
A Dynamic Birthmark for Java

David Schuler
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

ds@cs.unisb.de

Valentin Dallmeier
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

dallmeier@cs.unisb.de

Christian Lindig
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

lindig@cs.unisb.de

ABSTRACT
Code theft is a threat for companies that consider code as a
core asset. A birthmark can help them to prove code theft by
identifying intrinsic properties of a program. Two programs
with the same birthmark are likely to share a common origin.
Birthmarking works in particular for code that was not pro-
tected by tamper-resistant copyright notices that otherwise
could prove ownership. We propose a dynamic birthmark for
Java that observes how a program uses objects provided by
the Java Standard API. Such a birthmark is difficult to foil
because it captures the observable semantics of a program.
In an evaluation, our API Birthmark reliably identified XML
parsers and PNG readers before and after obfuscating them
with state-of-the-art obfuscation tools. These rendered ex-
isting birthmarks ineffective, such as the Whole-Program-
Path Birthmark by Myles and Collberg.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: General—Protection mechanisms;

General Terms: Legal Aspects, Security

1. INTRODUCTION
Code represents for many companies a core asset that needs
to be protected. However, code theft is difficult to prove:
for over three years now, the SCO Group and IBM battle
in court over code that allegedly belongs to SCO but was
distributed by IBM as part of Linux. To protect code, com-
panies may use watermarking (Collberg and Thomborson,
1999). Watermarking embeds a copyright notice into a pro-
gram that is hard to detect and to remove but easy to reveal
by the code owner. Without such precaution, a company
still may employ birthmarking after a suspected code theft.
A birthmark identifies intrinsic properties of executable pro-
grams that are hard to change but easy to validate. While
not a proof, similar birthmarks of two programs suggest a
common origin.

Birthmarks can be split into two categories. Static birth-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 49, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 9781595938824/07/0011 ...$5.00.

marks extract properties of the program code, for exam-
ple the constant values used in fields. Previous research by
Myles and Collberg has shown that many static birthmarks
are vulnerable to simple code obfuscation techniques like
code motion or renaming of registers. Dynamic birthmarks,
on the other hand, characterize a program by its runtime
behavior. This is more difficult to analyze and therefore
for an attacker harder to change in a semantics-preserving
way. Nonetheless, such birthmarks may still be susceptible
to obfuscation techniques.

Rather than analyzing program behavior in isolation, Tama-
da et al. (2004) proposed to observe the dynamic interaction
between a Windows application and its environment, the
operating system API. The birthmark observes the global
sequence of system calls and their frequency distribution.
Tamada et al. sketch an implementation and based on its
construction, argue for the robustness of the birthmark.
However, no similarity measure for birthmarks is defined
and the claim of robustness is not substantiated by an im-
plementation or evaluation.

We propose a new birthmark for Java that improves upon
the sketch by Tamada et al. (2004) and leverages object-
orientation. In particular, we abandon the idea of observing
the global trace of system calls. Instead, our API Birth-
mark observes short sequences of method calls received by
individual objects from the Java Platform Standard API

1,
which is part of the Java Runtime Environment. By aggre-
gating sets of short call sequences the otherwise overwhelm-
ing volume of trace data becomes manageable. In addition,
such object-level call sequences are less affected by thread
scheduling than global traces.

To illustrate our API Birthmark, we show a small example
from our evaluation with a set of XML parsers. The Xerces
XML parser instantiates objects from classes Vector and
Stack (both part of the API). These objects receive, among
others, the following sequences of five method calls:

Vector ←֓ 〈removeAllElements, addElement,
addElement, size, elementAt〉

Stack ←֓ 〈size, push, push, isEmpty, pop〉
Stack ←֓ 〈Stack, removeAllElements, size,

removeAllElements, size〉

1which we also call Java Standard API , Java API , or simply
API .

These call sequences are highly characteristic for Xerces.
None of the other five XML parsers that we looked at showed
these call sequences. Even after we obfuscated Xerces with
Sandmark and Zelix KlassMaster (two bytecode obfusca-
tors) to foil the birthmark, we could still retrieve these se-
quences.

The contribution of our paper is threefold:

• We detail the implementation of a dynamic birthmark
that is based on the observation of program interac-
tion.

• With the most thorough evaluation of a birthmark
(static or dynamic) to date, we demonstrate the viabil-
ity of interaction-based birthmarking. We birthmarked
12 real-world applications with over 3000 classes alto-
gether.

