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Abstract—What is it that makes an app malicious? One
important factor is that malicious apps treat sensitive data

differently from benign apps. To capture such differences, we
mined 2,866 benign Android applications for their data flow from
sensitive sources, and compare these flows against those found
in malicious apps. We find that (a) for every sensitive source,
the data ends up in a small number of typical sinks; (b) these
sinks differ considerably between benign and malicious apps;
(c) these differences can be used to flag malicious apps due to
their abnormal data flow; and (d) malicious apps can be identified
by their abnormal data flow alone, without requiring known
malware samples. In our evaluation, our MUDFLOW prototype
correctly identified 86.4% of all novel malware, and 90.1% of
novel malware leaking sensitive data.

I. INTRODUCTION

Most existing malware detectors work retrospectively,
checking an unknown app against features and patterns known
to be malicious. Such patterns can either be given explicitly
(“Text messages must only be sent after user’s consent”), or
induced implicitly from samples of known malware (“This app
contains code known to be part of the TDSS trojan.”). If a novel
app is sufficiently different from known malware, though, this
retrospective detection can fail.

In this work, we thus conversely investigate the idea that,
given access to a sufficiently large set of “benign” apps, one
might be able to detect novel malware not by its similarity
with respect to existing malware, but rather through its dis-
similarity with respect to those benign applications. Checking
for dissimilarity is different from checking for similarity,
though, because in terms of functionality or code fragments,
we already have lots of dissimilarity across benign applica-
tions themselves. As a measure for establishing similarity or
dissimilarity with respect to the norm, we thus explore the
usage of sensitive data in an app. Specifically, we apply static
taint analysis on the 2,866 most popular Android apps from
the Google Play Store to determine, for every sensitive data
source, the sensitive APIs to which this data flows. We consider
these flows to constitute the “normal” usage of sensitive data;
as we assume the most popular Google Play Store apps to be
benign, these flows also resemble “benign” usage.

As an example of such flows, consider the well known
Android Twitter app. Table I shows its extracted data flows.
We can see that, while the Twitter app accesses sensitive
account information, it uses this information only to manage
synchronization across multiple devices. Network information
is being accessed (as part of the main functionality of the app),
saved in logs, and passed on to other components.

TABLE I
FLOWS IN ANDROID TWITTER APP

AccountManager.get() ; ContentResolver.setSyncAutomatically()
AccountManager.get() ; AccountManager.addOnAccountsUL()
AccountManager.get() ; Activity.setResult()
AccountManager.get() ; Log.w()
AccountManager.getAccountsByType() ; ContentResolver.setSyncAutomatically()
AccountManager.getAccountsByType() ; Activity.setResult()
AccountManager.getAccountsByType() ; Log.w()
Uri.getQueryParameter() ; Activity.startActivity()
Uri.getQueryParameter() ; Activity.setResult()
Uri.getQueryParameter() ; Activity.startActivityForResult()
Uri.getQueryParameter() ; Log.w()
SQLiteDatabase.query() ; Log.d()
SQLiteOpenHelper.getReadableDatabase() ; Log.d()
SQLiteOpenHelper.getWritableDatabase() ; Log.d()

TABLE II
FLOWS IN COM.KEJI.DANTI604 MALWARE

TelephonyManager.getSubscriberId() ; URL.openConnection()
TelephonyManager.getDeviceId() ; URL.openConnection()

In contrast, consider the com.keji.danti604 malware from
the VirusShare database [28]. Table II shows the two flows in
that application; they leak the subscriber and device ID to a
Web server. Both these flows are very uncommon for benign
applications; furthermore, danti604 does not contain any of
the flows that would normally come with apps that use the
TelephonyManager for legitimate reasons. Thus, danti604 is
an anomaly—not only because it may be similar to known
malware, but in particular because its data flows are dissimilar
to flows found in benignware such as Twitter.

We have built a tool called MUDFLOW1 which leverages
the FLOWDROID [3] static analysis tool to determine such
flows for all sensitive Android sources. MUDFLOW implements
multiple classifiers, trained on the data flow of benign apps, to
automatically flag apps with suspicious features. To the best
of our knowledge, MUDFLOW is the first approach to massively
mine application collections for patterns of “normal” data flow,
and to use these mined patterns to detect malicious behavior.

The remainder of this paper is organized as follows. After
introducing data flow and taint analysis in Section II, this paper
presents the following contributions:

1) We present MUDFLOW, an approach to mine, compare, and
classify the data flow in large sets of Android applications
(Section III).

2) We apply MUDFLOW to the 2,866 most popular apps
collected from the Google Play Store (Section IV). For
each significant sensitive data source, we summarize

1MUDFLOW = Mining Unusual Data Flow
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the typical usage of this source across these apps, and
contrast it against the usage found in a collection of
15,338 malware apps.

3) We use the data-flow differences to automatically identify
malware based on its flow of sensitive data (Section V).
In particular, we train a model using data flows of benign
apps only, and use it to detect novel malware even if no
earlier malware samples are known.

Our experiments show that dissimilarity with benign apps,
determined through data flow from sensitive sources, can be a
significant factor in characterizing malware. In our experiment
on a set of 10,552 malicious apps leaking sensitive data,
MUDFLOW recognized 90.1% of the malware as such, with
a false positive rate of 18.7%, which is remarkable given that
MUDFLOW is not trained on malware samples.

After discussing threats to validity (Section VI) and relating
to existing work (Section VII), we close with conclusion and
future work (Section VIII).

II. DATA FLOW AND TAINT ANALYSIS IN ANDROID

When installing an Android application, a user only sees
a textual description of the alleged behavior of the app and
a list of required permissions that the app needs in order to
work. An app may, for instance, require access to the list of
contacts on the mobile device but, unless clearly stated in the
description, it is vague how the app is using this data. A benign
messaging application may need to access the contact list to
send messages, while a malicious application may collect the
list of contacts and send them to a third-party server that
gathers them for spamming. To detect this kind of behavior,
one can use taint analysis, which is a particular instance of
data flow analysis. In essence, given a source of information
(e.g., the SQLite database containing the list of contacts) and
a sink (e.g., an HTTP connection to a third party server), taint
analysis can tell whether that information can flow to the
undesired sink.

