
Mining Apps for Anomalies
Andreas Zeller

Saarland University, Saarbrücken, Germany

Joint work with Alessandra Gorla, Ilaria Tavecchia, Vitalii Avdiienko, 
Konstantin Kuznetsov, Eric Bodden, Steven Arzt, Siegfried Rasthofer,

Isabelle Rommelfanger, and Florian Gross

Saarbrücken

Saarbrücken

® Visual 
Computing 
Institute

Center for Information Security, Privacy and
Accountability

375 
PhD students  

200 
Researchers 
(post PhD)

8 
New buildings 

since 2001

10 
ERC Grant holders

6 
Leibniz Awardees

4 
ACM Fellows

1700 
BSc + MSc 
 students

1 
Software Engineer

file://localhost/Users/zeller/Desktop/Intel-logo.svg

Specifications

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Specifications

fully 
automated 
debugging

fully 
automated 

testing

widely 
automated 
verification

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Specifying Correctness

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Formal Methods

<Crash>

Normality

Mining Normality

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Outliers

London Restaurants
Looking for a restaurant, a bar, a pub or just to have fun in
London? Search no more! This application has all the
information you need:
• You can search for every type of food you want: french,
british, chinese, indian etc.
• You can use it if you are in a car, on a bicycle or walking
• You can view all objectives on the map
• You can search objectives
• You can view objectives near you
• You can view directions (visual route, distance and
duration)
• You can use it with Street View
• You can use it with Navigation
Keywords: london, restaurants, bars, pubs, food,
breakfast, lunch, dinner, meal, eat, supper, street view,
navigation

Also sends out account info
Also sends out mobile phone number
Also sends out your device ID

What is malicious?

Also sends out account info
Also sends out mobile phone number
Also sends out your device ID

WhatsApp messenger

London Restaurants

Also sends out account info
Also sends out mobile phone number
Also sends out your device ID

What is normal?

London Restaurants

• “London Restaurants” is a
“travel” app

• For “travel” apps, sending
account infos is abnormal

• For “messaging” apps, 
this is far more likely

CHABADA
Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

App Collection

• Source: Google Play Store

• Downloaded top 150 apps + metadata  
from each of the 30 categories

• Time frame: Winter to Spring 2013

• Total: 32,136 apps

• Data package available on Web site

Stemming
looking for a restaurant, a bar, a pub or just to have fun in
london? search no more! this application has all the
information you need:
• you can search for every type of food you want: french,
british, chinese, indian etc.
• you can use it if you are in a car, on a bicycle or walking
• you can view all objectives on the map
• you can search objectives
• you can view objectives near you
• you can view directions (visual route, distance and
duration)
• you can use it with street view
• you can use it with navigation
keywords: london, restaurants, bars, pubs, food,
breakfast, lunch, dinner, meal, eat, supper, street view,
navigation

Stemming
looking for a restaurant, a bar, a pub or just to have fun in
london? search no more! this application has all the
information you need:
• you can search for everi type of food you want: french,
british, chinese, indian etc.
• you can use it if you are in a car, on a bicycle or walking
• you can view all objectives on the map
• you can search objectives
• you can view objectives near you
• you can view directions (visual route, distance and
duration)
• you can use it with street view
• you can use it with navigation
keywords: london, restaurants, bars, pubs, food,
breakfast, lunch, dinner, meal, eat, supper, street view,
navigation

look restaur bar pub just fun
london search

search

applic
inform need

can

can
can
can
can
can

can
can

search

search

everi type food

food

want french
british chines indian etc

us car bicycl walk
view object map

object
objectview

view
near

direct visual rout
durat

us
us

street view
navig

keyword london restaur bar pub
breakfast lunch dinner meal eat supper street view
navig

distanc

Stemming

look restaur bar pub just funlondon search applic

inform needcan search everi type food want french

british chines indian etc car bicycl walk

can canus view object map visual rout

searchcan cansearch object view distanc

can objectview neardirectdurat

can canus usstreet view navig

foodkeyword london restaur bar pub view

breakfast lunch dinner meal eat supper street navig

Topic Analysis
• Eliminated all apps with ≤10 words, 

now 22,521 apps

• Want to discover the topics that occur in a
collection of unlabeled text

• A topic consists of a cluster of words that
frequently occur together

• Used Latent Dirichlet Allocation (LDA) 
to identify 30 topics

Topics
Table 1: Topics mined from Android Apps

Id Assigned Name Most Representative Words (stemmed)
0 “personalize” galaxi, nexu, device, screen, effect, instal,

customis
1 “game and cheat

sheets”
game, video, page, cheat, link, tip, trick

2 “money” slot, machine, money, poker, currenc, market,
trade, stock, casino coin, finance