• The API Birthmark is credible and resilient to the best
commercial and academic obfuscators. (Obfuscating a
program is the standard way to attack a birthmark.)
In particular, it is more robust and more scalable than
the Whole-Program-Path (WPP) birthmark by Myles
and Collberg (2004).

The remainder of this paper introduces the idea behind the
API Birthmark (Section 2), its implementation (Section 3),
and evaluation (Section 4). As an alternative scenario to
program theft, we look into the detection of library theft
(Section 5). Next, we present a comparison between our
API Birthmark and the WPP birthmark (Section 6). Fi-
nally, we discuss possible attacks against the API Birthmark
(Section 7), related work (Section 8), and our conclusions
(Section 9).

2. THE API BIRTHMARK
The API Birthmark observes how a program interacts at
runtime with objects from the Java Standard API. Such a
birthmark is called dynamic because it depends on the pro-
gram and its actual input. Two programs can be compared
using their birthmarks: similar birthmarks are taken as ev-
idence that the two programs are also similar.

2.1 Capturing API Calls
To capture a program’s API usage, the birthmark observes
method calls that are issued by objects from the program
and received by objects from the API

2. A sequence of method
calls is called a trace.

Definition 1 (Call and Call Trace). A method
call C.m is a pair of a class C and a method m invoked on
an instance of C. A finite sequence of method calls is called a
trace T , which is denoted by T = 〈C1.m1, C2.m2, . . . , Cn.mn〉.

We obtain such a trace by letting every object from the API

collect the trace of calls invoked from objects outside the
API. We denote the trace of calls received by an object o

with T (o).

2Method calls between API objects are ignored.

Application

v

Vector

s

Stack

Vector.add Stack.pop

Stack.emptyVector.get

Stack.peek

Stack.peek

Vector.size

Java API Classes

add

pop

get

size

empty

peek

peek〈Vector.add, Vector.get〉〈Vector.get, Vector.size〉〈Stack.pop, Stack.empty〉〈Stack.empty, Stack.peek〉〈Stack.peek, Stack.peek〉Birthmark

(k=2)

Traces

(per object)

Figure 1: A birthmark is a set of short call sequences
received by API objects.

For example, Figure 1 shows a schematic sequence of method
calls. The user program is shown on the left, and objects
from the Java Standard API are shown on the right. Each
object from the Java API collects the trace indicated below
it, for example the trace for Stack object s is 〈Stack.pop,
Stack.empty, Stack.peek, Stack.peek〉

Traces collected on a per-object basis are difficult to compare
across program runs because they are huge. As a solution,
we abstract each trace into a compact call-sequence set.

Definition 2 (Call-Sequence Set). The call-se-
quence set for a trace T is defined as the set of all k-long
substrings of T :

S(T, k) = {w | w is a substring of T and |w| = k}

The call-sequence set abstraction is compact and easy to
compare. The size of such a set is bounded by window size
k and the number m methods in a class: at most mk k-
grams exist. However, this limit is almost never reached in
practice. Loops in programs cause highly repetitive call se-
quences which in turn let call-sequence sets saturate quickly.

The idea of chopping up a trace using a sliding window to
enable comparison was used by us previously for defect lo-
calization (Dallmeier et al., 2005). We took this inspiration
from Forrest et al. (1997)’s article on intrusion detection.
Similar techniques have been used to detect similarities in
source and other files (Manber, 1994; Schleimer et al., 2003).

2.2 The Birthmark
Computing one call-sequence set per API object leaves us
still with many such sets per program run. To enable com-
parison between program runs, we define the birthmark as
the union of all call-sequence sets from API objects. The
API Birthmark for the situation in Figure 1 is the set shown
on the right side of the figure.

Definition 3 (Birthmark). A birthmark B(P, I, k)
is the union of all k-long call sequences observed by API

objects during the run of program P with input I.

B(P, I, k) =
[

o

S(T (o), k) where class(o) ∈ API

The central operation on birthmarks is comparing them for
similarity. We compare two birthmarks A and B by comput-
ing the ratio of sequences found in both birthmarks versus
the total number of sequences.

Definition 4 (Birthmark Similarity). The simi-
larity s of birthmarks A and B is defined as

s(A, B) =
|A ∩B|

|A ∪B|
.

Similarity is symmetric and yields a value from interval [0, 1],
where zero indicates disjoint birthmarks and one indicates
identical birthmarks.

The quality of a birthmark depends crucially on the defi-
nition of similarity. A good birthmark should detect copies
of programs, as well as indicate low similarity between in-
dependently written programs but must be robust against
attacks. An attack rewrites a program such that its birth-
mark changes but not the program’s user-observable seman-
tics. We are discussing these points below in Section 4 where
we evaluate the API Birthmark.