Information flow can be analyzed statically, i.e., the analysis
would report whether there exist some paths in the program
that may lead to this information flow, or dynamically, i.e.,
by reporting information flows that actually occur during a
specific execution. In the first case, the analysis might report
false positives, i.e., information flows that are not feasible in
practice. In the second case, the analysis would likely miss
information flows, namely if those flows occur in part of the
behavior that was not observed.

Both static and dynamic data and information flow analysis
techniques have been used to analyze Android applications,
since several malicious applications use this platform to collect
sensitive information of users. In fact, compared to the list of
requested permissions, information flows can better describe
the behavior of an Android application, as they can show how
the application is using a specific piece of information.

Data and information flow analysis has been used to detect
typical spyware behavior such as collecting sensitive infor-
mation and sending it to third-party servers. However, flows
of sensitive data are quite present in benign applications as

well. The sole fact that an app has specific flows does not
necessarily mean that the app is malicious.

A. Static Taint Analysis with FLOWDROID

Internally, MUDFLOW uses the static taint tracking tool
FLOWDROID [3] to identify data flows in Android applications.
We chose FLOWDROID because of its precise analysis and
because it accurately models the lifecycle of Android applica-
tions and their interactions with the operating system. Unlike
normal Java programs, Android apps are tightly coupled with
their execution framework which can, for instance, pause and
resume them at any time. Callbacks notify the application of
system events, such as a low battery level or an incoming text
message. FLOWDROID first analyzes the apps for all registered
event handlers and components, and then creates dummy code
that simulates these interactions with the operating system,
causing the static analysis to take this possible runtime be-
havior correctly into account. FLOWDROID provides a highly
precise taint analysis that is fully object-, flow-, and context-
sensitive. High precision is required to reduce false positives
during data flow analysis; it also reduces the amount of noise
within the input data on which the machine-learning approach
of MUDFLOW is later trained.

Listing 1 shows an example of how an Android application
can obtain leaked data. The example reads the phone’s unique
identifier and sends it to the example telephone number
“+1 234” using an SMS message. In real-world applications,
the path between source (the call to getDeviceId() and sink (the
call to sendTextMessage() can be substantially longer, and may
include field and array accesses, polymorphic (library) method
calls, conditionals, etc.

FLOWDROID uses an instantiation of the IFDS framework by
Reps and Horwitz [24]. IFDS reduces data flow problems to
reachability in a graph whose nodes represent combinations
of possible facts about the program (e.g., “variable devId is
tainted at line x in file f”). If one fact can be derived from
another, the respective nodes are connected with an edge,
causing the latter to be reachable from the former. If a certain
fact at a sink is reachable from the node modeling a source,
the analysis has discovered a leak from this source to this sink.

In the example in Listing 1, the node for variable devId
at Line 4 forms the root of the graph. It is connected to
the node that models “a is tainted” at Line 5 due to normal

1 void onCreate() {
2 TelephonyManager mgr = (TelephonyManager)
3 this.getSystemService(TELEPHONY SERVICE);
4 String devId = mgr.getDeviceId();
5 String a = devId;
6 String str = prefix(a);
7 SmsManager sms = SmsManager.getDefault();
8 sms.sendTextMessage(”+1 234”, null, str, null, null);
9 }

10 String prefix(String s) {
11 return ”DeviceId: ” + s;
12 }

Listing 1. Android Data Leak Example

427427427



forward propagation. When processing a method invocation,
the algorithm creates an edge into the callee, in the example
causing the node representing “s is tainted” in Line 11 to
become reachable. On method returns, the return values are
mapped back into the caller, creating an edge to “str is
tainted” in Line 8. The analysis then recognizes this line as
a sink. The fact that parameter “str is tainted” is transitively
reachable from the source, means that there exists a leak of
the device id. The context-sensitivity of FLOWDROID makes it
possible to distinguish different calls to the prefix() method
with different parameter values. A context-insensitive analysis
would act conservatively, marking as tainted all program
variables capturing the return value of prefix(), even at those
call sites that call prefix() with benign values.

FLOWDROID uses special hand-written summaries for calls
to library methods for which no source code is available. Nu-
merous optimizations make sure that the taint analysis scales
to large apps such as the popular social network applications
in the Google Play Store. Space limitations preclude us from
explaining these optimizations further. We kindly point the
interested reader to the original FLOWDROID paper [3].

B. Sensitive Sources
MUDFLOW leverages static taint analysis with FLOWDROID

to characterize the behavior of individual apps with respect to
their usage of sensitive data. The key idea is to identify data
flows that originate from sensitive sources. We first describe
our concept of a “sensitive source”, followed by how we
characterize the originating flows.

In Android, all sensitive data can be accessed
through specific APIs—for instance, the Android method
getLastKnownLocation() returns the user’s current location.
By tracing where this data flows to, it is possible to
characterize the app’s behavior. For this, though, we need to
identify the APIs that access sensitive data. This is less easy
than it might seem, because several Android APIs are not or
hardly documented; furthermore, lists crafted by researchers
get outdated with every new Android version.

We therefore leverage the SUSI technique by Rasthofer et
al. [23], which automatically classifies all methods in the
whole Android API as a source, sink, or neither, using a small
hand-annotated fraction of an Android API to train a classifier.
Beside providing a list of APIs that access sensitive sources,
SUSI also provides a categorization of these APIs, listed in
Table III. The method getLastKnownLocation(), for instance,
falls into the LOCATION INFORMATION category.

In addition to the originally published SUSI categories,
we created three new categories to further break down the
behavior of Android apps, marked with (*) in Table III.
Sensitive Resources. During our investigation, we found that

Android apps also access sensitive resources through
content providers—external components that resolve
appropriate resource identifiers; a CalendarContract
provider, for instance, can access calendar data. All these
flows start from the android.content.ContentResolver API,
which gets the desired resource identifier as an argument.

