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ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify outliers
in each cluster with respect to their API usage. A “weather” app that
sends messages thus becomes an anomaly; likewise, a “messaging”
app would typically not be expected to access the current location.
Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56%
of novel malware as such, without requiring any known malware
patterns.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Security

Keywords
Android, malware detection, description analysis, clustering

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some program
behavior will be beneficial or malicious. The problem is that any
specification on what makes behavior beneficial or malicious very
much depends on the current context. In the mobile world, for
instance, a behavior considered malicious in one app may well be a
feature of another app:
∗Ilaria Tavecchia is now with SWIFT, Brussels, Belgium.
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Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the sentitive APIs used (4), and can
then identify outliers that use APIs that are uncommon for that
cluster (5).

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as
advertised. In all the examples above, the user would be informed
and asked for authorization before any questionable behavior. It is
the covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As
a proxy for its implemented behavior, we use the set of Android
application programming interfaces (APIs) that are used from within



Figure 2: Words in app descriptions of the “navigation and
travel” cluster. The bigger a word, the more app descriptions it
appears in.

Figure 3: Words in “personalize” apps

the app binary. The key idea is to associate descriptions and API
usage to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” Android
applications downloaded from the Google Play Store.

2. Using Latent Dirichlet Allocation (LDA) on the app descrip-
tions, CHABADA identifies the main topics (“theme”, “map”,
“weather”, “download”) for each application.

3. CHABADA then clusters applications by related topics. For in-
stance, apps related to “navigation” and “travel” share several
topics in their description, so they form one cluster.

Figure 2 shows the word cloud for the descriptions of the apps
in the “navigation and travel” cluster. Clusters very much
differ by their word clouds; compare, for instance, the word
cloud for the “personalization” cluster (Figure 3).

4. In each cluster, CHABADA identifies the APIs each app stat-
ically accesses. We only consider sensitive APIs, which are
governed by a user permission. For instance, APIs related to
internet access are controlled by an “INTERNET” permission.

Figure 4 shows the sensitive APIs used by “navigation and
travel” applications, grouped by the governing permission.
Obviously, the “normal” behavior for these apps is to access
the current location and access the internet (typically, a map

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

Figure 4: APIs, grouped by associated permission, used within
the “navigation and travel” cluster. Standard behavior is to
access the location (“ACCESS-FINE-LOCATION”) and access the
Internet (“ACCESS-NETWORK-STATE”, “INTERNET”).

Figure 5: APIs for the “personalize” cluster. In con-
trast to Figure 4, these apps frequently access the SD card
(“WRITE-EXTERNAL-STORAGE”), enable and disable new fea-
tures (“CHANGE-COMPONENT-ENABLED-STATE”), but rarely,
if ever, access the device location.

server). Internet access is also used by “personalize” apps
(Figure 5); however, they would access external storage and
components rather than the current location.

5. Using unsupervised One-Class SVM anomaly classification,
CHABADA identifies outliers with respect to API usage. It
produces a ranked list of applications for each cluster, where
the top apps are most abnormal with respect to their API
usage—indicating possible mismatches between description
and implementation. Likewise, yet unknown applications
would first be assigned to the cluster implied by their descrip-
tion and then be classified as being normal or abnormal.

In the “navigation and travel” cluster, the usage of any API
that changes the configuration of the phone or its components
would be unusual; this, however, is common for “personalize”
apps, which in turn rarely access the current location. In both
clusters, any app that would read or write contacts, calendar
entries, pictures, text messages, the browser history, network
settings, etc. would immediately be flagged as an outlier—and
thus be subject to further scrutiny.

By flagging anomalous API usage within each cluster, CHABADA
is set up to detect any kind of mismatch between advertised and
implemented behavior. How does this work in practice? Figure 6
shows London Restaurants & Pubs +2, available from the Google
Play Store. Its description clearly puts it into the “navigation and
travel” cluster. Besides expected API calls to access the current
location and the internet, however, it also uses three API calls to re-
trieve the list of user accounts on the device—getAccountsByType(),
getDeviceId(), and getLine1Number(), all governed by the “GET-
ACCOUNTS” permission. These calls, which retrieve sensitive
information such as the device identifier and mobile phone number,
make London Restaurants an outlier within “navigation and travel”.

Indeed, London Restaurants covertly sends this information (in-
cluding additional information such as the current location) to its ad-
vertisement service, which is not mentioned at all in the description.

2https://play.google.com/store/apps/details?
id=com.alarisstudio.maps.restaurants.london

https://play.google.com/store/apps/details?id=com.alarisstudio.maps.restaurants.london
https://play.google.com/store/apps/details?id=com.alarisstudio.maps.restaurants.london


Looking for a restaurant, a bar, a pub or just to 
have fun in London? Search no more! This 
application has all the information you need:
* You can search for every type of food you 
want: french, british, chinese, indian etc.
* You can use it if you are in a car, on a bicycle 
or walking
* You can view all objectives on the map
* You can search objectives
* You can view objectives near you
* You can view directions (visual route, 
distance and duration)
* You can use it with Street View
* You can use it with Navigation
Keywords: london, restaurants, bars, pubs, 
food, breakfast, lunch, dinner, meal, eat, 
supper, street view, navigation

Figure 6: The app London Restaurants Bars & Pubs +, together
with complete description and API groups accessed

Is this malware? Possibly. Is this unexpected behavior? Certainly.3

If London Restaurants had been explicit about what it does, it would
have fallen in an “advertisements” cluster instead, where it would
no longer be an outlier.