3. BIRTHMARK IMPLEMENTATION
To extract a birthmark from a program, we first statically
instrument the bytecode of the program as well as the byte-
code of the Java API classes and then run the program. The
instrumentation detects for each API object the methods
invoked from the program. From this information the birth-
mark is computed at runtime in memory (for efficiency) and
written to a file when the program terminates.

3.1 Program and API Instrumentation
Instrumenting bytecode rather than source code is essen-
tial for birthmarking commercial code for which source code
might be unavailable. We chose to instrument code (us-

ing the ASM Java bytecode manipulation framework (Éric
Bruneton et al., 2002)) prior to running it (rather than while
it is running) because it works in the presence of custom class
loaders and therefore ensures that no code is missed.

Our implementation is based on method interposition (Jones,
1993), a technique commonly used for tracing system calls.

class Vector {
// original method

void add(Object element) {...}
// overloaded proxy method

void add(Object element, CallerInfo caller) {
CalleeInfo callee =

new CalleeInfo(〈Vector .add 〉, objectID);

Tracer.addCall(caller, callee);

add(element);

}
}

Figure 2: API instrumentation overloads each API

method with a proxy method. A method m’s identi-
fier is denoted by 〈m〉. The concrete object is identi-
fied by the newly introduced field objectID, which is
initialized in the constructor. Instrumentation hap-
pens in bytecode but is here shown in source code.

class Main {
public void processArgs(String[] args) {

Vector v = new Vector();

// was: v.add(args[0]);

CallerInfo caller =

new CallerInfo(〈Main.processArgs〉);
v.add(args[0], caller);

}
}

Figure 3: Program instrumentation redirects API

calls to proxy methods by augmenting them with
caller information.

The key idea is to replace each API call site in the user
program with a call to a proxy method that was added to
the API class, which requires instrumentation of both the
API and the program itself. Using method interposition, we
capture all method calls from the user program to the API,
whereas API-to-API calls remain unaltered.

An example of API instrumentation is illustrated in Figure 2.
The Vector.add method is overloaded with a proxy method
that takes an additional parameter of type CallerInfo. This
parameter makes the method signature unique and provides
information about the caller of the method. The implemen-
tation of the proxy updates the Tracer with information
about the call and invokes the actual implementation of add.

Instrumentation of program classes is illustrated in Figure 3:
the original invocation of Vector.add is replaced by code
that creates an object identifying the caller plus the code
that invokes the proxy method. This instrumentation is
done for all invocations of API methods in the program code,
such that they are redirected to proxy methods. Calls that
originate inside the API remain unaltered and are not con-
sidered for the birthmark.

3.2 Computing the Birthmark
Proxy methods and call rewriting together provide class
Tracer with all information required for birthmark compu-
tation. The class maintains a trace window for every API

object created during the run and a set of call sequences
observed so far. Whenever a proxy method is invoked, we
determine the receiver object of the call and update its trace
window. If a new sequence was generated by the call, it is
added to the call-sequence set. Upon shutdown of the vir-
tual machine, the call-sequence set is written to disk.

Computing call-sequence sets at runtime reduces the amount
of data that must be kept in memory and is more efficient
than writing a raw trace of method invocations. A potential
drawback of this approach is that extracting birthmarks for
different window sizes requires running the program multi-
ple times.

3.3 Robustness and Validation
In our evaluation of the API Birthmark, we have tested
our implementation with several large Java projects ranging
from 7 to over 900 classes. Our implementation was able to
instrument all tested programs. However, the instrumented
version of javac from the SPEC JVM’98 benchmark expects
different input than the original one (cf. Section 3.4).

The correctness of the instrumentation was validated using
the bytecode verifier of the virtual machine and by com-
paring the results of instrumented and unchanged program
runs. To validate the correctness of birthmark extraction,
we used a set of randomly generated programs for which
the birthmark could be computed statically. Comparing ex-
pected and observed birthmarks revealed some subtle bugs
that we fixed, such that we are now confident that our im-
plementation extracts the correct birthmark.

3.4 Overhead
In order to assess the runtime overhead of the instrumen-
tation, we compared execution times for programs from the
SPEC JVM’98 benchmark suite (SPEC, 1998). The suite
is a collection of programs commonly used to measure the
performance of a Java virtual machine. We took seven pro-
grams and compared execution times for instrumented and
unaltered versions. The results are summarized in Table 1.

