3 123 #CO | #Var

MuLtATC 2 2/1 2 K (0,075) | K(0,06s) K(0,04s) K(0,03s) a7 32
4 K (0,04s) | K(0,08s) K(0,07s) K(0,07s) 87 56

7 K (0,01s) | K(0,10s) K(0,11s) K(0,11s) 151 92

SumATC 13 2/1 2 K (0.4s) | K(0,03s) K(0,4s) K(0,4s) 49 34
4 K (0,4s) | K(0,07s) K(0,49s) K(0,47s) 89 58

7 K (0,67s) | K(0,11s) K(0,62s) K(0,09s) 149 9

MuLtV2ATC 18 2/1 2 K (0.25) | K(0,12s) K(0,21s) K(0,18s) 132 86
4 K (0,34s) | K(0,23s) K(0,31s) K(0,31s) 418 258

7 K (2,09s) | K(2,09s) K(2,15s) K(2,15s) 1144 696

DivATC 22 2/1 2 K (0,06s) | K(0,06s) K(0,06s) K(0,06s) 65 52
4 K (0,085) | K(0,08s) K(0,6s) K(0,08s) 105 76

7 K (0,10s) | K(0,10s) K(0,09s) K(0,12s) 165 112

GcdATC 24 2/1 2 K (0,07s) | K(0,35s) | K(46s/0,6s) | X/K(0,15s) | 126 90
4 K (0,085) | K(0,08s) | X/K(0,12s) | X/K(0,5s) 206 138

7 K (0,10s) | K(0,10s) | X/K(0,4s) | X/K(0,65s) | 333 220

RandomATC 52 3/1 2 K (0,25s) | K(0,25s) K(0,24s) K(0,24s) 303 213
4 K (0,8s) K(0,8s) K(0,8s) K(0,8s) 667 433

7 K (3,55) | K(3,47s) K(3,6s) K(3,59s) 1513 943

Ty,

22/27

Conclusions

(]

Computing inputs that distinguishes two implementations due
to different outputs

Automated test case generation

Use constraints to represent the implementations
Limitations:

@ No object-oriented constructs
@ The expected output values are not computed (oracle problem)
¢ Computational complexity — Not for large programs

(]

Variable order has an influence on computation!

(]

For extending test suites

(]

An extension to debugging

Ty,

23 /27

Questions?

24 /27

Debugging using Model-based Diagnosis

@ The debugging problem comprising:
¢ A program:

begin
i=2 % x;
j=2x*y;

ol =1+ j;
02 =1 % i;
end;

o=

@ At least one test case:
x=1, y=2, 01 =8, 02 =4

@ Basic idea: Introduce a predicate allowing to state correctness
/ incorrectness of programs.

Ty,

25 /27

Debugging cont.

@ Introduce predicates
[x0 =1, y0 = 2]

begin
-AByV il = 2 x x0;
—AB3V j.1 = 2 % y0;

—AB;V o011 = i1 + j_1;
~ABsV 021 = i1 % i1;

ok wn =

end;
[01_1 =8, 021 = 4]

@ When considering assignment as equations / constraints, we
can use a constraint solver to set values for AB; such that all
constraints are fulfilled.

@ Debugging becomes constraint solving.

Ty,

26 /27

Debugging and distinguishing test cases

@ But is this all we need in order to use distinguishing test
cases?
@ NO! But we can do the following:
o Focus on statements identified to be diagnosis candidates and
ignore all others.
@ Compute (all) mutations for the interesting statements.
@ Distinguish mutants using distinguishing test cases.

Ty,

27 /27