In our research, we found several more examples of false adver-
tising, plain fraud, masquerading, and other questionable behavior.
As a side effect, our approach is also effective as a malware de-
tector: Training per-cluster SVM classifiers on benign applications,
CHABADA flagged 56% of known malware as such, without requir-
ing any training on malware patterns.

The remainder of this paper is organized as follows. We first
detail how to cluster applications by description topics in Section 2.
Section 3 describes how in each cluster we detect outliers with re-
spect to their API usage. Section 4 evaluates our approach, manually
and automatically, quantitatively and qualitatively. After discussing
the related work (Section 5), Section 6 closes with conclusion and
consequences.

2. CLUSTERING APPS BY DESCRIPTION
The intuition behind CHABADA is simple: applications that are

similar, in terms of their descriptions, should also behave simi-
larly. For this, we must first establish what makes two descriptions
“similar”. We start with our collection method for Android apps
(Section 2.1). After initial processing (Section 2.2), CHABADA iden-
tifies topics of app descriptions (Section 2.3), and then clusters the
apps based on common topics (Section 2.4 to Section 2.6).

2.1 Collecting Applications
Our approach is based on detecting anomalies from “normal”,

hopefully benign applications. As a base for such “normal” behav-
ior, we collected a large set of applications from the Google Play
Store, the central resource for Android apps. Our automated col-
lection script ran at regular intervals during the Winter and Spring
of 2013, and for each of the 30 categories in the Google Play Store,
downloaded the top 150 free4 applications in each category. A
3When installing London Restaurants, the user must explicitly ac-
knowledge its set of permissions, but why would the user find
something like “account access” unusual or suspicious?
4Section 4.3 discusses possible induced bias.

single complete run of our script thus returned 4,500 apps; as the
top 150 apps shifted during our collection, we obtained a total of
32,136 apps across all categories.

In addition to the actual app (coming as an APK file), we also
collected the store metadata—such as name, description, release
date, user ratings, or screenshots. As CHABADA is set to identify
outliers before they get released to the public, it only uses name and
description.

2.2 Preprocessing Descriptions with NLP
Before subjecting our descriptions to topic analysis, we applied

standard techniques of natural language processing (NLP) for filter-
ing and stemming.

App descriptions in the Google Play Store frequently contain
paragraphs in multiple languages—for instance, the main descrip-
tion is in English, while at the end of the description developers
add a short sentence in different languages to briefly describe the
application. To be able to cluster similar descriptions, we had to
choose one single language, and because of its predominance we
chose English. To remove all paragraphs of text that were not in
English, we ran Google’s Compact Language Detector5 to detect
their most likely language; non-English paragraphs were removed.

After multi-language filtering, we removed stop words (common
words such as “the”, “is”, “at”, “which”, “on”, . . . ), and applied
stemming on all descriptions. Stemming is a common NLP technique
to identify the word’s root, and it is essential to make words such as
“playing”, “player”, and “play” all match to the single common root
“plai”. Stemming can improve the results of later NLP processes,
since it reduces the number of words. We also removed non-text
items such as numerals, HTML tags, links and email addresses.

As an example, consider the description of London Restaurants
in Figure 6; after stop word removal and stemming, it appears as:

look restaur bar pub just fun london search applic inform need
can search everi type food want french british chines indian etc
can us car bicycl walk can view object map can search object
can view object near can view direct visual rout distanc durat
can us street view can us navig keyword london restaur bar pub
food breakfast lunch dinner meal eat supper street view navig

With that, we eliminated those applications from our set whose
description would have less than 10 words after the above NLP
preprocessing. Also, we eliminated all applications without any
sensitive APIs (see Section 3 for details). This resulted in a final set
of 22,521 apps, which form the base for our approach.

2.3 Identifying Topics with LDA
To identify sets of topics for the apps under analysis, we resort to

topic modeling using Latent Dirichlet Allocation (LDA) [4].
LDA relies on statistical models to discover the topics that occur

in a collection of unlabeled text. A “topic” consists of a cluster
of words that frequently occur together. By analyzing a set of app
descriptions on navigation and travels, for instance, LDA would
group words such as “map”, “traffic”, “route”, and “position” into
one cluster, and “city”, “attraction”, “tour”, and “visit” into another
cluster. Applications whose description is mainly about navigation
would thus be assigned to the first topic, since most of the words
occurring in the description belong to the first cluster. Applications
such as London Restaurants, however, would be assigned to both
topics, as the words in the description appear in both clusters.

Our implementation feeds output of NLP pre-processing (i.e., the
English text without stop words, and after stemming) into the Mallet
framework [18]. We could freely choose the number of topics to

5
http://code.google.com/p/chromium-compact-language-detector/
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Table 1: Topics mined from Android Apps
Id Assigned Name Most Representative Words (stemmed)
0 “personalize” galaxi, nexu, device, screen, effect, instal,

customis
1 “game and cheat

sheets”
game, video, page, cheat, link, tip, trick

2 “money” slot, machine, money, poker, currenc, market,
trade, stock, casino coin, finance

3 “tv” tv, channel, countri, live, watch, germani, na-
tion, bbc, newspap

4 “music” music, song, radio, play, player, listen
5 “holidays” and

religion
christmas, halloween, santa, year, holiday, is-
lam, god

6 “navigation and
travel”

map, inform, track, gps, navig, travel

7 “language” language, word, english, learn, german,
translat

8 “share” email, ad, support, facebook, share, twitter,
rate, suggest

9 “weather and stars” weather, forecast, locate, temperatur, map,
city, light

10 “files and video” file, download, video, media, support, man-
age, share, view, search