We excluded program javac because it compiles programs
against the API (in our case modified) of the JVM it runs
on. This would require changing the input data, which leads
to incomparable results.

Original

(sec)

Instrumented

(sec)

Overhead

(factor)

check 0.18 0.54 3.00
compress 10.79 12.60 1.17
jess 4.25 44.98 10.58
db 19.08 252.80 13.25
mpegaudio 6.65 20.36 3.06
mtrt 2.85 9.38 3.29
jack 5.36 78.87 14.71

Table 1: Runtime overhead of the API Birthmark
for the SPEC JVM 98 benchmark.

The runtime overhead introduced by the birthmark compu-
tation ranges from a factor 1.17 for compress to 14.71 for
jack. While considerable, the overhead is acceptable for a

birthmark. A birthmark is only employed in a suspected
case of program theft and has no impact on the production
version of a program. This is in contrast to watermarking
where overhead affects every program execution.

4. EVALUATION
The primary purpose of a birthmark is to detect copies of a
program. It therefore should indicate high similarity be-
tween identical programs. But to be credible, it should
also indicate low similarity between independently written
programs. In addition, a birthmark should be resilient to
semantics-preserving program transformations: a birthmark
should find program P and its transformed variant P ′ to be
copies.

Two programs PA and PB with birthmarks A and B are
classified according to their birthmark’s similarity s(A, B)
and a bound ǫ:

s(A, B)

8

>

<

>

:

≥ 1− ǫ PA, PB are classified as copies

≤ ǫ PA, PB are classified as independent

otherwise no classification, it is inconclusive

The quality of a birthmark is characterized by the number of
wrong classifications (unclassified programs, and programs
incorrectly classified as copies or independent) for a given ǫ.
A value of ǫ = 0.2 was used by Myles (2006); smaller values
are desirable but may lead to more false classifications.

4.1 Evaluation Setup
To evaluate our API Birthmark, we analyzed the birthmarks
for a group of programs providing similar functionality. We
did this because we expect it to be more difficult for a birth-
mark to tell apart programs of the same functionality instead
of programs of different functionality. The first group con-
sists of six programs which read PNG images and was used
during development of the birthmark. The programs have
been thoroughly exercised over many and varied inputs of
about 100 images from the PNG Suite (van Schaik, 1996).
The second group consists of six XML parsers, and was used
to check the results obtained for the PNG readers; we used
the SAXBench to run them (Oren and Slominski, 2002). Ta-
ble 2 provides additional details for our evaluation subjects.

We conducted the experiments with sequence length k = 5,
which provides a good trade-off between significance of se-
quences and runtime overhead (see Section 4.5 for a dis-
cussion). Furthermore, we filtered calls to commonly used
classes (namely java.lang.Object, java.lang.String, and
java.lang.StringBuffer) as these classes rarely indicate
special behavior.

4.2 Detection of Copies
The ability to detect genuine copies is the most crucial abil-
ity of a birthmark. For an evaluation we executed each
program twice with the same input and compared the birth-
marks of these two runs.

The diagonal of Table 3 shows similarities between identical
PNG readers, indicated by horizontal bars. The API Birth-
mark generally found perfect similarity of 1.0; except for
Imagero and JAI, where it found a similarity of 0.99. This

Imagero JAI JIMI JIU Sixlegs Visualtek

Imagero
JAI
JIMI
JIU
Sixlegs
Visualtek

Table 3: Similarity between PNG readers (k = 5). Similarity from 0 (distinct) to 1 (identical) is indicated by
the length of a black bar; e.g. 0.75 corresponds to .

Subject Version Classes Bytecode in Kb

PNG Library

Imagero 1.80 916 1038
JAI 1.1.2 01 476 3276
JIMI 1.0 324 741
JIU 0.13 230 787
Sixlegs 2.0-rc3 39 74
Visualtek1 12 40

XML Parser

Aelfred Saxon 7.0 7 59
Crimson 1.1.3 145 347
OracleV22 343 1193
Piccolo 1.04 87 315
Xerces 2.6.1 723 1791
XP 0.5 97 176

1 part of Genographer 1.6 2 part of XDK 9.2.0.6.0

Table 2: Evaluation Subjects.

is caused by threads: objects that are shared across threads
produce different call sequences when thread schedules dif-
fer among program runs. The corresponding results for the
XML parsers are shown in the diagonal of Table 4. For this
group similarity is perfect.

From the results for both program groups we are able to
conclude that the API Birthmark can be used reliably to
detect program copies for ǫ = 0.2.