TABLE III
SUSI API CATEGORIES OF SENSITIVE SOURCES AND SINKS

Sources
• HARDWARE INFO
• UNIQUE IDENTIFIER
• LOCATION INFORMATION
• NETWORK INFORMATION
• ACCOUNT INFORMATION
• EMAIL INFORMATION
• FILE INFORMATION
• BLUETOOTH INFORMATION
• VOIP INFORMATION
• DATABASE INFORMATION
• PHONE INFORMATION
• CONTENT RESOLVER (*)
• NO SENSITIVE SOURCE (*)

(*) New category, see text

Sinks
• PHONE CONNECTION
• VOIP
• PHONE STATE
• EMAIL
• BLUETOOTH
• ACCOUNT SETTINGS
• SYNCHRONIZATION DATA
• NETWORK
• EMAIL SETTINGS
• FILE
• LOG
• INTENT (*)
• NO SENSITIVE SINK (*)

Shared
• AUDIO
• SMS MMS
• CONTACT INFORMATION
• CALENDAR INFORMATION
• SYSTEM SETTINGS
• IMAGE
• BROWSER INFORMATION
• NFC

SUSI assigns the ContentResolver API to NO CATEGORY
because the same API can be used to access all sorts of
resources, sensitive or non-sensitive. In 2012, however,
Au et al. [4] published a list of sensitive resource schemes
as used in Android. We therefore conducted an additional
step of static analysis: Using SOOT [16], we extracted
android.net.URI usages from all Android applications and
assigned them to the appropriate SUSI source categories.
Any resource usage not in the list would be classified into
the CONTENT RESOLVER sensitive source category.

Intents. We found that several flows end in communication
between multiple app components (“Intent” in Android
parlance). As of now, the precise identification of ac-
tivities launched by intents, as well as identification of
flows across intents is out of scope for this paper; our
main objective, namely classification of malware, is still
fulfilled despite this imprecision. To mark flows into
intents, we introduced a special category INTENT for this
kind of potentially sensitive sink.

Non-sensitive Sources and Sinks. Almost all applications in
the Google Play Store access sensitive sources. However,
the data accessed does not necessarily end up in a sensi-
tive sink—wallpaper apps, for instance, access the user’s
images as sensitive sources, but the user’s display is not
a sensitive sink. To leverage these accesses, every source
used that does not flow into a sensitive sink is modeled
as a flow from that source “to” the special category NO -
SENSITIVE SINK. Similarly, we modeled flow that does
not start from sensitive source and ends up in a sensitive
sink from the special category NO SENSITIVE SOURCE.

III. MINING AND CLASSIFYING FLOWS

A. Extracting Flows
Applied on a single app, MUDFLOW uses FLOWDROID to

extract all data flows from all sensitive data sources to all
sensitive data sinks. The result is a set of pairs that char-
acterizes the sensitive flows in the application—and thus the
application itself:

Flows(app) =
�

source1 ; sink1, source2 ; sink2, . . .
 

where each sourcei and sinki is a sensitive Android API
method. (Again, “sensitive” means that it falls into one of
the SUSI categories listed in Table III). As examples of such
flows, consider Table I and Table II discussed in Section I.
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TABLE IV
FLOWS IN ANDROID TWITTER APP, BY SUSI CATEGORY

ACCOUNT INFORMATION ; SYNCHRONIZATION DATA
ACCOUNT INFORMATION ; ACCOUNT SETTINGS
ACCOUNT INFORMATION ; INTENT
ACCOUNT INFORMATION ; LOG
NETWORK INFORMATION ; INTENT
NETWORK INFORMATION ; LOG
DATABASE INFORMATION ; LOG

B. Flow Granularity
By default, each source and sink contains the full method

name and signature. For the sake of obtaining a coarser granu-
larity, this information can be shortened, allowing for multiple
sources and sinks to be aggregated. MUDFLOW supports the
following three granularity levels, from finest to most coarse:
Method. This is the full method signature—for instance,

LocationManager.requestLocationUpdates(. . . ).
Class. Considering only the class name (LocationManager)

allows to express flows between classes rather than meth-
ods. This treats all methods of a class uniformly.

Category. Considering only the SUSI category of the API
(LOCATION INFORMATION) allows to express flows be-
tween categories. This is the coarsest way of expressing
flows, yet one that could be made accessible to end users.
Table IV shows the flows in the Android Twitter app at
the category level. Here, it is indeed easy to spot how the
sensitive data is being used.

C. Automatic Classification
As shown above, the flow within malicious apps may differ

significantly from the flow within benign apps. MUDFLOW
leverages such differences to automatically classify novel apps
whether they are malicious or not. While most malware detec-
tion is retrospective in nature—checking apps against patterns
found in known malware—, MUDFLOW is able to compare
a new app against benignware only, and check whether it
contains abnormal flows with respect to this set. This allows
MUDFLOW to detect malware as abnormal even if the specific
attack is the first of its kind.

The MUDFLOW malware classification takes a set s of benign
apps (say, all apps from an app store) and then works in three
steps, detailed below.

1) Outlier Detection in Category: In its first step, illustrated
in Figure 1, MUDFLOW identifies which apps have unusual
flows within each category using s as a ground set. Specifi-
cally, for a category c, MUDFLOW:

• takes all apps in s that use at least one API from c,
• extracts all flows within these apps (that is, flows orig-

inating from sources in c as well as flows originating
from other sources). To compute the flows in this step,
MUDFLOW uses the API methods classified as sources and
sinks,

• assigns 0.5 as a weight to all flows that lead to LOG,
since these flows are highly prevalent in apps, but are
less harmful, since starting from Android 4.1 LOG files

can only be accessed by diagnostic and administrative
tools. Finally, it

• determines outlierness score of apps considering these
flows as features by using ORCA method [5] with s as a
reference set.

The resulting model can then be used to assess a novel
(potentially malicious) app a which also uses at least one API
from c. For this purpose, MUDFLOW extracts the flows from a,
and computes the distance between a and its k�nearest
neighbors from the set s. For this step MUDFLOW resorts to the
ORCA outlier detector, and considers, by default, the 5 nearest
neighbors of a sample a. To measure the dissimilarity between
samples, MUDFLOW uses the weighted Jaccard distance metric,
since it is more suitable for data with a huge number of
features, as in this case.

The resulting distance serves as an outlier score: The higher
a’s distance, the less “normal” are its features—resulting,
according to our hypothesis, in a higher likelihood of being
malicious.