3 “tv” tv, channel, countri, live, watch, germani, na-
tion, bbc, newspap

4 “music” music, song, radio, play, player, listen
5 “holidays” and

religion
christmas, halloween, santa, year, holiday, is-
lam, god

6 “navigation and
travel”

map, inform, track, gps, navig, travel

7 “language” language, word, english, learn, german,
translat

8 “share” email, ad, support, facebook, share, twitter,
rate, suggest

9 “weather and stars” weather, forecast, locate, temperatur, map,
city, light

10 “files and video” file, download, video, media, support, man-
age, share, view, search

11 “photo and social” photo, friend, facebook, share, love, twitter,
pictur, chat, messag, galleri, hot, send social

12 “cars” car, race, speed, drive, vehicl, bike, track
13 “design and art” life, peopl, natur, form, feel, learn, art, design,

uniqu, effect, modern
14 “food and recipes” recip, cake, chicken, cook, food
15 “personalize” theme, launcher, download, install, icon,

menu
16 “health” weight, bodi, exercise, diet, workout, medic
17 “travel” citi, guid, map, travel, flag, countri, attract
18 “kids and bodies” kid, anim, color, girl, babi, pictur, fun, draw,

design, learn
19 “ringtones and

sound”
sound, rington, alarm, notif, music

20 “game” game, plai, graphic, fun, jump, level, ball, 3d,
score

21 “search and
browse”

search, icon, delet, bookmark, link, homepag,
shortcut, browser

22 “battle games” story, game, monster, zombi, war, battle
23 “settings and utils” screen, set, widget, phone, batteri
24 “sports” team, football, leagu, player, sport, basketbal
25 “wallpapers” wallpap, live, home, screen, background,

menu
26 “connection” device, connect, network, wifi, blootooth, in-

ternet, remot, server
27 “policies and ads” live, ad, home, applovin, notif, data, polici, pri-

vacy, share, airpush, advertis
28 “popular media” seri, video, film, album, movi, music, award,

star, fan, show, gangnam, top, bieber
29 “puzzle and card

games”
game, plai, level, puzzl, player, score, chal-
leng, card

2.4 Clustering Apps with K-means
Topic modeling can only assign application descriptions to top-

ics with a certain probability. What we need, though, is to identify
groups of applications that are similar according to their descrip-
tions. We use K-means, one of the most common clustering al-
gorithms, for this step. Given a set of elements and the number
of clusters K to be identified, K-means identifies one centroid for
each cluster, and then associates each element of the data set to the
nearest centroid, thus identifying clusters.

In this context, we use applications as the elements to be clus-
tered, and we use the probabilities of belonging to topics as fea-
tures. As an example, Table 2 shows four applications app1 to app4,
with the corresponding probabilities of belonging to topics. If we
applied K-means to partition the set of applications into two clus-
ters, it would create one cluster with app1 and app3, and a second
cluster with app2 and app4.

2.5 Finding the Best Number of Clusters
One of the challenges with K-means is to estimate the number

Table 2: Four applications and their likelihoods of belonging to
specific topics

Application topic1 topic2 topic3 topic4
app1 0.60 0.40 — —
app2 — — 0.70 0.30
app3 0.50 0.30 — 0.20
app4 — — 0.40 0.60

of clusters that should be created. The algorithm either needs to be
given some initial potential centroids, or the number K of clusters
to identify. There exist several approaches to identify the best solu-
tion, among a set of possible solutions. Therefore, we run K-means
several times, each time with a different K number to obtain a set
of clusterings we would then be able to evaluate. The range for K
covers solutions among two extremes: having a small number of
clusters (even just 2) with a large variety of apps; or having many
clusters (potentially even one per app) and thus being very specific.
We fixed num_topics ⇥ 4 as upper bound because in our settings,
an application can belong to up to 4 topics.

To identify the best solution, i.e. the best number of clusters, we
used the elements silhouette, as discussed in [19]. The silhouette of
an element is the measure of how closely the element is matched to
the other elements within its cluster and how loosely it is matched
to other elements of the neighboring clusters. When the value of
the silhouette of an element is close to 1, it means that the element
is in the appropriate cluster. If the value is close to �1, instead, it
means that the element is in the wrong cluster. Thus, to identify the
best solution, we compute the average of the elements’ silhouette
for each solution using K as the number of clusters, and we select
the solution whose silhouette was closest to 1.

2.6 Resulting App Clusters
Table 3 shows the list of clusters that were identified for the

22,521 apps that we analyzed. Each of these 32 clusters contains
apps whose descriptions contain similar topics, listed under “Most
Important Topics”. The percentages reported in the last column
represent the weight of specific topics within each cluster.

The clusters we identified pretty much differ from the categories
one would find in an app store such as the Google Play Store. Clus-
ter 22 (“advertisements”), for instance, is filled with applications
that do nothing but display ads in one way or another; these apps
typically promise or provide some user benefit in return. Cluster 16
(“connection”) represents all application that deal with Bluetooth,
Wi-Fi, etc.; there is no such category in the Google Play Store. The
several “wallpaper” clusters, from adult themes to religion, simply
represent the fact that several apps offer very little functionality.