11 “photo and social” photo, friend, facebook, share, love, twitter,
pictur, chat, messag, galleri, hot, send social

12 “cars” car, race, speed, drive, vehicl, bike, track
13 “design and art” life, peopl, natur, form, feel, learn, art, design,

uniqu, effect, modern
14 “food and recipes” recip, cake, chicken, cook, food
15 “personalize” theme, launcher, download, install, icon,

menu
16 “health” weight, bodi, exercise, diet, workout, medic
17 “travel” citi, guid, map, travel, flag, countri, attract
18 “kids and bodies” kid, anim, color, girl, babi, pictur, fun, draw,

design, learn
19 “ringtones and

sound”
sound, rington, alarm, notif, music

20 “game” game, plai, graphic, fun, jump, level, ball, 3d,
score

21 “search and
browse”

search, icon, delet, bookmark, link, homepag,
shortcut, browser

22 “battle games” story, game, monster, zombi, war, battle
23 “settings and utils” screen, set, widget, phone, batteri
24 “sports” team, football, leagu, player, sport, basketbal
25 “wallpapers” wallpap, live, home, screen, background,

menu
26 “connection” device, connect, network, wifi, blootooth, in-

ternet, remot, server
27 “policies and ads” live, ad, home, applovin, notif, data, polici, pri-

vacy, share, airpush, advertis
28 “popular media” seri, video, film, album, movi, music, award,

star, fan, show, gangnam, top, bieber
29 “puzzle and card

games”
game, plai, level, puzzl, player, score, chal-
leng, card

be identified by LDA; and we chose 30, the number of categories
covered by our apps in the Google Play Store. Furthermore, we set
up the LDA such that an app would belong to at most 4 topics, and
we consider an app related to a topic only if its probability for that
topic is at least 5%.

Table 1 shows the resulting list of topics for the 22,521 descrip-
tions that we analyzed; the “assigned name” is the abstract concept
we assigned to that topic. Our example application, London Restau-
rants, is assigned to three of these topics:

• Topic 6 (“navigation and travel”) with a probability of 59.8%,

• Topic 14 (“food and recipes”) with a probability of 19.9%,
and

• Topic 17 (“travel”) with a probability of 14.0%.

2.4 Clustering Apps with K-means
Topic modeling assigns an application description to each topic

with a certain probability. In other words, each application is char-
acterized by a vector of affinity values (probabilities) for each topic.

However, what we want is to identify groups of applications with
similar descriptions, and we do that using the K-means algorithm,
one of the most common clustering algorithms [16].

Given a set of elements in a metric space, and the number K
of desired clusters, K-means selects one centroid for each cluster,
and then associates each element of the data set with the nearest
centroid, thus identifying clusters. In this context, the elements
to be clustered are the applications as identified by their vector of
affinities to topics.

Table 2 shows four applications app1, . . . , app4, with the corre-
sponding probabilities of belonging to four topics. When applied to
this set of applications with K = 2 clusters, K-means returns one
cluster with app1 and app3, and another cluster with app2 and app4.

Table 2: Four applications and their likelihoods of belonging to
specific topics

Application topic1 topic2 topic3 topic4
app1 0.60 0.40 — —
app2 — — 0.70 0.30
app3 0.50 0.30 — 0.20
app4 — — 0.40 0.60

2.5 Finding the Best Number of Clusters
One of the challenges with K-means is to estimate the number

of clusters that should be created. The algorithm needs to be given
either some initial potential centroids, or the number K of clusters to
identify. There exist several approaches to identify the best solution,
among a set of possible solutions. Therefore, we run K-means
several times, each time with a different K number, to obtain a set
of clusterings we would then be able to evaluate. The range for K
covers solutions among two extremes: having a small number of
clusters (even just 2) with a large variety of apps; or having many
clusters (potentially even one per app) and thus being very specific.
We fixed num_topics × 4 as an upper bound, since in our settings
an application can belong to up to 4 topics.

To identify the best solution, i.e., the best number of clusters, we
used the elements silhouette, as discussed in [21]. The silhouette of
an element is the measure of how closely the element is matched to
the other elements within its cluster, and how loosely it is matched
to other elements of the neighboring clusters. When the value of
the silhouette of an element is close to 1, it means that the element
is in the appropriate cluster. If the value is close to −1, instead, it
means that the element is in the wrong cluster. Thus, to identify the
best solution, we compute the average of the elements’ silhouette
for each solution using K as the number of clusters, and we select
the solution whose silhouette was closest to 1.

2.6 Resulting App Clusters
Table 3 shows the list of clusters that were identified for the

22,521 apps that we analyzed. Each of these 32 clusters contains
apps whose descriptions contain similar topics, listed under “Most
Important Topics”. The percentages reported in the last column
represent the weight of specific topics within each cluster.

The clusters we identified are quite different from the categories
one would find in an app store such as the Google Play Store. Clus-
ter 22 (“advertisements”), for instance, is filled with applications
that do nothing but display ads in one way or another; these apps
typically promise or provide some user benefit in return. Cluster 16
(“connection”) represents all application that deal with Bluetooth,
Wi-Fi, etc.; there is no such category in the Google Play Store. The
several “wallpaper” clusters, from adult themes to religion, simply
represent the fact that several apps offer very little functionality.



Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game (11%),

design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

The London Restaurants app ended up in Cluster 12, together
with other applications that are mostly about navigation and travels.
These are the clusters of apps related by their descriptions in which
we now can search for outliers with respect to their behavior.

2.7 Alternative Clustering Approaches
As with most scientific work, the approach presented in this

paper only came to be through several detours, dead-ends, and

refinements. We briefly list the most important ones here as to have
future researchers avoid some of the problems we encountered.

Usage of topics. One might wonder if it is really necessary to clus-
ter based on topics instead of clustering plain descriptions
directly. The reason is that K-means, as well as any other
clustering algorithm, works better when few features are in-
volved. Hence, abstracting descriptions into topics was crucial
to obtain better clustering results.

Usage of clusters. Having just one dominant topic for applications
did not yield better results, since several applications may
incorporate multiple topics at once. This also excluded the us-
age of the given Google Play Store categories as a clustering
strategy. Despite one might argue that clustering does not pro-
duce different results than just clustering on the predominant
topics (the number of topics and cluster is almost the same),
one should also notice that clusters have quite different fea-
tures than topics. For instance, Cluster 22 (“advertisements”)
groups applications whose main topic is about wallpapers
and mention in the description that the application is using
advertisements. This contrasts to Cluster 32 (“settings and
wallpapers”), for instance, which also groups applications that
are about wallpapers, but do not mention advertisements in
the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to a
good clustering of similar apps. A yet unexplored alternative
is to allow an app to be a member of multiple clusters. This
might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [25] without successful results;
the analysis was overwhelmed by the number of apps and
features. K-means has known limitations, and we believe that
other clustering algorithms could improve the clustering.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. However, the goal of
our approach is to identify outliers before users see them, and
consequently we should consider all apps.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their

description topics, we can search for outliers regarding their ac-
tual behavior. Section 3.1 shows how we extract API features from
Android binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: while
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; in Android binaries, as in most binaries on other
platforms, static API usage is easy to extract. For each Android ap-
plication, we extracted the (binary) APK file with apktool6, and with
a smali disassembler, we extracted all API invocations, including the
number of call sites for each API.
6
https://code.google.com/p/android-apktool
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Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

3.2 Sensitive APIs
Using all API calls as features would induce overfitting in later

stages. Therefore, we select a subset of APIs, namely the sensitive
APIs that are governed by an Android permission setting. These
APIs access sensitive information (such as the user’s picture library,
the camera, or the microphone) or perform sensitive tasks (altering
system settings, sending messages, etc.) When installing an app, the
user must explicitly permit usage of these APIs. For this purpose,
each Android app includes a manifest file which lists the permissions
that the application requires for its execution. To obtain the set of
sensitive APIs, we relied on the work of Felt et al., who identified and
used the mapping between permissions and Android methods [7];
we considered a sensitive API to be used by the app if and only
if it is declared in the binary and if its corresponding permission
is requested in the manifest file. This allowed us to eliminate API
calls that are used within third party libraries, and not used by the
application directly.

As an example for such sensitive APIs, consider Table 4. These
are the APIs used by the London Restaurants app that would be
governed by a specific permission. Through these APIs, the app
accesses the current network provider, the last known location (as
well as updates), and the internet via an HTTP connection. These
APIs also reveal that the app accesses the device identifier, the
user’s account info, as well as the mobile phone “line1” number.
These latter APIs, shown in bold, would be governed by the “GET-
ACCOUNTS” permission. As each permission governs several APIs,
using permissions alone would give us too few features to learn
from. Instead, the sensitive APIs allow for a much more fine-grained
characterization of the application behavior.

3.3 Identifying API Outliers with OC-SVMs
Now that we have all API features for all apps, the next step is

to identify outliers—that is, those applications whose API usage
would be abnormal within their respective topic cluster. To identify
these outliers, we use One-Class Support Vector Machine learning
(OC-SVM) [22], which is a machine learning technique to learn
the features of one class of elements. The resulting SVM model
can later be used for anomaly/novelty detection within this class.
(Note how this is in contrast to the more common usage of Support
Vector Machines as classifiers, where each app additionally has
to be labeled as belonging to a specific class—say, “benign” vs.
“malicious”—during training.)

OC-SVM has been successfully applied in various contexts that
span from document classification [17] to automatic detection of

anomalous Windows registry accesses [10]. In our context, the
interesting feature of OC-SVM is that one can provide only samples
of one class (say, of regular benign applications), and the classifier
will be able to identify samples belonging to the same class, tagging
the others as anomalies. OC-SVMs, therefore, are mainly used
in those cases in which there exist many samples of one class of
elements (e.g. benign applications), and not many samples of other
classes (e.g. malicious applications).

With the sensitive APIs as binary features, CHABADA trains an
OC-SVM within each cluster with a subset of the applications in
order to model which APIs are commonly used by the applications
in that cluster. The resulting cluster-specific models are then used to
identify the outlier applications, i.e., applications whose used APIs
differ from the common use of the API within the same cluster.

To represent the distance of an element from the common behav-
ior, we use the actual distance of the element from the hyperplane
that the OC-SVM builds. The bigger this distance, the further an
element is from the commonly observed behavior. Thus, by ranking
the elements (i.e. apps) by their distance to the OC-SVM hyperplane,
we can identify which ones have behaviors that differ the most from
what has been commonly observed.

As an example, consider again our London Restaurants app. After
training the OC-SVM on the apps in Cluster 12, it classifies London
Restaurant as an outlier. The reason is the APIs shown in bold in
Table 4—indeed, accessing the device identifier, the user’s account
info, or his mobile phone number is uncommon for the apps in the
“navigation and travel” cluster. In our evaluation in Section 4, we
discuss trends that make an app an outlier.