2) Aggregating Scores: In its second step, MUDFLOW ap-
plies the above outlier detection on all SUSI source categories,
resulting in a single outlier detector for each sensitive source.
We can now take an app a and determine its scores for each
category. As illustrated in Figure 2, we thus obtain a vector
of distances, telling for each sensitive category how much a

deviates from the norm. If an application does not use the
APIs of the appropriate source, its outlierness score is set
to zero. We have dubbed this vector a “maliciogram”, as it
may guide investigators towards potential issues, or inform
end users about potential risks, allowing them to focus on the
categories they care about most.

However, the quality of SUSI categories depends on how
similar the benign applications are within the particular cat-
egory. To take this fact into account, MUDFLOW assigns a

App1

✔ LOG1ID4

App2

✔

App

?
ID4

ID4? SMS2

... ...

✔ LOG2ID2

App1

App3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

Fig. 1. Per-category outlier detection. For each SUSI category such as
UNIQUE IDENTIFIER (shortened to “ID”), MUDFLOW selects apps that use
APIs of that category as source and uses their flows as features. It then takes
a new unknown app, and determines its outlierness score with respect to the
“normal” apps. The higher the score, the less “normal” the app behaves inside
a particular SUSI category.
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weight to each category, emphasizing its importance. When
the mean value of scores within a category is high, it means
that all benign apps considerably differ from each other. As
a consequence of this induced noise, we have less confidence
that an outlier would be malicious. For this reason we give
a lower weight to such categories; if, in contrast, the mean
of score values is low, the category will have higher weight.
More precisely, we use exp(1/mean) as the formula to weigh
categories.

3) Overall Classification: In the third and last step, MUD-
FLOW leverages one-class classification to determine whether
an app a overall would be considered malicious or not. This
decision would be based on the individual scores in each
category, as determined in the past two steps.

The process is illustrated in Figure 3:
• MUDFLOW constructs a training set based on benign

applications. Their score vectors (“maliciograms”) across
the SUSI source categories are used as features.

• It trains a ⌫-SVM one-class classifier [7], which is com-
monly used for novelty detection purposes.

• After training, it uses the ⌫-SVM for classification of a
novel app a, based on its score vector, into either “likely
benign” or “likely malicious”.

The result is a fully automatic warning flag for any novel
app, which when raised, would trigger further investigation
such as additional analysis or testing. This investigation would
be guided by the individual category scores as reported by
MUDFLOW (“How does this app deviate from the norm?”) as
well as the individual flows detected within the app (“Which
flows in this app are abnormal?”).

D. Advertisement Frameworks

Many Android apps generate revenue through advertise-
ments, which are delivered through specific advertising frame-
works. These frameworks access sensitive sources such as
account data to deliver personalized advertisements; How-
ever, these flows are separate from the actual app code. As
advertising frameworks are frequently used, their flows thus
become “normal” and make malicious flows harder to detect.
Furthermore, malicious software may use an advertisement
framework to motivate and mask its malicious flows.

Assuming that advertisement frameworks are to be trusted,
MUDFLOW therefore ignores all sensitive flows taking place
within advertisement frameworks only, allowing it to focus on
the actual app code. Table V shows the list of frequently used
frameworks whose flows are excluded in MUDFLOW. Currently

App?? ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘
d = 0.76 d = 0.62 d = 0.30 d = 0.08 d = 0.63

Fig. 2. Aggregating probabilities across API usage. Given an app, for each
SUSI category, we use the approach from Figure 1 to determine the distance
of the app with respect to the benign training set. The resulting vector of
scores (“maliciogram”) tells how abnormal the app is in each category.

App1

✔
App2

✔

App

??

... ...
✔

App1

App3

ClassifyingTraining

Classifier
✔ ✘

App

✘

Fig. 3. Classifying apps across multiple categories. For each “benign” app
in the Google Play store, we determine its vector of probabilities of being an
outlier in each SUSI category (Figure 2). A one-class classifier trained from
these vectors can label an unknown app as “likely benign” if it is normal
across all categories, or “likely malicious” instead.

TABLE V
AD FRAMEWORKS WHOSE FLOWS ARE EXCLUDED

com.admob.android com.adsdk.sdk
com.adsmogo com.aduwant.ads
com.applift.playads com.google.ads
com.inneractive.api.ads com.mopub.mobileads
com.revmob.ads com.smartadserver.android
com.swelen.ads de.selfadservice

MUDFLOW is unable to detect such advertisement frameworks
in presence of code obfuscation. This problem is in the scope
of our future work and will be discussed in Section VIII.

IV. APPS AND THEIR FLOW

To evaluate MUDFLOW, we used two sets of “benign” and
“malicious” apps for training and classifying. Let us describe
these datasets, as well as their characteristic flows.

A. Apps Mined
Benign apps. As source for “benign” apps, we used the

Google Play Store, the most popular app store for An-
droid. For each of the 30 app categories in the store, we
downloaded the top 100 most popular free applications
as of March 1, 2014. As not all categories had 100 such
entries, this gave us a total of 2,950 apps as our initial
“benign” dataset.

Malicious apps. We used two sources for “malicious” apps:
• 1,260 malware apps from the Genome project [30].

This is the dataset already used in the CHABADA
project [12].

• The full set of 24,317 malicious applications from the
VirusShare database [28] as of 24 March 2014.

Our initial “malicious” set thus contained a total of
25,577 apps.

B. Analysis Settings
Running a precise static taint analysis on real-world appli-

cations is not without challenges. In favor of a faster analysis
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or the ability to analyze a larger application which would
otherwise not fit in memory, we used the following FLOWDROID
settings [3]:

• No flow across intents. Android apps use special compo-
nents, called intents, to implement messaging between
components, in particular to start activities or provide
services in the background. We do not track flows across
intents; when sensitive data is sent to an intent, the flow
is marked with the INTENT category as a sink;

• Explicit flow only. Our static taint analysis settings do not
consider conditionals controlling specific flows, nor the
flows leading to these conditionals. This is in contrast to
information flow analysis, which also takes such implicit
flow into account;

• Flow-insensitive alias search. Making the alias search
flow-insensitive may generate false positives, but greatly
reduces runtime for large applications;

• Maximum access path length of 3, again possibly reduc-
ing precision with respect to the default setting of 5;

• No-layout mode, ignoring Android GUI components, such
as input fields, as data flow sources;

• No static fields, ignoring the tracking of static fields.
All these choices sacrifice some amount of precision for

speed and memory. As a result, the list of flows determined by
MUDFLOW can have false positives (flows that are infeasible
during executions) as well as false negatives (missing flows
that actually might be possible); but still, FLOWDROID is much
more precise than a basic object- or context-insensitive data
flow analysis. As ever when applying precise static analysis on
real-world programs with finite time and resources, striking a
good balance between false positives and false negatives is an
important challenge. Let us remind at this point, that our goal
is to detect anomalies, not to prove the presence or absence
of flows; and thus, we can tolerate imprecision as long as the
overall results are fine.