4.3 Credibility
To evaluate the credibility of the API Birthmark, we com-
pared birthmarks pairwise within each program group. Here
we expect the birthmark to find low similarity between dis-
tinct programs.

Table 3 again shows the results for comparing PNG readers.
Each bar graph in the table provides the similarity between
two programs according to the API Birthmark. For example,
comparing Sixlegs with JIU yields a similarity of 0.09. The
highest similarity measured for distinct programs was 0.26
for JIU and JIMI.

The pairwise similarity between XML parsers is captured in
Table 4. The table indicates two values presented as hori-
zontal bars for each pair. The top bar gives the similarity
for the API Birthmark. Compared to the results for PNG

readers in Table 3, the similarity found for distinct programs

is higher but still very good in most cases. For ǫ = 0.2, we
have one case that is inconclusive for the PNG readers, and
one for the XML parsers.

All XML parsers provide access to the parsed data via the
SAX interface, which is part of the Java API. Since our test
setup uses the default handler for SAX events (which is also
part of the API), the sequence of calls to the default handler
was very similar for all parsers. If we ignore these sequences
for our birthmark, most similarity values for distinct pro-
grams drop noticeably (e.g. from 0.24 to 0.00 for Aelfred
compared to XP). The values for filtered SAX calls can be
found in Table 4, represented as the bottom bar for each
pair of programs. With filtered calls, we have no more in-
conclusive cases (ǫ = 0.2).

These improvements highlight a possibility to fine-tune our
approach. The default handler is an example for a class
whose methods can only be called in a certain sequence.
By ignoring these classes for our birthmark we can further
improve credibility. However, it may be difficult to identify
these classes.

4.4 Resilience
In order to disguise the origin of a program, a thief may
apply semantics-preserving transformations. Such a trans-
formation may change a program’s birthmark but not the
semantics observed by the user. A birthmark must be re-
silient to such transformations, i.e. the birthmarks for the
modified and the original program should be equal.

The preferred method to evaluate a birthmark’s resilience
(Tamada et al. (2004), Myles and Collberg (2004)) is by us-
ing so-called obfuscators to simulate attacks. An obfuscator
applies semantics-preserving transformations to a program
to harden it against reverse engineering; it produces a se-
mantically equivalent but not identical program.

In our evaluation we conducted a study with two obfus-
cators. Sandmark (Collberg et al., 2003) is an academic
framework that implements 33 different obfuscation tech-
niques, of which eight were stable enough to handle all our
subjects. Zelix KlassMaster is a commercial obfuscator with
a focus on minimal performance overhead, which we chose
because of its reputation of being the strongest commercial
obfuscator (Lai, 2001).

For our study, we used 11 different versions of each program
(six PNG readers, six XML parsers): an unmodified version,
nine Sandmark-obfuscated versions (one for each stable ob-

Aelfred Crimson OracleV2 Piccolo Xerces XP

Aelfred
Crimson
OracleV2
Piccolo
Xerces
XP

Table 4: XML parsers (k = 5). Similarity for each pair is indicated by two bars: one with SAX calls filtered
out (bottom) and one without filtering (top).

fuscation technique and one with all techniques applied suc-
cessively), and a Zelix-obfuscated version. We ran each ver-
sion with the same input, extracted their birthmarks, and
compared each obfuscated birthmark against the unmodi-
fied one.

Except for Imagero and JAI, all birthmarks of obfuscated
programs were identical to that of the original program. The
deviations for JAI and Imagero are due to multiple threads
running concurrently (cf. Section 4.2). Our results therefore
indicate that the API Birthmark is resilient against trans-
formations as applied by state-of-the-art obfuscators. For
ǫ = 0.2 we find no misclassification or inconclusiveness.

Code obfuscators apply program transformations like re-
naming, class splitting, or method merging. These are likely
to have an effect on an application’s static code properties or
its control flow but not on its interaction with the Java API.
Birthmarks that observe these static or dynamic properties
are thus much more likely to be affected by these techniques.
On the other hand, the interaction with the Java API as it
is observed by the API Birthmark is much harder to ma-
nipulate. We are thus confident that the resilience that we
observed is no coincidence. Still—see Section 7 for a discus-
sion of potential attacks against the API Birthmark.

4.5 Various Sequence Lengths
In our previous experiments we used a window size of five.
However, it is also possible to compute the API Birthmark
for other sequence lengths. In order to investigate the im-
pact of the sequence length on credibility, we compared the
birthmarks resulting from different sequence lengths for the
PNG readers. Table 5 provides the results for sequence
lengths 1, 3, 5, and 8.