The London Restaurants app ended up in Cluster 12, together
with other applications that are mostly about navigation and travels.
These are the clusters of apps related by their descriptions in which
we now can search for outliers with respect to their behavior.

2.7 Alternative Clustering Approaches
As with most scientific work, the approach presented in this pa-

per only came to be through several detours, dead-ends, and re-
finements. We briefly list the most important ones here as to have
future researchers avoid some of the problems we encountered.

Usage of topics. One might wonder if it is really necessary to clus-
ter based on topics instead of clustering plain descriptions
directly. The reason is that K-means, as well as any other
clustering algorithm, works better when few features are in-
volved. Hence, abstracting descriptions into topics was cru-
cial to obtain better clustering results.

Topics

Table 1: Topics mined from Android Apps
Id Assigned Name Most Representative Words (stemmed)
0 “personalize” galaxi, nexu, device, screen, effect, instal,

customis
1 “game and cheat

sheets”
game, video, page, cheat, link, tip, trick

2 “money” slot, machine, money, poker, currenc, market,
trade, stock, casino coin, finance

3 “tv” tv, channel, countri, live, watch, germani, na-
tion, bbc, newspap

4 “music” music, song, radio, play, player, listen
5 “holidays” and

religion
christmas, halloween, santa, year, holiday, is-
lam, god

6 “navigation and
travel”

map, inform, track, gps, navig, travel

7 “language” language, word, english, learn, german,
translat

8 “share” email, ad, support, facebook, share, twitter,
rate, suggest

9 “weather and stars” weather, forecast, locate, temperatur, map,
city, light

10 “files and video” file, download, video, media, support, man-
age, share, view, search

11 “photo and social” photo, friend, facebook, share, love, twitter,
pictur, chat, messag, galleri, hot, send social

12 “cars” car, race, speed, drive, vehicl, bike, track
13 “design and art” life, peopl, natur, form, feel, learn, art, design,

uniqu, effect, modern
14 “food and recipes” recip, cake, chicken, cook, food
15 “personalize” theme, launcher, download, install, icon,

menu
16 “health” weight, bodi, exercise, diet, workout, medic
17 “travel” citi, guid, map, travel, flag, countri, attract
18 “kids and bodies” kid, anim, color, girl, babi, pictur, fun, draw,

design, learn
19 “ringtones and

sound”
sound, rington, alarm, notif, music

20 “game” game, plai, graphic, fun, jump, level, ball, 3d,
score

21 “search and
browse”

search, icon, delet, bookmark, link, homepag,
shortcut, browser

22 “battle games” story, game, monster, zombi, war, battle
23 “settings and utils” screen, set, widget, phone, batteri
24 “sports” team, football, leagu, player, sport, basketbal
25 “wallpapers” wallpap, live, home, screen, background,

menu
26 “connection” device, connect, network, wifi, blootooth, in-

ternet, remot, server
27 “policies and ads” live, ad, home, applovin, notif, data, polici, pri-

vacy, share, airpush, advertis
28 “popular media” seri, video, film, album, movi, music, award,

star, fan, show, gangnam, top, bieber
29 “puzzle and card

games”
game, plai, level, puzzl, player, score, chal-
leng, card

2.4 Clustering Apps with K-means
Topic modeling can only assign application descriptions to top-

ics with a certain probability. What we need, though, is to identify
groups of applications that are similar according to their descrip-
tions. We use K-means, one of the most common clustering al-
gorithms, for this step. Given a set of elements and the number
of clusters K to be identified, K-means identifies one centroid for
each cluster, and then associates each element of the data set to the
nearest centroid, thus identifying clusters.

In this context, we use applications as the elements to be clus-
tered, and we use the probabilities of belonging to topics as fea-
tures. As an example, Table 2 shows four applications app1 to app4,
with the corresponding probabilities of belonging to topics. If we
applied K-means to partition the set of applications into two clus-
ters, it would create one cluster with app1 and app3, and a second
cluster with app2 and app4.

2.5 Finding the Best Number of Clusters
One of the challenges with K-means is to estimate the number

Table 2: Four applications and their likelihoods of belonging to
specific topics

Application topic1 topic2 topic3 topic4
app1 0.60 0.40 — —
app2 — — 0.70 0.30
app3 0.50 0.30 — 0.20
app4 — — 0.40 0.60

of clusters that should be created. The algorithm either needs to be
given some initial potential centroids, or the number K of clusters
to identify. There exist several approaches to identify the best solu-
tion, among a set of possible solutions. Therefore, we run K-means
several times, each time with a different K number to obtain a set
of clusterings we would then be able to evaluate. The range for K
covers solutions among two extremes: having a small number of
clusters (even just 2) with a large variety of apps; or having many
clusters (potentially even one per app) and thus being very specific.
We fixed num_topics ⇥ 4 as upper bound because in our settings,
an application can belong to up to 4 topics.