Still, let us state what “finite time and resources” mean
in our setting, and why compromises are badly needed. The
main machine we used to run MUDFLOW was a compute
server with 730 GB of RAM and 64 Intel Xeon CPU cores,
far exceeding the standard memory sizes of today’s personal
computers. Even with all the compromises listed above, the
server sometimes used all its memory, running on all cores
for more than 24 hours to analyze one single Android app,
as shown in Figure 4. Overall, we had this machine run for
two months without interruption to extract data flows from
Android applications.

C. Analysis Results
A small proportion of downloaded apps proved to be a

challenge for precise taint analysis.
Of the 2,950 “benign” apps, 84 (3%) were not analyzable:

16 apps exceeded the RAM limit of 730 GB or the 24-
hour timeout, and 68 apps caused a SOOT exception while
transforming DEX bytecode to JIMPLE representation. Of the
“malicious” apps, 10,239 (40%) were not analyzable because
of corrupted or incomplete APKs; most frequently, the required
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Fig. 4. Analysis time of benign applications with respect to their call graph
sizes. All times obtained on an Intel 64-core machine with 730 GB RAM.

Android manifest was missing. We also removed all such non-
analyzable apps from our dataset. This resulted in final datasets
of 2,866 “benign” apps and 15,338 “malicious” apps.

D. Data Flow in Benign Apps

Table VI summarizes the data flows detected in our set of
“benign” apps. Most interesting, 68.3% of all accesses to sen-
sitive data do not end in a sensitive sink. Across the sensitive
sinks, we detected 43,371 different data flows, i.e., 43,371
distinct pairs of code locations accessing a sensitive source
API and a sensitive sink API, linked by data flow between
them. The most important source is DATABASE INFORMATION,
followed by CALENDAR INFORMATION, NETWORK INFORMA-
TION, and LOCATION INFORMATION. This reflects what most
Android apps are doing: interacting with external services,
using information maintained in their own databases.

As it comes to the least frequently used sources, we find
results that reflect programming practices in Android. The
source EMAIL shows no flows at all, which might be sur-
prising, considering the number of apps that handle phone
calls or e-mails. This is because most e-mail accesses take
place via IMAP and POP protocols and thus belong to the
NETWORK INFORMATION source category. The sources SYS-
TEM SETTINGS and BROWSER INFORMATION rarely ever end
in sensitive sinks.

The most important sinks are LOG and INTENT, which make
up more than 94% of all sinks in sensitive flows. As discussed
in Section IV-B, the INTENT category means that the data was
used by another activity in the app, a flow we currently cannot
analyze; LOG, however, is a true sink, but it is less harmful,
as starting from Android 4.1 log files can only be accessed by
diagnostic and administrative tools.

The data set coming with this paper contains detailed
information on all flows, showing the exact flows between
APIs for all of the benign applications.

In “benign” apps, 94% of all sensitive data flows are to
logging and Inter-Process-Communications (i.e. intents).

E. Data Flow in Malicious Apps

Table VII summarizes the data flows detected in our set
of “malicious” apps, showing similarities, but also important

431431431



TABLE VI
DATA FLOWS IN BENIGN APPLICATIONS, BY SUSI CATEGORIES

Source LOG INTENT NETWORK FILE
SYSTEM_
SETTINGS

ACCOUNT_
SETTINGS SMS_MMS AUDIO NFC

SYNCHRO
NIZATION

_DATA

CALENDAR
_INFORMA

TION

LOCATION
_INFORMA

TION BLUETOOTH
NO_SENSI
TIVE_SINK Total

DATABASE_INFORMATION 6643 6174 127 98 108 43 0 61 0 0 0 3 0 18046 31303 9,2%
CALENDAR_INFORMATION 3529 7199 244 305 189 17 0 12 15 0 74 3 0 25208 36795 10,9%
NETWORK_INFORMATION 4774 1529 122 70 53 37 85 24 0 0 0 0 0 27809 34503 10,2%
LOCATION_INFORMATION 3758 1242 37 22 12 0 0 15 2 0 0 28 0 14187 19303 5,7%
CONTENT_RESOLVER 1769 823 74 24 22 2 5 12 4 0 2 1 0 3572 6310 1,9%
UNIQUE_IDENTIFIER 796 514 17 1 2 3 1 5 0 0 0 0 0 1819 3158 0,9%
ACCOUNT_INFORMATION 477 264 18 2 6 266 0 2 0 80 0 0 0 1032 2147 0,6%
CONTACT_INFORMATION 390 92 0 0 0 5 0 0 0 0 0 0 0 21 508 0,2%
FILE_INFORMATION 250 136 4 14 5 0 0 2 0 0 0 0 0 921 1332 0,4%
NFC 53 129 7 6 0 0 0 0 73 0 0 0 0 165 433 0,1%
BLUETOOTH_INFORMATION 153 23 0 0 1 0 0 2 0 0 0 0 0 609 788 0,2%
SMS_MMS 42 0 0 0 0 0 81 0 0 0 0 0 0 156 279 0,1%
SYNCHRONIZATION_DATA 19 0 0 0 0 0 0 0 0 10 0 0 0 137 166 0,0%
IMAGE 15 0 0 0 0 0 0 0 0 0 0 0 0 58 73 0,0%
BROWSER_INFORMATION 5 3 0 0 0 0 0 0 0 0 0 0 0 1 9 0,0%
SYSTEM_SETTINGS 5 0 0 0 0 0 0 0 0 0 0 0 0 26 31 0,0%
NO_SENSITIVE_SOURCE 147936 45028 4092 2626 355 39 61 1235 1 49 22 26 2 0 201472 59,5%