3.4 Alternative Approaches
To detect anomalies, we have identified several alternative set-

tings; some of which we already experimented with. Again, we
briefly list them here.

Class and package names as abstraction. Before going for sensi-
tive APIs with Felt et al.’s mapping, we considered abstracting
the API method invocations by considering only the class
name or the package name instead of the whole method sig-
nature. Although this helped reducing the number of features,
it also caused a loss of relevant information. Invocations to
sensitive methods such as getLine1Number(), which returns
the user’s phone number, would be indistinguishable from
relatively harmless methods such as getNetworkType(), which
returns the current data connection, since they are both de-
clared in class TelephonyManager.

Number of call sites. For each API we considered a binary value
(i.e. there exists at least one call site for that API in the app
or not). We could have considered the normalized number of
call sites for each API as a feature. We expect similar results,
although we only experimented with binary values.

TF-IDF for APIs. Since some APIs are commonly used across all
clusters, for instance APIs for Internet access, we could have
considered only the most relevant and representative methods
for the cluster instead of all the methods. Term frequency-
inverse document frequency (TF-IDF) [13] could filter out
some of the non discriminant features, thus providing even
greater support for the OC-SVM algorithm. We have not tried
this path yet, although we plan to investigate it in the near
future.

Insensitive APIs. To avoid overfitting, limiting the number of fea-
tures is crucial. Hence, we focused on APIs that would be



“sensitive”, that is, impacted by Android permissions. Ex-
panding this set to other relevant APIs might yield even better
results.

Permissions instead of APIs. Instead of APIs, we could have used
the list of permissions in the manifest file as features. How-
ever, studies showed that almost 30% of Android applications
request more permissions than they actually use [7, 2, 3, 23].
We chose APIs since they provide a more fine-grained view
into what apps do and do not.

Avoiding APIs as predictors alone. When training a classifier on
descriptions and APIs of known malware, the specific APIs
being used in the malware set (typically, sending text mes-
sages) will dominate the descriptions. By first clustering by
descriptions and then classifying, we obtain better results.

4. EVALUATION
To evaluate the effectiveness of our technique, we investigated

the following main research questions:

RQ1 Can our technique effectively identify anomalies (i.e., mis-
matches between description and behavior) in Android ap-
plications? For this purpose, we manually inspected the top
outliers as produced by our technique and classified them with
respect to covert behavior (Section 4.1).

RQ2 Can our technique be used to identify malicious Android
applications? For this purpose, we included in our set of
applications a set of known malware, and we ran OC-SVM as
a classifier (Section 4.2).

4.1 Outlier Detection
Let us start with RQ1: Can our technique effectively identify

anomalies (i.e., mismatches between description and behavior) in
Android applications? For this purpose, we ran CHABADA on all
32 clusters, as described in Section 3. Following K-fold validation,
we partitioned the entire set of 22,521 applications in 10 subsets,
and we used 9 subsets for training the model and 1 for testing.
We ran this 10 times, each time considering a different subset for
testing. Out of the whole list of outliers identified in each run, we
identified the top 5 outliers from the ranked list for each cluster.
These 160 outliers would now have to be assessed whether they
would really exhibit suspicious behavior.

4.1.1 Manual Assessment
In the end, only a human can interpret properly what is in an app

description. Therefore, for these 160 applications, we would man-
ually examine their description, the list of APIs used, as manually
inspect the code. We would classify each of the apps into one of
three categories:

Malicious – the app shows unadvertised (covert) behavior using
sensitive APIs that acts against the interest of its users.

Dubious – the app shows unadvertised (covert) behavior using
sensitive APIs, but would not necessarily act against the user’s
interests.

Benign – all sensitive behavior is properly described. This includes
apps which clearly list the sensitive data they collect, and also
applications placed in the wrong cluster due to inadequate
descriptions.

We applied an “innocent unless proven guilty” principle: On
average, each such assessment would take 2 minutes for benign
applications, and up to 5 minutes for dubious or malicious applica-
tions.

Table 5 summarizes our assessment. Overall, we clearly identified
42 outliers as malware, which is 26% of our sample. Given that these
apps stem from an app store that is supposed to maintain quality,
this is a worrying result.7 Even more worrying is that there are
clusters of apps in which the majority of outliers are all malicious.
In Clusters 14 (“kids”), 16 (“connection”), 28 (“ad wallpapers”), 30
(“theme wallpapers”), the majority of outliers are malicious.

The good news in all of this is that the outliers as reported by
CHABADA are worth looking into: 39% of the top 5 outliers require
additional scrutiny by app store managers—or end users, who may
just as well run CHABADA for their protection.

Top outliers, as produced by CHABADA, contain 26% malware;
additional 13% apps show dubious behavior.

4.1.2 What Makes an Outlier?
During our investigation, we identified a number of repeating

trends that determined whether an app would be an outlier or not.
These trends can be characterized as follows:

Spyware ad frameworks.
A large portion of the “malicious” apps we found are spyware.

We identified multiple applications in different clusters that get
sensitive information such as the user’s phone number, the device
id, the user’s current location, and the list of emails used in different
accounts such as the Google and Facebook accounts. Apps do not
use this information for themselves, but they retrieve these data
only because they include third party libraries for advertisements,
and advertisement companies such as apploving and airpush pay
application developers for users’ sensitive information. Some apps
clearly state that they include such frameworks, and most of them
ended up in the advertisements cluster, where such behavior is
normal. Apps that do not mention the usage of such frameworks
and their impact on privacy, however, are spyware.