To identify the best solution, i.e. the best number of clusters, we
used the elements silhouette, as discussed in [19]. The silhouette of
an element is the measure of how closely the element is matched to
the other elements within its cluster and how loosely it is matched
to other elements of the neighboring clusters. When the value of
the silhouette of an element is close to 1, it means that the element
is in the appropriate cluster. If the value is close to �1, instead, it
means that the element is in the wrong cluster. Thus, to identify the
best solution, we compute the average of the elements’ silhouette
for each solution using K as the number of clusters, and we select
the solution whose silhouette was closest to 1.

2.6 Resulting App Clusters
Table 3 shows the list of clusters that were identified for the

22,521 apps that we analyzed. Each of these 32 clusters contains
apps whose descriptions contain similar topics, listed under “Most
Important Topics”. The percentages reported in the last column
represent the weight of specific topics within each cluster.

The clusters we identified pretty much differ from the categories
one would find in an app store such as the Google Play Store. Clus-
ter 22 (“advertisements”), for instance, is filled with applications
that do nothing but display ads in one way or another; these apps
typically promise or provide some user benefit in return. Cluster 16
(“connection”) represents all application that deal with Bluetooth,
Wi-Fi, etc.; there is no such category in the Google Play Store. The
several “wallpaper” clusters, from adult themes to religion, simply
represent the fact that several apps offer very little functionality.

The London Restaurants app ended up in Cluster 12, together
with other applications that are mostly about navigation and travels.
These are the clusters of apps related by their descriptions in which
we now can search for outliers with respect to their behavior.

2.7 Alternative Clustering Approaches
As with most scientific work, the approach presented in this pa-

per only came to be through several detours, dead-ends, and re-
finements. We briefly list the most important ones here as to have
future researchers avoid some of the problems we encountered.

Usage of topics. One might wonder if it is really necessary to clus-
ter based on topics instead of clustering plain descriptions
directly. The reason is that K-means, as well as any other
clustering algorithm, works better when few features are in-
volved. Hence, abstracting descriptions into topics was cru-
cial to obtain better clustering results.

London Restaurant Topics
look restaur bar pub just funlondon search applic

inform needcan search everi type food want french

british chines indian etc car bicycl walk

can canus view object map visual rout

searchcan cansearch object view distanc

can objectview neardirectdurat

can canus usstreet view navig

foodkeyword london restaur bar pub view

breakfast lunch dinner meal eat supper street navig

“navigation and travel” (59.8%) 
“food and recipes” (19.9%) 
“travel” (14.0%)

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

Clustering

• Want to identify groups of applications that
are similar according to their descriptions.

• Used K-Means to identify such clusters

• Used elements silhouette 
to identify best number K of clusters

Clusters
Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

Clusters

Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

“Personalize” Cluster

“Travel” Cluster

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

API Analysis

• For each APK, we identified the APIs used

• Used simple static analysis

• Only considered sensitive APIs  
which would be governed by permissions

London Restaurants
Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

“Travel” Cluster

Description

Permissions of 
APIs used

“Personalize” Cluster

Description

Permissions of 
APIs used

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

“Travel” Cluster

Description

Permissions of 
APIs used

“Travel” Cluster
Permissions of 
APIs used

London Restaurants

Permissions of 
APIs used

London Restaurants
Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

→ An Outlier in the “Travel” Cluster

Outlier Analysis

• In each cluster, identified outliers through
one-class support vector machine (OC-SVM)

• Features of each APK: a vector of  
(Sensitive API, #call sites)

London Restaurants
Table 3: Clusters of applications. “Size” is the number of appli-
cations in the respective cluster. “Most Important Topics” list
the three most prevalent topics; most important (> 10%) shown
in bold. Topics less than 1% not listed.

Id Assigned Name Size Most Important Topics
1 “sharing” 1,453 share (53%), settings and utils,

navigation and travel
2 “puzzle and card

games”
953 puzzle and card games (78%),

share, game
3 “memory puzzles” 1,069 puzzle and card games (40%),

game (12%), share
4 “music” 714 music (58%), share, settings and

utils
5 “music videos” 773 popular media (44%), holidays

and religion (20%), share
6 “religious

wallpapers”
367 holidays and religion (56%), de-

sign and art, wallpapers
7 “language” 602 language (67%), share, settings

and utils
8 “cheat sheets” 785 game and cheat sheets (76%),

share, popular media
9 “utils” 1,300 settings and utils (62%), share,

connection
10 “sports game” 1,306 game (63%), battle games, puzzle

and card games
11 “battle games” 953 battle games (60%), game

(11%), design and art
12 “navigation and

travel”
1,273 navigation and travel (64%),

share, travel
13 “money” 589 money (57%), puzzle and card

games, settings and utils
14 “kids” 1,001 kids and bodies (62%), share,

puzzle and card games
15 “personalize” 304 personalize (71%), wallpapers

(15%), settings and utils
16 “connection” 823 connection (63%), settings and

utils, share
17 “health” 669 health (63%), design and art,

share
18 “weather” 282 weather and stars (61%), set-

tings and utils (11%), navigation
and travel

19 “sports” 580 sports (62%), share, popular me-
dia

20 “files and videos” 679 files and videos (63%), share,
settings and utils

21 “search and browse” 363 search and browse (64%), game,
puzzle and card games

22 “advertisements” 380 policies and ads (97%)
23 “design and art” 978 design and art (48%), share,