Total 170614 63156 4742 3168 753 412 233 1370 95 139 98 61 2 93767 338610
50,4% 18,7% 1,4% 0,9% 0,2% 0,1% 0,1% 0,4% 0,0% 0,0% 0,0% 0,0% 0,0% 27,7%

TABLE VII
DATA FLOWS IN OUR SET OF MALICIOUS APPLICATIONS, BY SUSI CATEGORIES

Source LOG INTENT NETWORK FILE
SYSTEM_
SETTINGS

ACCOUNT
_SETTINGS SMS_MMS AUDIO NFC

SYNCHRO
NIZATION

_DATA

CALENDAR
_INFORMA

TION

LOCATION
_INFORMA

TION BLUETOOTH
NO_SENSI
TIVE_SINK Total

DATABASE_INFORMATION 21006 25363 402 332 32 4 108 212 0 0 0 0 0 71906 119365 8,0%
CALENDAR_INFORMATION 5649 3599 94 74 61 0 4 66 0 0 0 0 0 62683 72230 4,8%
NETWORK_INFORMATION 29930 3293 5174 373 73 3 11802 116 0 0 0 0 0 261739 312503 20,9%
LOCATION_INFORMATION 22548 1831 1242 6 0 0 68 14 0 0 0 6 0 80152 105867 7,1%
CONTENT_RESOLVER 9897 3312 859 79 29 0 36 89 0 0 0 0 0 10176 24477 1,6%
UNIQUE_IDENTIFIER 10981 1179 6608 240 1 0 579 17 0 0 0 0 0 49279 68884 4,6%
ACCOUNT_INFORMATION 86 114 5 0 2 87 0 2 0 6 0 0 0 1246 1548 0,1%
CONTACT_INFORMATION 412 276 0 1 11 0 581 13 0 0 0 0 0 29 1323 0,1%
FILE_INFORMATION 706 255 0 0 12 0 0 32 0 0 0 0 0 1791 2796 0,2%
NFC 36 7 2 0 0 0 4 0 11 0 0 0 0 95 155 0,0%
BLUETOOTH_INFORMATION 79 222 10 6 0 0 0 21 0 0 0 0 1 1968 2307 0,2%
SMS_MMS 33 18 0 0 0 0 117 0 0 0 0 0 0 185 353 0,0%
SYNCHRONIZATION_DATA 3 1 0 0 0 0 0 0 0 0 0 0 0 30 34 0,0%
IMAGE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0%
BROWSER_INFORMATION 15 12 0 0 0 0 0 0 0 0 0 0 0 173 200 0,0%
SYSTEM_SETTINGS 0 3 0 0 0 0 0 0 0 0 0 0 0 38 41 0,0%
NO_SENSITIVE_SOURCE 505584 222320 25897 23293 125 160 331 4362 0 137 0 313 1 0 782523 52,4%

Total 606965 261805 40293 24404 346 254 13630 4944 11 143 0 319 2 541490 1494606
40,6% 17,5% 2,7% 1,6% 0,0% 0,0% 0,9% 0,3% 0,0% 0,0% 0,0% 0,0% 0,0% 36,2%

differences to the “benign” apps from Table VI. The most im-
portant source here is NETWORK INFORMATION, almost twice
as prevalent as in “benign” apps. CALENDAR INFORMATION is
accessed far less frequently as a sensitive source, as is (to our
surprise) ACCOUNT INFORMATION.

In sinks, we also see important differences. Most striking
is the SMS MMS sink, more than 77 times as prevalent as
in our “benign” apps. This reflects the common attack of
stealthily sending SMS messages to premium numbers, allow-
ing the owner of these numbers to earn money from the
victim. As the flows to SMS MMS indicate, the malicious
apps also include sensitive data such as UNIQUE IDENTIFIER
and CONTACT INFORMATION in their messages, as well as
NETWORK INFORMATION such as network MAC addresses or
SIM card information.

Given that 25% of our “malicious” apps use SMS as a sink,
whereas this is the case for only 1% of the “benign” apps,
a simple check for the ability to send SMS messages would
easily weed out 25% of malicious apps, with a precision of
99%. Note, however, that several of such simple checks may
bring conflicting classifications; also, while our “benign” set
is representative in that it encompasses the most popular apps,

our “malicious” set is in no way representative for malware
actually prevalent in the wild, or the types of attacks actually
conducted. In that sense, Table VII serves as descriptive
statistics of the dataset we use for the evaluation of MUDFLOW.

Our set of “malicious” apps differs from the “benign”
apps in terms of sources, sinks, and flows.

V. EVALUATION

With our datasets of “benign” and “malicious” apps avail-
able, we are now able to evaluate the classifiers in MUDFLOW.
This section reports our results.

A. Detecting Overall Outliers
In our first experiment, we evaluated the full MUDFLOW

classifier as described in Section III-C. Using 10-fold cross-
validation, we repeated the following ten times:

• We trained the classifier on the score vectors from a
random 90% of the “benign” dataset.

• The remaining 10% form the testing dataset, as well as
the whole “malicious” dataset.

The average results with the ⌫-SVM configured as ⌫ = 0.15
are as follows:

432432432



True positives (malware recognized as such): 86.4%
True negatives (benignware recognized as such): 81.3%
Accuracy (apps correctly classified): 83.8%

MUDFLOW recognizes 86.4% of malware as such,
with a false positive rate of 18.7%.

As we are most interested in apps that access and send
sensitive data, we ran a second evaluation on the subset of
10,552 “malicious” apps that have at least one flow from
a sensitive source to a sensitive sink (i.e., malware leaking
sensitive data). For this “sensitive” subset, we get the following
results:
True positives (malware recognized as such): 90.1%
True negatives (benignware recognized as such): 81.3%
Accuracy (apps correctly classified): 86.0%

MUDFLOW recognizes 90.1% of malware leaking sensitive
data as such, with a false positive rate of 18.7%.

Again, all these numbers come from one-class classification;
that is, no existing malware is used for training.

B. Repackaged Apps
We have seen that MUDFLOW shows good classification re-

sults on our “malicious” samples, because they are apparently
sufficiently different from the “benign” apps used for training.
But what happens if we take “benign” apps and repackage
them to include malicious behavior on top of their regular
functionality? These would include all the behavior (and flows)
of the originals, plus additional flows and sources from the
added malware components.