Just to mention a few examples, we found “mosquito killer” apps
such as Mosquito Repellent – No Ads, Anti-Mosquitoes, Mosquito
Repellent Plus, wedding apps such as Wedding Ideas Gallery , and
apps with collections of wallpapers such as Christmas girl live wall-
paper and Twilight live wallpaper . Since they all include the same
ad frameworks, they all get the sensitive data mentioned above and
send it to ad servers.

Dubious behavior.
In “dubious” applications whose description does not completely

justify the behavior. For instance, the UNO Free game application
accesses the user’s location without explanation, and WICKED, the
official application for a Broadway show, can record audio, but it
does not say for which purposes. Runtastic, a widely used training
application, can also record audio, but it does not mention it in the
description. Finally, Yahoo! Mail , which is the official application to
browse and compose emails with Yahoo, can send SMSs. From the
description it is not clear why the application should do that.

Misclassified apps.
Some “benign” applications were misclassified on the basis of

their descriptions, and consequently were assigned to clusters popu-
7Note, though, that between the time of download and the time of
writing, many of these applications had already been identified as
malicious by users and since been removed.



Table 5: Manual assessment of the top 5 outliers, per cluster and total.

Behavior 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Total
Malicious 1 2 1 0 0 0 0 2 0 0 0 0 0 3 0 4 2 0 0 1 3 5 1 3 1 1 2 3 1 4 1 1 42 (26%)
Dubious 1 2 1 0 0 0 0 0 0 2 2 1 1 0 0 0 1 2 1 1 0 0 2 0 1 0 1 0 1 0 0 0 20 (13%)
Benign 3 1 3 5 5 5 5 3 5 3 3 4 4 2 5 1 2 3 4 3 2 0 2 2 3 4 2 2 3 1 4 4 98 (61%)

lated by applications that cover substantially different topics. For
instance, SlideIT free Keyboard , which is a popular tool to insert
text by sliding the finger along the keyboard letters, ended up in the
language cluster, since more than half of the description is about the
language support. Romanian Racing, which is a racing game, also
ended up in the same cluster, mainly because its brief description
mentions multi-language support.

We also had some rare cases of applications that were associated
to completely unexpected clusters. Hamster Life, a pet training game,
ended up in the “religious wallpapers” cluster.

Uncommon behavior.
Some apps were tagged as outliers because their behavior, al-

though benign and clearly described, is just very uncommon for the
clusters these applications belong to. For instance, SoundCloud –
Music & Audio was tagged as an anomaly mainly because it records
audio. This is expected behavior, since the application connects to a
platform for finding and sharing new music, and it allows to record
music that users produce. However, recording audio is not one of
the common features of Cluster 1, and consequently SoundCloud
was tagged as an anomaly. Similarly, Llama – Location Profiles,
which allows to change the ringtones depending on the context and
location, was tagged as an anomaly because it is not common for
personalization applications to access the user’s location and calen-
dar. This application, though, uses this information to automatically
switch between vibrate and ringtones when the user, for instance, is
at home, in office, or has a meeting.

Benign outliers.
In some clusters, CHABADA identified the uncommon behavior as

the lack of malicious behavior. For instance, Cluster 13 (“money”)
contains several applications that use libraries for advertisements,
and thus access sensitive information. As a consequence, Mr. Will’s
Stud Poker and Mr. Will’s Draw Poker were tagged as anomalies
because they do not access sensitive information, despite them being
poker games.

CHABADA is behavior-agnostic: It cannot determine whether an
application is good or bad, only if it is common or not.

4.2 Malware Detection
Let us now turn to RQ2: Can our technique be used to identify

malicious Android applications? For this purpose, we used the
dataset of Zhou et al. [28] containing more than 1,200 known mali-
cious apps for Android. In their raw form, these apps lack metadata
such as title or description. As many of these apps are repackaged
versions of an original app, we were able to collect the appropri-
ate description from the Google Play Store. We used the title of
the application and the package identifier to search for the right
match in the Store. For 72 cases we could find exactly the same
package identifier, and for 116 applications we found applications
whose package identifier was very similar. We manually checked
that the match was correct. As with our original set of “benign”
apps (Section 2.1), we only kept those applications with an English
description in the set, reducing it to 172 apps.

As a malware detector, we again used the OC-SVM model; but
this time, we would use it as a classifier—that is, we used the SVM
model for a binary decision on whether an element would be part of
the same distribution or not.

4.2.1 Classification using topic clusters
We ran the classification on the “benign” set of apps used in the

previous study, and we included the 172 malware samples for which
we could find the corresponding description. We trained the OC-
SVM only on “benign” applications as before, and we excluded the
applications manually classified as “malicious” during the previous
experiment (Section 4.1); We then trained within each cluster the
OC-SVM on the APIs of 90% of these apps, and then used the OC-
SVM as a classifier on a testing set composed of the known malicious
apps in that cluster as well as the remaining 10% benign apps. What
we thus simulated is a situation in which the malware attack is
entirely novel—CHABADA must correctly identify the malware as
such without knowing previous malware patterns.

As for the previous experiment, we would do this 10 times, each
time considering a different test set. The number of malicious
applications would not be equally distributed across clusters, as
malicious applications are assigned to clusters depending on their
descriptions. In our evaluation setting, with our data set, the number
of malicious applications per cluster spans from 0 to 39.