game
24 “car games” 449 cars (51%), game, puzzle and

card games
25 “tv live” 500 tv (57%), share, navigation and

travel
26 “adult photo” 828 photo and social (59%), share,

settings and utils
27 “adult wallpapers” 543 wallpapers (51%), share, kids

and bodies
28 “ad wallpapers” 180 policies and ads (46%), wallpa-

pers, settings and utils
29 “ringtones and

sound”
662 ringtones and sound (68%),

share, settings and utils
30 “theme wallpapers” 593 wallpapers (90%), holidays and

religion, share
31 “personalize” 402 personalize (86%), share, set-

tings and utils
32 “settings and

wallpapers”
251 settings and utils (37%), wallpa-

pers (37%), personalize

Usage of clusters. Having just one dominant topic for applications
did not yield as good results, since several applications may
incorporate multiple topics at once. This also excluded the
usage of the given Google Play Store categories as a cluster-
ing strategy. Despite one might argue that clustering does not
produce different results than just clustering on the predom-
inant topics (the number of topics and cluster is almost the
same), one should also notice that clusters have quite differ-
ent features than topics.

Table 4: Sensitive APIs used in London Restaurants. The bold
APIs make this app an outlier in its cluster.
android.net.ConnectivityManager.getActiveNetworkInfo()
android.webkit.WebView()
java.net.HttpURLConnection.connect()
android.app.NotificationManager.notify()
java.net.URL.openConnection()
android.telephony.TelephonyManager.getDeviceId()
org.apache.http.impl.client.DefaultHttpClient()
org.apache.http.impl.client.DefaultHttpClient.execute()
android.location.LocationManager.getBestProvider()
android.telephony.TelephonyManager.getLine1Number()
android.net.wifi.WifiManager.isWifiEnabled()
android.accounts.AccountManager.getAccountsByType()
android.net.wifi.WifiManager.getConnectionInfo()
android.location.LocationManager.getLastKnownLocation()
android.location.LocationManager.isProviderEnabled()
android.location.LocationManager.requestLocationUpdates()
android.net.NetworkInfo.isConnectedOrConnecting()
android.net.ConnectivityManager.getAllNetworkInfo()

For instance, Cluster 22 (“advertisements”) groups applica-
tions whose main topic is about wallpapers and mention in
the description that the application is using advertisements.
This contrasts to Cluster 32 (“settings and wallpapers”), for
instance, which also groups applications that are about wall-
papers, but do not mention advertisements in the description.

One cluster per app. As it is now, each application belongs to one
cluster, which may incorporate multiple topics. This leads to
a good clustering of similar apps. A yet unexplored alterna-
tive is to allow an app to be a member of multiple clusters.
This might potentially provide better clustering results.

Choice of clustering method. Before using K-means, we experi-
mented with formal concept analysis to detect related con-
cepts of topics and features [24]; however, our implementa-
tion would be overwhelmed by the number of apps and top-
ics.

Low quality apps. App stores like the Google Play Store contain
several free applications of questionable value. Restricting
our approach to a minimum number of downloads or user
ratings may yield very different results. But then, we want to
identify outliers before users see them.

3. IDENTIFYING OUTLIERS BY APIS
Now that we have clustered apps based on similarity of their de-

scription topics, we can search for outliers regarding their actual
behavior. Section 3.1 shows how we extract API features from An-
droid binaries. Section 3.2 focuses on APIs controlled by permis-
sions. Section 3.3 describes how CHABADA detects API outliers.

3.1 Extracting API Usage
As discussed in the introduction, we use static API usage as a

proxy for behavior. Going for API usage is straightforward: While
Android bytecode can also be subject to advanced static analysis
such as information flow analysis and standard obfuscation tech-
niques that easily thwart any static analysis, API usage has to be
explicitly declared; and in Android binaries, as in most binaries on
other platforms, static API usage is easy to extract. For each An-
droid application, we extracted the (binary) APK file with apktool6;
and with a smali disassembler, we extracted all API invocations,
including the number of call sites for each API.
6
https://code.google.com/p/android-apktool

→ Identified as Outlier

CHABADA

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify out-
liers in each cluster with respect to their API usage. A “weather”
app that sends messages thus becomes an anomaly; likewise, a
“messaging” app would typically not be expected to access the cur-
rent location. Applied on a set of 22,500+ Android applications,
our CHABADA prototype identified several anomalies; additionally,
it flagged 56% of novel malware as such, without requiring any
known malware patterns.