Shorter sequences cause birthmark similarity between dis-
tinct programs to increase. However, for increasing sequence
lengths the similarity between multi-threaded programs (like
Imagero and JAI) decreases. We have chosen five as default
sequence length since moving to longer sequences does not
seem to offer much benefit; it provides a good trade-off be-
tween the ability to separate distinct programs and runtime
overhead. This observation is backed up by our previous
experience with call-sequence sets (Dallmeier et al., 2005).

5. PROGRAM THEFT VS. LIBRARY THEFT
The previous section evaluated the scenario of whole-pro-
gram theft. Another scenario is library theft, where a stolen
library is used as part of a new program. To complement our
evaluation, we investigated the ability of the API Birthmark

to detect whether a program uses a given library.

Detecting that a program incorporates a certain library with
the API Birthmark is a challenge for two reasons: first, as
the library is only a part of a program, API call sequences
unrelated to the library introduce noise. Second, it may be
impossible to find test cases for the program that use the
library in the same way as the original library. In a limited
experiment we looked at both issues.

5.1 Detecting a Library
Our first experimental setup includes four programs that
each uses a programmatic interface of a PNG reader from
Section 4. We compared the birthmarks for each of these
four programs to the birthmarks of all six PNG libraries.
The likelihood that a program uses a library is high if the
birthmark contains many sequences that are also part of the
library’s birthmark. We measure this likelihood as the num-
ber of library birthmark sequences that also occur during the
execution of the program.

The results of our evaluation are given in Table 6. For
each program the similarity for the library actually used
is marked with a double frame. Indeed, in all cases we
found this library had the highest similarity across all six
libraries. The amount of identical sequences is higher than
67%, whereas sequences for libraries that were not used con-
stitute 36% or less. Many sequences occurring in both birth-
marks is a good indicator that a program uses a certain
library.

5.2 Impact of Input
In our second experiment we measured the similarity be-
tween two programs executed with different input. We split
the input data in two halves (of about 50 images each), ran
the PNG readers once with each halve as input, and com-
pared the birthmarks from these runs. The results are given
in Table 7.

Similarities between identical programs (on the diagonal in
Table 7) are lower than for two runs with the same input
(Table 3). Similarities are still higher than between unre-
lated programs and thus give a strong hint when a certain
program was used. Our birthmark is thus not overly sensi-
tive to input.

Imagero JAI JIMI JIU Sixlegs Visualtek

Imagero

JAI

JIMI

JIU

Sixlegs

Visualtek

Table 5: Pairwise similarity between PNG readers for various sequence lengths (k). The topmost bar of each
cell gives the results for sequence length 1 and the following ones for 3, 5, and 8.

PNG Reader Library

Application Imagero JAI JIMI JIU Sixlegs Visualtek

DAOI
ImageJ
Jitac
JSky

Table 6: Detection of libraries. The actual library is marked with a double frame.

6. COMPARISON WITH THE WPP BIRTH

MARK
The Whole-Program-Path (WPP) Birthmark by Myles and
Collberg (2004) is the most recently proposed dynamic birth-
marking technique. Whole-program paths are a technique
used to compact a program’s dynamic control flow (Larus,
1999). We used the implementation of the WPP Birth-
mark available in the Sandmark tool and compared it to
the API Birthmark. For the comparison we could only use
the Sixlegs image reader (comprised of 39 classes), since the
implementation of the WPP Birthmark cannot handle larger
programs. From this image reader we produced an obfus-
cated version using Zelix KlassMaster. While both birth-
marks can be used to identify the original program, only
the API Birthmark is able to identify the obfuscated version:
between original and obfuscated copy the WPP Birthmark
indicated a similarity of 0.08, whereas the API Birthmark
indicated 1.0. For now, our API Birthmark is therefore both
more scalable and more resilient than the WPP Birthmark.

7. ATTACKING THE API BIRTHMARK
If the API Birthmark became popular, attackers would be
likely to take counter measures. A simple attack against
the API Birthmark would be to add additional sequences.
The simplest way to do this is by creating otherwise unused
objects from API classes and to invoke methods on them.
This noise could shadow original sequences. However, to be
effective at least 20% of all sequences must be new, which
would imply extra code, memory, and runtime cost. To
make this attack even more costly, the birthmark could take
the frequency of API method calls into account, as suggested
by Tamada et al. (2004).