The results of our classification are shown in Table 6. We report
the average results of the 10 different runs. CHABADA correctly
identifies 56% of the malicious apps as such, while only 16% of
“benign” apps are misclassified. If our approach would be used to
guard against yet unknown malicious behavior, it would detect the
majority of malware as such.

Table 6: Checking APIs and descriptions within topic clusters
(our approach)

Predicted as malicious Predicted as benign
Malicious apps 96.5 (56%) 75.5 (44%)

Benign apps 353.9 (16%) 1,884.4 (84%)

Compared against standard malware detectors, these results of
course leave room for improvement—but that is because existing
malware detectors compare against known malware, whose signa-
tures and behavior are already known. For instance, accessing all
user accounts on the device, as the London Restaurants app does,
is a known pattern of malicious behavior. In practice, our approach
would thus be used to complement such detectors, and be specifi-
cally targeted towards novel attacks which would be different from
existing malware—but whose API usage is sufficiently abnormal to
be flagged as an outlier.

In our sample, even without knowing existing malware patterns,
CHABADA detects the majority of malware as such.

4.2.2 Classification without clustering
We further evaluate the effectiveness of our approach by compar-

ing it against alternatives. To show the impact of topic clustering,
we compare our classification results against a setting in which the



OC-SVM would be trained on sensitive APIs and NLP-preprocessed
words from the description alone—that is, all applications form one
big cluster. As Table 7 shows, the malware detection rate decreases
dramatically. This shows the benefits of our clustering approach.

Table 7: Checking APIs and descriptions in one single cluster
Predicted as malicious Predicted as benign

Malicious apps 41 (24%) 131 (76%)
Benign apps 334.9 (15%) 1,903.1 (85%)

Classifying without clustering yields more false negatives.

4.2.3 Classification using given categories
Finally, one may ask why our specific approach for clustering

based on description topics would be needed, as one could also
easily use the given store categories. To this end, we clustered the
applications based on their categories in the Google Play Store,
and repeated the experiment with the resulting 30 clusters. The
results (Table 8) demonstrate the general benefits of clustering;
however, topic clustering as in our approach, is still clearly superior.
(Additionally, one may argue that a category is something that some
librarian would assign, thus requiring more work and more data.)

Table 8: Checking APIs and descriptions within Google Play
Store categories

Predicted as malicious Predicted as benign
Malicious apps 81.6 (47%) 90.4 (53%)

Benign apps 356.9 (16%) 1,881.1 (84%)

Clustering by description topics is superior to clustering by given
categories.

4.3 Limitations and Threats to Validity
Like any empirical study, our evaluation is subject to threats to

validity, many of which are induced by limitations of our approach.
The most important threats and limitations are listed below.

External validity. CHABADA relies on establishing a relationship
between description topics and program features from exist-
ing, assumed mostly benign, applications. We cannot claim
that said relationships could be applied in other app ecosys-
tems, or be transferable to these. We have documented our
steps to allow easy replication of our approach.

Free apps only. Our sample of 22,521 apps is based on free appli-
cations only; i.e. applications that need to generate income
through ads, purchases, or donations. Not considering paid
applications makes our dataset biased. However, the bias
would shift “normality” more towards apps supported by ads
and other income methods, which are closer to undesired be-
havior exposed by malware. Our results thus are conservative
and would rather be improved through a greater fraction of
paid applications, which can be expected to be benign.

App and malware bias. Our sample also only reflects the top 150
downloads from each category in the Google Play Store. This
sample is biased towards frequently used applications, and
towards lesser used categories; likewise, our selection of mal-
ware (Section 4) may or may not be representative for current
threats. Not knowing which actual apps are being used, and
how, by Android users, these samples may be biased. Again,
we allow for easy reproduction of our approach.

Researcher bias. Our evaluation of outliers is based on the classi-
fication by a single person, who is a co-author of this paper.
This poses the risk of researcher bias, i.e. the desire of an
author to come up with best possible results. To counter this
threat, we are making our dataset publicly available (Sec-
tion 6).

Native code and obfuscation. We limit our analyses to the Dalvik
bytecode. We do not analyze native code. Hence, an applica-
tion might rely on native code or use obfuscation to perform
covert behavior; but then, such features may again charac-
terize outliers; also, neither of these would change the set of
APIs that must be called.

Static analysis. As we rely on static API usage, we suffer from
limitations that are typical for static analysis. In particular,
we may miss behavior induced through reflection, i.e. code
generated at runtime. Although there exist techniques to
statically analyze Java code using reflection, such techniques
are not directly applicable with Android apps [5, 8]; in the
long run, dynamic analysis paired with test generation may
be a better option.

Static API declarations. Since we extract API calls statically, we
may consider API calls that are never executed by the app.
Checking statically whether an API is reached is an instance of
the (undecidable) halting problem. As a workaround, we de-
cided to consider an API only if the corresponding permission
is also declared in the manifest.

Sensitive APIs. Our detection of sensitive APIs (Section 3.2) relies
on the mapping by Felt et al. [7], which now, two years later,
may be partially outdated. Incorrect or missing entries in the
mapping would make CHABADA miss or misclassify relevant
behavior of the app.

5. RELATED WORK
While this work may be the first to generally check app descrip-

tions against app behavior, it builds on a history of previous work
combining natural language processing and software development.