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some pro-
gram behavior will be beneficial or malicious. The problem is that
any specification on what makes behavior beneficial or malicious
very much depends on the current context. In the mobile world, for
instance, behavior considered malicious in one app may well be a
feature of another app:

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

⇤Ilaria Tavecchia is now with S.W.I.F.T., Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the APIs used, grouped by related per-
mission (4), and can then identify outliers that use APIs that are
uncommon for that cluster (5).

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as ad-
vertised. In all the examples above, the user would be informed and
asked for authorization before any questionable behavior. It is the
covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As a
proxy for its implemented behavior, we use the set of Android ap-
plication programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API us-
age to detect anomalies: “This ‘weather’ application accesses the
messaging API, which is unusual for this category.”

Specifically, our CHABADA approach1 takes five steps, illustrated
in Figure 1 and detailed later in the paper:

1. CHABADA starts with a collection of 22,500+ “good” An-
droid applications downloaded from the Google Play Store.

1CHABADA stands for CHecking App Behavior Against Descrip-
tions of Apps. “Chabada” is a French word for the base ternary
rhythm pattern in Jazz.

Evaluation: Outliers

• Can our technique effectively identify
anomalies (i.e., mismatches between
description and behavior) in Android apps?

• Manually checked 
top 5 outliers in each cluster (160 total)

• 26% showed covert behavior using sensitive
APIs that acts against the interest of its users.

What makes an outlier?

• Ad frameworks (apploving, airpush)

• Dubious behavior (UNO, WICKED, Yahoo!)

• Uncommon behavior (SoundCloud)

• Benign outliers (Mr. Will’s Stud Poker)

Evaluation: Malware
• Can our technique be used to identify

malicious Android applications?

• In each cluster, trained OC-SVM on
90% of “benign” apps

• Used TF-IDF as classifier on sets with  
remaining “benign” apps and 
173 known malware apps

Malware recognition rate >80%

Úlfar Erlingsson

Information Flow
• Which sensitive APIs does the device ID flow to?

Network + SMS
1 %

Intent
38 %

Log
60 %

Network + SMS
37 %

Intent
6 %

Log
57 %

Benign Apps Malicious Apps

App1

✔ LOG1ID4

App2

✔

App

?
ID4

ID4? SMS2

... ...

✔ LOG2ID2

App1

App3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

MUDFLOW

Malware recognition rate >86%

User Interfaces

Outliers

Detect Outliers for UI Elements!

Tripwolf

A serious travel app

Registration

JOIN TRIPWOLFJOIN TRIPWOLFJOIN TRIPWOLFJOIN TRIPWOLFJOIN TRIPWOLFJOIN TRIPWOLFJOIN TRIPWOLF

UI Elements

JOIN TRIPWOLFJOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

APIs used

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

Handler	
Bundle	
startActivity

TelephonyManager	
Handler	
Bundle	
startActivity	
SharedPreferences

EditText

startActivity	
LocationManager

EditText	
Uri

startActivity

Outliers

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

Handler	
Bundle	
startActivity

TelephonyManager	
Handler	
Bundle	
startActivity	
SharedPreferences

EditText

startActivity	
LocationManager

EditText	
Uri

startActivity

✔ ✘

Outliers

JOIN TRIPWOLFstartActivity	
LocationManager

This is unusual for "join" buttons

The "Join Tripwolf" button
transmits the current location to

the Tripwolf servers.

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

<Button android:id="@+id/buttonOK"
 android:text="@string/buttonOK"
 android:onClick="xmlDefinedOnClick"
 style="@style/okButtonStyle"/>

Mining GUI Elements
 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <fragment android:id="@+id/fragment"
 class="uinomaly.fragmentclass".../>

  

 
 </LinearLayout>

<ImageButton android:id="@+id/imageButtonPrint" ...
 android:src="@drawable/print_button"
 android:contentDescription="@string/printText" />

<Button android:id="@+id/buttonOK"
 android:text="@string/buttonOK"
 android:onClick="xmlDefinedOnClick"
 style="@style/okButtonStyle"/>

Mining GUI Elements

<ImageButton android:id="@+id/imageButtonPrint" ...
 android:src="@drawable/print_button"
 android:contentDescription="@string/printText" />

Text shown

Callback

Icon 
file

Alternate Text

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

Mining APIs

• To identify APIs called, Backstage uses a
static analysis built on top of Soot

• Builds a call graph starting with APIs
defined in layout file

• Collects all reachable Android APIs

Context Sensitivity
View.OnClickListener myClick = new View.OnClickListener() {
 public void onClick(View v) {
 switch (v.getId()) {
 case R.id.ok_button:
 // action if button is the okButton
 break;  

 case R.id.cancel_button:
 // action if button is the cancelButton
 break;
 }
 }
 };