A more sophisticated attack could manipulate existing se-
quences—for example by introducing new calls on existing
objects. This is limited to method calls that have no side
effect. Such methods are also called pure. Currently, no

scalable automatic purity analysis exists (Salcianu and Ri-
nard, 2005). If it existed, the birthmark could ignore pure
methods when constructing call sequences. Another option
would be to add new calls together with calls that undo the
effect of the former. Finding such methods or sequences is
a problem in itself and hard to automate.

Another possible attack is to incorporate parts of the API

implementation into the program. A large part of the API

is implemented in Java; this part could be incorporated into
the program and obfuscated as well. Then fewer calls to the
API would remain, and consequently the birthmark would
sample fewer calls. This attack has several drawbacks: the
size of the distributed code would increase and, more im-
portantly, the code no longer would benefit from upgrades
of the Java Runtime Environment. Also, moving code from
a specific Java implementation into a program most likely
will impact the portability of the code. In the extreme case,
only calls to native methods would remain. These would
tie the application to a specific Java implementation, as na-
tive methods are not standardized. Moving only parts of
the API into the program and obfuscating it is difficult as
well: API methods expect arguments of specific types, which
would require to introduce wrapper code for calls between
the incorporated and obfuscated API code and the true API

code.

All attacks introduce code and runtime overhead. Sophisti-
cated attacks like incorporating the API also require manual
work that diminishes the economic advantage of an attacker.

8. RELATED WORK
Clone detection aims to find similarity between source code
fragments for software maintenance. Advanced techniques
(as for example proposed by Krinke (2001)) abstract from
the textual representation of source code but still assume its
availability, work statically, and do not assume the presence

Imagero JAI JIMI JIU Sixlegs Visualtek

Imagero
JAI
JIMI
JIU
Sixlegs
Visualtek

Table 7: Similarity between programs executed with different input (k = 5).

of sophisticated obfuscation techniques.

Birthmarking is related to fingerprinting and watermarking
(Collberg and Thomborson, 1999), two other methods to
detect software theft. Both work by embedding a copyright
notice into an executable prior to its release. Extracting the
copyright notice from a watermarked or fingerprinted pro-
gram therefore constitutes a proof about its origin. Birth-
marking may be applied without prior preparation but offers
just a strong hint about a program’s origin, not a proof.
Of all three methods—watermarking, fingerprinting, and
birthmarking—watermarking is understood best and only
few birthmarks have been proposed to date.

All embedded marks may be extracted statically or dynam-
ically. Collberg and Myles have shown that static marks
tend to be vulnerable to basic program transformations. In
particular, the static birthmark proposed by Tamada et al.
(2004) was shown to be susceptible to known transforma-
tions in Myles and Collberg (2005). The same paper in-
troduced a k-gram based static birthmark that collects in-
struction sequences —similar to the technique that we use
to collect calls dynamically. Their evaluation shows that,
while superior to Tamada’s birthmark, the k-gram static
birthmark is still strongly affected by some known obfusca-
tions.

Tamada et al. (2004) proposed a dynamic birthmark for
Windows applications that observes the sequence of system
calls and their frequency distribution. Like our API Birth-
mark, it thus observes the interaction between a program
and its environment. The corresponding paper mentions to
use the diff algorithm for comparing sequences but does not
define a numerical similarity measure and only sketches an
implementation. Most importantly, no practical evaluation
was carried out such that we could not compare against it.
Furthermore, taking the global sequence (or trace) of sys-
tem calls is problematic for two reasons: the trace is strongly
affected by thread scheduling and it comprises enormous vol-
ume of data. We address both problems by observing short
call sequences at the object level. This leads to a compact
representation of program behavior that is also less affected
by (global) thread scheduling (cf. Section 4.2). In addition,
we clearly demonstrated the efficiency and practicality of
our approach.

For the WPP Birthmark by Myles and Collberg (2004) we
have shown that our API Birthmark is more resilient against
obfuscators (cf. Section 6).

9. CONCLUSIONS
Our API Birthmark captures how a Java program uses ob-
jects from the Java API at runtime. We have shown in the
first substantial evaluation of a birthmark (with the SPEC

JVM’98 benchmark, six PNG readers, and six XML parsers
as subjects), that this interaction is highly characteristic
for a program. It is also efficient to compute and immune
to today’s program obfuscation techniques. The birthmark
therefore can reliably identify the origin of code.