To this end, in our Genome set we identified the repackaged
apps, which in essence are those apps that come with package
names matching existing apps from the Google Play Store,
but include malicious payloads. This gave us 96 distinct apps,
which we verified manually to be easily confounded with
original benign apps. Of these 96 apps, MUDFLOW classified
93 correctly as malicious, and three falsely as benign.

In a sample of 96 repackaged apps (benign apps with
added malicious behavior), MUDFLOW identified 97.6%

correctly as malicious.

As expected, the repackaged apps included flows that would
be unusual for benign apps. The repackaged version of ES File
Manager, for instance, would include flows from device ID
or subscriber ID to the Web; as these flows would normally
only occur in advertisement libraries (Section III-D), their
presence outside of these libraries would immediately flag the
application as an anomaly.

C. Alternate Features
An important question regarding MUDFLOW is whether the

individual features in our approach are all necessary, and
whether the expensive static analysis could be replaced by
something simpler. For this purpose, we repeated the eval-
uation of Section V-A using different features. Notably, we
checked the classification results using source methods alone

TABLE VIII
EFFECTIVENESS OF MUDFLOW USING DIFFERENT FEATURES.

Malicious True True
Features set positives negatives Accuracy
Source methods all 81.7% 82.5% 82.1%
Sink methods all 71.0% 83.9% 77.2%
Flow between classes all 82.7% 79.7% 81.2%

sensitive 87.7% 79.9% 83.7%
Flow between methods all 86.4% 81.3% 83.8%

sensitive 90.1% 81.3% 86.0%

as features, as these would not require complex static analysis.
As summarized in Table VIII, data flow between methods,
as implemented in MUDFLOW and evaluated in Section V-A,
shows the best performance across all metrics.

If one wants to save analysis time, source methods alone
may produce sufficient performance; as shown in Table VIII,
this results in a true positive rate of 81.7% (rather than 86.4%
with flows), for all apps; still showing a low false positive
rate. A classification using source methods alone, though, is
easy to fool, as an attacker could repackage an existing app,
reuse existing sources and divert the flow to other sinks. Yet,
in our experiment on repackaged apps, MUDFLOW performed
particularly well (Section V-B).

Data flow from sensitive sources, as used in MUDFLOW,
show the best classification results.

D. Per-Category Outlier Detection
As described in Section III-C1, the overall MUDFLOW clas-

sifier depends on individual per-category outlier detectors,
computing outlier scores for each category. In this section,
let us assess the accuracy of these detectors. For this purpose,
we computed the area under the ROC curve for each outlier
detector; this value is equal to the probability that a classifier
will rank a randomly chosen positive instance higher than a
randomly chosen negative one. An area of 1.0 thus represents
a perfect test, an area of 0.5 represents a worthless test.

Table IX shows the size of the categories, as well as the area
under ROC curve numbers. We see that across all categories, the
individual classifiers perform very well. The highest accuracy
(1.00) is achieved for apps that use CONTACT INFORMATION,
where all malicious apps are higher ranked than benign apps,
a result partially explained by the imbalance between benign
and malicious apps. For BLUETOOTH INFORMATION and other
categories, the outlier detectors work well for balanced sets.

Outlier scores in individual categories are good predictors
of malicious behavior.

Despite their accuracy, keep in mind that the individual clas-
sifiers only work for applications that also use the appropriate
category as a source. Furthermore, a single app may get a
low “benign” score in some categories, but a high “malicious”
score in others. This is why MUDFLOW aggregates these scores
to provide an overall classification.

E. Learning from Malware
In our final experiment, we changed the setting in Sec-

tion III-C1 from the one-class ⌫-SVM to a two-class SVM,
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TABLE IX
PERFORMANCE OF PER-CATEGORY OUTLIER DETECTORS

Benign Malicious Area under
Category apps apps ROC curve
NETWORK INFORMATION 2,254 14,086 0.94
DATABASE INFORMATION 1,525 7,468 0.95
CALENDAR INFORMATION 1,275 6,928 0.93
LOCATION INFORMATION 1,168 6,410 0.90
UNIQUE IDENTIFIER 972 11,456 0.93
FILE INFORMATION 563 1,358 0.93
CONTENT RESOLVER 1,067 3,771 0.95
ACCOUNT INFORMATION 320 542 0.53
BLUETOOTH INFORMATION 183 283 0.96
SYNCHRONIZATION DATA 80 19 0.91
NFC 61 20 0.92
CONTACT INFORMATION 32 404 1.00
BROWSER INFORMATION 5 193 0.92
SYSTEM SETTINGS 4 25 (too few samples)
SMS MMS 3 5 (too few samples)
IMAGE 2 0 (too few samples)

which would be trained with both “benign” and “malicious”
apps, thus exploiting the existence of known malware and their
respective flows. Again, we used ten-fold cross validation,
each time training the SVM with the “malicious” apps not
used in the testing set. This setting increases the classification
accuracy to 95% (97% for “sensitive” malware)—that is, an
even larger fraction of the “benign” apps and “malicious” apps
would be correctly classified.

By also learning flows from known malware, MUDFLOW
accuracy increases to 95% for all malware,

and to 97% for malware leaking sensitive data.

This higher detection rate, however, is due to our mal-
ware set being self-similar, i.e., incorporating the same attack
schemes again and again. These attack schemes result in
recurring data flows, which can be exploited by MUDFLOW;
in practice, though, malware not only shares similar attack
schemes, but even shares code implementing these attacks.
Hence, to determine similarity with known malware, we see
data flow as only one feature besides established effective
techniques such as code signatures, APIs used, and others,
all of which could show similar or better detection rates.
As a dissimilarity measure comparing against benignware,
though, our results make data flow a promising feature to
detect unusual behavior.

“Normal” and “abnormal” data flow can be an important
factor in malware detection.

VI. THREATS TO VALIDITY

The main threat to validity in our work is external validity,
asking how our results generalize to alternate settings. While
our set of “benign” apps represents the most popular Google
Play Store apps across all categories, our set of “malicious”
apps stems from collections of malware where each app at
some point has been found and identified as malicious, but
we do not know whether it has ever caused damage before
being detected. We also do not know which Android malware
is currently in circulation; and we do not know its main
attack vectors, its code features, and its possible obfuscation

features. Our detection results should thus be seen as a result
on a publicly available benchmark, and may not necessarily
generalize.