Two Buttons,
Same Callback

Mining Text

• Extracted all labels from all UI elements

• Static analysis includes labels set
dynamically

• Extracted all text from surrounding
screens (activities)

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

Semantic Distance

• Clustering by LDA (as in CHABADA) failed:
Too little text on mobile UIs

• Took us a year to realize that

• Instead, now use semantic distance using
Google Words2Vec

• Words2Vec trained from 100 billion words

Clustering

• Used k-means to cluster all labels into 250
concepts with low semantical distanceTABLE IV

CONCEPTS MINED FROM UI LABELS

abort · about · accept · account · account info · achievement · activate · activation ·
activity · add · add content · add email · add list · add photo · address · admin ·
agree · agreement · album · alert · alphabet · amazon · amount · answer · app ·
apply · appointment · apps · architecture · archive · attach · audio · authenticate ·
authorize · average · baby · back · background · backup · badge · bangalore ·
barbie · barcode · baseball · bath · beauty · bedroom · begin · birth · block ·
bluetooth · board · broadcast · build · business · buy · bypass · cache · calculator ·
calendar · call · calorie · camera · campus · cap · card · cardio · career · celsius ·
challenge · change · chapter · chart · check · checkout · cheer · choose · city ·
claim · clean · clear · click · clock · cloud · code · colombia · come · comment ·
commentary · connect · contact · continue · contribution · coupon · cpu · create ·
create account · credit · credit card · custom · customer · customize · cycle · data ·
day · deal · debug · decline · default · delete · demo · departure · deposit ·
description · desire · destination · detail · device · dictionary · do · download ·
draw · edit · edit account · editor · electron · email · enable · enter · error ·
examination · execute · export · facebook · fax · feedback · fiction · file · fill ·
find · folder · follower · friend · gallery · google play · handoff · health · hello ·
image · import · information · install · instrument · internet · invoice · itinerary ·
jupiter · keyboard · launch · league · license · list · location · log · login · map ·
meal · merge · message · mild · mode · news · next · notification · ok · open ·
order · panorama · password · payment · paypal · people · permission · phone ·
photo · picture · play · please · power usage · premium · prev · price · privacy ·
profile · project · projector power · pushup · quiz · redeem · register · reminder ·
report · reset · retry · roster · rule · save · save account · scan · scanner · search ·
send · setting · share · shopping · show · shutter · skip · sms · space · stay · store ·
submit · subscription · sync · taxi · term · test · theme · ticket · tip · title · twitter ·
unlock · update · upgrade · upload · url · user · vehicle · vehicle · version · view ·
virus · voice · wallpaper · website · weight · workout · zone

produced the aggregated vector by averaging the vectors of
each word included. WORD2VEC can handle these new phrases
pretty well.

We then used soft spherical k-means clustering [8] to cluster
the labels into 250 concepts, listed in Table IV. As examples
of such a concept, Figure 3 shows the word cloud of the
“login” concept, Figure 7 shows the word cloud for the “share”
concept, and Figure 8 for the “shopping” concept.

C. Membership

For each UI element, we now determine its membership—
the proximity pi 2 [0 . . . 1] of its labels to the concept i, where
pi = 1 means a perfect fit into the concept, whereas p = 0
implies no membership. This gives us a membership vector
v = (p1, . . . , p250). We then associate each UI element e with
those concepts i for which the membership is higher than a
threshold of 0.5, i.e., pi > 0.5. Thus, each element e is now
associated with a set of concepts C(e) = {c1, . . . , cn}.

Some UI elements spot labels that would not be associated
with any concept, resulting in C(e) = ;. For these elements,
we repeat the above process mixing the original label vec-
tors with their context. More specifically, we calculate the
membership for each phrase surrounding a UI element and
consider ones with the maximum value. If C(e) is still empty,
we use the three concepts most relevant for the UI element
label instead.

D. In-Concept Outliers

The next two steps combine in-category classification with
overall classification, a two-stage setup first introduced with
the MUDFLOW anomaly detector [5]. For each concept ci, we
determine the set of UI elements E = {e1, . . . en} that are
members of ci, i.e. E =

S250
j=1{e · cj 2 C(e)}. For each UI

?
Button1

✔
Button2

✔

Button

?

... ...

✔

Button1

Button3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

AndroidHttpClient
NetworkInfo
Resources

AndroidHttpClient
SQLiteDatabase
ConnectivityManager

AndroidHttpClient
AccountManager
Resources

AndroidHttpClient

ContextWrapper
ConnectivityManager

lo
gi

n

login

sign in

login

sign up

Fig. 9. Per-concept outlier detection. For each concept such as “Login”,
BACKSTAGE selects UI elements whose labels are related to this concept and
uses their APIs as features. It then takes a new unknown UI element, and
determines its outlier score with respect to the “normal” UI elements. The
higher the score, the less “normal” the app behaves inside the given concept.

element, we identify the set of its associated APIs. For each
API, we use a string composed of class name and method
name as its feature. For ContentResolver and Intent APIs,
we additionally supply the associated URIs. As an example,
consider Figure 4, showing the APIs used in the “Login”
concept.