Unlike prior work, the API Birthmark does not capture a
program’s behavior in isolation. Instead, it captures the
interaction with its environment and, hence, its observable
semantics. It is thus much harder to foil by obfuscation
techniques that solely change the inner workings of a pro-
gram and, as a consequence, it is more robust. In particular,
we have shown that the API Birthmark scales better and is
more robust than the Whole-Program-Path Birthmark.

Our future work will concentrate on the detection of library
theft. For this, as well as additional details about this paper,
please refer to:

http://www.st.cs.uni-sb.de/birthmarking/

Acknowledgements. Tom Zimmermann, Silvia Breu,
and Andreas Zeller gave valuable feedback on earlier revi-
sions of this paper.

References
Christian Collberg and Clark Thomborson. Software water-

marking: Models and dynamic embeddings. In Proc. of
the Symp. on Principles of Programming Languages 99,
pages 311–324. ACM Press, 1999.

Christian Collberg, Ginger Myles, and Andrew Huntwork.
Sandmark — A tool for software protection research.
IEEE Security & Privacy, 4(1):40–49, 2003.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for Java. In Andrew P.
Black, editor, Proc. of 19th European Conf. on Object-
Oriented Programming, number 3586 in LNCS, pages 528–
550. Springer, 2005.

Éric Bruneton, Romain Lenglet, and Thierry Coupaye.
ASM: A code manipulation tool to implement adapt-
able systems. In Proc. of the ASF (ACM SIGOPS
France) Journées Composants 2002: Systèmes à com-
posants adaptables et extensibles, 2002.

Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji.
Computer immunology. Communications of the ACM, 40
(10):88–96, 1997.

Michael B. Jones. Interposition agents: Transparently inter-
posing user code at the system interface. In Proc. of the
14th ACM Symp. on Operating System Principles, pages
80–93. ACM Press, 1993.

Jens Krinke. Identifying similar code with program depen-
dence graphs. Working Conf. on Reverse Engineering
(WCRE), pages 301–309, 2001.

Hongying (Jenny) Lai. A comparative survey of Java ob-
fuscators available on the internet. Student summer
project 415.780, University of Auckland, Computer Sci-
ence Department, 2001. http://www.cs.auckland.ac.

nz/∼cthombor/Students/hlai/.

James R. Larus. Whole program paths. In Proc. of the ACM
SIGPLAN 1999 Conf. on Programming Language Design
and Implementation, pages 259–269. ACM Press, 1999.

Udi Manber. Finding similar files in a large file system. In
Proc. of the USENIX Winter 1994 Technical Conf., pages
1–10. Usenix Association, 1994.

Ginger Myles. Software Theft Detection Through Program
Identification. PhD thesis, University of Arizona, Depart-
ment of Computer Science, 2006.

Ginger Myles and Christian S. Collberg. Detecting software
theft via whole program path birthmarks. In Kan Zhang
and Yuliang Zheng, editors, Proc. of the 7th Int. Conf. on
Information Security, volume 3225 of LNCS, pages 404–
415. Springer, 2004.

Ginger Myles and Christian S. Collberg. K-gram based soft-
ware birthmarks. In Hisham Haddad, Lorie M. Liebrock,
Andrea Omicini, and Roger L. Wainwright, editors, Proc.
of the 2005 ACM Symp. on Applied Computing, pages
314–318. ACM, 2005.

Yuval Oren and Aleksander Slominski. SAXBench, 2002.
URL http://piccolo.sourceforge.net/bench.html.

Alexandru Salcianu and Martin Rinard. Purity and side
effect analysis for Java programs. In Proceedings of the 6th
International Conference on Verification, Model Checking
and Abstract Interpretation, number 3385 in LNCS, pages
199–215, 2005.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Win-
nowing: Local algorithms for document fingerprinting. In
Proc. of the 2003 ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 76–85. ACM Press, 2003.

SPEC. SPEC JVM98 benchmark suite. Standard Perfor-
mance Evaluation Corporation, 1998.

Haruaki Tamada, Masahide Nakamura, Akito Monden, and
Ken ichi Matsumoto. Design and evaluation of birth-
marks for detecting theft of Java programs. In Proc. of
the IASTED Int. Conf. on Software Engineering, pages
569–575, 2004. Innsbruck, Austria.

Haruaki Tamada, Keiji Okamoto, Masahide Nakamura, Ak-
ito Monden, and Ken-ichi Matsumoto. Dynamic software
birthmarks to detect the theft of Windows applications.
In Proc. Int. Symp. on Future Software Technology 2004,
2004.

Willem van Schaik. PNG Suite, 1996. URL http://www.

schaik.com/pngsuite/pngsuite.html.