A second threat to external validity are deficiencies of our
static analysis; as discussed in Section IV-B, our analysis may
report flows that are infeasible, as well as miss flows that are
feasible (notably implicit flow and flow across components or
storages). This impacts our summaries as shown in Table VI
and Table VII. Our classification mechanisms, though, would
be expected to include misclassifications, and thus would be
impaired, but not threatened by such noise.

VII. RELATED WORK

MUDFLOW mines the usage of sensitive data in Android
apps, and uses this information to detect malicious applica-
tions. MUDFLOW is thus related to the many existing techniques
that leverage taint analysis to detect information leaks, to
Android malware detection techniques, and to the empirical
studies on Android stores.

A. Information Flow Analysis for Android
As mobile devices are a particularly rich store of sensitive

data, it is not a surprise that much of the mobile security
research work has developed taint analysis techniques to detect
information leaks. Among the research works that leverage
dynamic taint analysis to detect information leaks, TAINTDROID
is the de-facto state of the art tool for Android applications [8].
Thanks to an efficient instrumentation of the Android execu-
tion environment, TAINTDROID can report, without any false
positives, information leaks in apps even when they involve
native code.

Dynamic taint analysis has the obvious limitation of re-
porting only on what has been observed during a limited set
of executions. At the opposite side, static taint tracking tools
report any information leak that may occur at runtime. The
FLOWDROID tool, described in Section II, employs a highly
precise static control and data flow analysis of Android apps
to report both explicit and implicit information flows [3]. Other
static taint tracking tools work in a similar fashion, but miss
several possible information flows since they implement less
precise data-flow analyses [29], [11].

Other techniques focus on detecting information flows in-
volving inter-applications communication, and can thus detect
when multiple applications can act together to leak sensitive
information [15], [17].

MUDFLOW is orthogonal to all these techniques. In fact,
while all these techniques can detect whether there is any
information flow in Android applications, they cannot tell
whether such behavior is likely to be malicious or not. On
the other hand, MUDFLOW has no ability to detect information
flows on its own, and therefore needs tools such as FLOWDROID
to collect information regarding the behavior of apps.

B. Android Malware Detection
As for any other software platform, malware detection

received a lot of attention in Android. Several techniques
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focus on detecting whether the claimed behavior matches the
actual behavior of the application. Some of these techniques
use the textual description to understand what an application
should do [12], [20], [22], while others analyze the text
associated to GUI elements [14]. MUDFLOW instead, only
requires the binary of the application, and therefore can easily
be adopted to classify also applications that come without
textual descriptions.

Moreover, all the aforementioned techniques either look at
the declared permission in the manifest file or at API calls to
“critical” functionalities of the Android framework. MUDFLOW,
instead, uses sensitive data flows as features to describe the
behavior of an application. Thus, instead of knowing whether
an application accesses the contact list, it knows what the
application does with the contact list. Thanks to more precise
features, MUDFLOW can consequently provide better malware
detection abilities.

MUDFLOW is not the first work that uses machine learning
techniques to detect malicious Android applications. On the
other hand, it is the only one, together with CHABADA, to train
the model only on benign applications [12]. Other techniques
such as MAST and Drebin, instead, train the classifier only
on samples of malware, and can therefore be very effective at
detecting other samples of similar malware [6], [2]. Differently
from MUDFLOW, though, they are quite ineffective at detecting
new types of malware. Similarly, techniques that implement
static or dynamic analyses to detect known malware features
are complementary to MUDFLOW, as they are designed to detect
known malware [21], [18], [9], [10].

C. Mining of Android Apps on Markets
Together with a malware classifier for Android, this paper

presents a novel study of the typical information flows of
Android applications that are popular on the Google Play
market. Other researchers used Android markets for empirical
studies. Harman et al. mined the Blackberry app store to
identify correlations between user rating and ranking of ap-
plications [13]. Stevens et al. analyzed 10,000 free apps from
popular Android markets and found a significant correlation
between the popularity of a permission and the number of
times it is misused [27]. Ruiz et al., instead, study the
prevalence of multiple ad libraries in Android apps [25], and
Nagappan et al. analyze the software reuse in the Android
mobile app market [19]. More related to MUDFLOW are the
empirical studies of Allix et al. and Zhou et al. on Android
malware [30], [1].

Shen et al. [26] employ a static data flow analysis technique
to enrich the Android permission mechanism with information
regarding detected information flows. To the best of our
knowledge, their work is the only other work that compares the
information flows between benign and malicious applications.
Their final goal, though, is radically different from ours.

VIII. CONCLUSION AND FUTURE WORK

MUDFLOW learns “normal” flows of sensitive data from
trusted applications to detect “abnormal” flows in possibly

malicious applications. The approach is effective in detecting
novel attacks, learning from benignware only, as well as
recognizing known attacks, learning from benign as well as
malicious samples. Despite data flow analysis being expensive
for real-world apps, we see the flow of sensitive data as a
useful abstraction not only for automatic classification, but also
for end users to understand what an app does with sensitive
data.

Despite these successes, there still are lots of opportunities
for improvement. Our own future work will focus on the
following topics:

• To fool MUDFLOW, malware writers could use reflec-
tion, native code, self-decrypting code, or other features
that challenge static analysis. Usage of such techniques
in combination with sensitive data, however, would be
unusual for benign apps. We are investigating analysis
techniques that would detect such obfuscation techniques
as anomalies.

• While static taint analysis across components and inter-
mediate data storages is difficult, it is not fundamentally
impossible. We want to design analysis techniques specif-
ically tailored to app-wide and system-wide data flows as
found in Android.

• Incorporating our earlier CHABADA work [12], we want to
associate flows with app descriptions, detecting anomalies
within specific application domains such as “travel”,
“wallpapers”, and likewise.

• Where static analysis is challenged, combinations of
automated test generation and dynamic flow analysis may
prove to be helpful alternatives. We are investigating
such combinations in conjunction with static analysis to
combine the strengths of both static and dynamic flow
analysis.

To support further research in app mining, as well as
replication and extension of the results in this paper, all our
mined data as well as the scripts for our statistical analysis
are available for download. For details, see our project page

http://www.st.cs.uni-saarland.de/appmining/
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