5.1 Mining App Descriptions
Most related to our work is the WHYPER framework of Pandita

et al. [19]. Just like our approach, WHYPER attempts to automate
the risk assessment of Android apps, and applies natural language
processing to app descriptions. The aim of WHYPER is to tell
whether the need for sensitive permissions (such as accesses to
contacts or calendar) is motivated in the application description.
In contrast to CHABADA, which fully automatically learns which
topics are associated with which APIs (and by extension, which
permissions), WHYPER requires manual annotation of sentences
describing the need for permissions. Also, CHABADA goes beyond
permissions in two ways: first, it focuses on APIs, which provide
a more detailed view, and it aims for general mismatches between
expectations and implementations.

The very idea of app store mining was introduced one year earlier
when Harman et al. mined the Blackberry app store [9]. They
focused on app meta-data to find patterns such as a correlation
consumer rating and the rank of app downloads, but would not
download or analyze the apps themselves.

Our characterization of “normal” behavior comes from mining
related applications; in general, we assume what most applications
in a well-maintained store do is also what most users would expect
to be legitimate. In contrast, recent work by Lin et al. [14] suggests



crowdsourcing to infer what users expect from specific privacy
settings; just like we found, Lin et al. also highlight that privacy
expectations vary between app categories. Such information from
users can well complement what we infer from app descriptions.

5.2 Behavior/Description Mismatches
Our approach is also related to techniques that apply natural

language processing to infer specifications from comments and doc-
umentation. Lin Tan et al. [24] extract implicit program rules from
program corpora and use these rules to automatically detect inconsis-
tencies between comments and source code, indicating either bugs
or bad comments. Rules apply to ordering and nesting of calls and
resource accesses (“fa must not be called from fb”).

Høst and Østvold [11] learn from program corpora which verbs
and phrases would normally be associated with specific method
calls, and used these to identify misnamed methods.

Pandita et al. [20] identify sentences that describe code contracts
from more than 2,500 sentences of API documents; these contracts
can be checked either through tests or static analysis.

All these approaches compare program code against formal pro-
gram documentation, whose semi-formal nature makes it easier to
extract requirements. In contrast, CHABADA works on end-user
documentation, which is decoupled from the program structure.

5.3 Detecting Malicious Apps
There is a large body of industrial products and research proto-

types that focus on identifying known malicious behavior. Most
influential for our work was the paper by Zhou and Jiang [28], who
use the permissions requested by applications as a filter to identify
potentially malicious applications; the actual detection uses static
analysis to compare sequences of API calls against those of known
malware. In contrast to all these approaches, CHABADA identifies
outliers even without knowing what makes malicious behavior.

The TAINTDROID system [6] tracks dynamic information flow
within Android apps and thus can detect usages of sensitive infor-
mation. Using such dynamic flow information would yield far more
precise behavior insights than static API usage; similarly, profilers
such as ProfileDroid [26] would provide better information; how-
ever, both TAINTDROID and ProfileDroid require a representative set
of executions. Integrating such techniques in CHABADA, combined
with automated test generation [12, 27, 15, 1], would allow to learn
normal and abnormal patterns of information flow; this is part of
our future work (Section 6).

6. CONCLUSION AND CONSEQUENCES
By clustering apps by description topics, and identifying outliers

by API usage within each cluster, our CHABADA approach effec-
tively identifies applications whose behavior would be unexpected
given their description. We have identified several examples of
false and misleading advertising; and as a side effect, obtained a
novel effective detector for yet unknown malware. Just like min-
ing software archives has opened new opportunities for empirical
software engineering, we see that mining apps and their descrip-
tions opens several new opportunities for automated checking of
natural-language requirements.

During our work, we have gained a number of insights into the
Android app ecosystem that call for action. First and foremost,
application vendors must be much more explicit about what their
apps do to earn their income. App store suppliers such as Google
should introduce better standards to avoid deceiving or incomplete
advertising. Second, the way Android asks its users for permissions
is broken. Regular users will not understand what “allow access to
the device identifier” means, nor would they have means to check

what is actually being done with their sensitive data, nor would
they understand the consequences. Users understand, though, what
regular apps do; and CHABADA is set to point out and highlight
differences, which should be way easier to grasp.

Although our present approach came to be by exploring and
refining several alternatives, we are well aware that it is by no means
perfect or complete. Our future work will focus on the following
topics:

Detailed Behavior patterns. Static API usage is a rather broad ab-
straction for characterizing what an app does and what not.
More advanced methods could focus on the interaction of
APIs, notably information flow between APIs.

Dynamic Behavior. Exploring actual executions would give a far
more detailed view of what an app actually does—in particu-
lar, concrete values for all APIs accessing remote resources.
We are working on GUI test generators for Android apps that
aim for coverage of specific APIs or dynamic information
flow.

Natural Language Processing. The state of the art in natural lan-
guage processing can retrieve much more than just topics.
Looking at dependencies between words (such as conjunc-
tions, subject-verb, verb-object) could retrieve much more
detailed patterns. Likewise, leveraging known ontologies
would help in identifying synonyms.

A Rosetta Stone for Topics and Behavior. By mining thousands
of applications, we can associate natural language descrip-
tions with specific program behavior. The resulting mapping
between natural language and program fragments help in pro-
gram understanding as well as synthesis of programs and
tests.

To allow easy reproduction and verification of our work, we
have packaged all data used within this work for download. In
particular, we have prepared a 50 MB dataset with the exact data
that goes into CHABADA, including app names, descriptions, other
metadata, permissions, and API usage. All of this can be found on
the CHABADA web site:

http://www.st.cs.uni-saarland.de/chabada/
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