As illustrated in Figure 9, we then use the ORCA outlier
detector to run an outlier analysis on the set E; by default, we
consider the five nearest neighbors of a sample. To measure the
dissimilarity between samples, BACKSTAGE uses the Jaccard
distance metric, which is well-suited for data with a large
number of binary features.

The resulting distance serves as an outlier score: The higher
the distance of a sample, the less “normal” are its features. We
normalize the outlier score as oi 2 [0 . . . 1]. Each UI element e
is then assigned its outlier score oi, representing how much e
is an outlier in the concept i with respect to its APIs used.

E. Overall Classification

Across all 250 concepts, we aggregate the individual outlier
scores for each UI element, assigning each element e an
outlier vector (“anomaligram”) O = (o1, . . . , o250), with oi
again being the outlier score for concept i. As illustrated in
Figure 10, these vectors are then used to train a 1-class ⌫-
SVM classifier which then can classify a vector (and thus,
its associated UI element) into “likely normal” or “likely
abnormal”.

The result is a fully automatic warning mechanism for
UI elements, which, when triggered, points developers to a
mismatch between UI element labeling and the functionality it
uses. Developers can resolve the mismatch either by adapting
the GUI label (or context) to the functionality, or vice versa.

VII. EVALUATION

Since our analysis uses most widely used apps, with a
high level of maturity, visible GUI errors as those prevented

TABLE IV
CONCEPTS MINED FROM UI LABELS

abort · about · accept · account · account info · achievement · activate · activation ·
activity · add · add content · add email · add list · add photo · address · admin ·
agree · agreement · album · alert · alphabet · amazon · amount · answer · app ·
apply · appointment · apps · architecture · archive · attach · audio · authenticate ·
authorize · average · baby · back · background · backup · badge · bangalore ·
barbie · barcode · baseball · bath · beauty · bedroom · begin · birth · block ·
bluetooth · board · broadcast · build · business · buy · bypass · cache · calculator ·
calendar · call · calorie · camera · campus · cap · card · cardio · career · celsius ·
challenge · change · chapter · chart · check · checkout · cheer · choose · city ·
claim · clean · clear · click · clock · cloud · code · colombia · come · comment ·
commentary · connect · contact · continue · contribution · coupon · cpu · create ·
create account · credit · credit card · custom · customer · customize · cycle · data ·
day · deal · debug · decline · default · delete · demo · departure · deposit ·
description · desire · destination · detail · device · dictionary · do · download ·
draw · edit · edit account · editor · electron · email · enable · enter · error ·
examination · execute · export · facebook · fax · feedback · fiction · file · fill ·
find · folder · follower · friend · gallery · google play · handoff · health · hello ·
image · import · information · install · instrument · internet · invoice · itinerary ·
jupiter · keyboard · launch · league · license · list · location · log · login · map ·
meal · merge · message · mild · mode · news · next · notification · ok · open ·
order · panorama · password · payment · paypal · people · permission · phone ·
photo · picture · play · please · power usage · premium · prev · price · privacy ·
profile · project · projector power · pushup · quiz · redeem · register · reminder ·
report · reset · retry · roster · rule · save · save account · scan · scanner · search ·
send · setting · share · shopping · show · shutter · skip · sms · space · stay · store ·
submit · subscription · sync · taxi · term · test · theme · ticket · tip · title · twitter ·
unlock · update · upgrade · upload · url · user · vehicle · vehicle · version · view ·
virus · voice · wallpaper · website · weight · workout · zone

produced the aggregated vector by averaging the vectors of
each word included. WORD2VEC can handle these new phrases
pretty well.

We then used soft spherical k-means clustering [8] to cluster
the labels into 250 concepts, listed in Table IV. As examples
of such a concept, Figure 3 shows the word cloud of the
“login” concept, Figure 7 shows the word cloud for the “share”
concept, and Figure 8 for the “shopping” concept.

C. Membership

For each UI element, we now determine its membership—
the proximity pi 2 [0 . . . 1] of its labels to the concept i, where
pi = 1 means a perfect fit into the concept, whereas p = 0
implies no membership. This gives us a membership vector
v = (p1, . . . , p250). We then associate each UI element e with
those concepts i for which the membership is higher than a
threshold of 0.5, i.e., pi > 0.5. Thus, each element e is now
associated with a set of concepts C(e) = {c1, . . . , cn}.

Some UI elements spot labels that would not be associated
with any concept, resulting in C(e) = ;. For these elements,
we repeat the above process mixing the original label vec-
tors with their context. More specifically, we calculate the
membership for each phrase surrounding a UI element and
consider ones with the maximum value. If C(e) is still empty,
we use the three concepts most relevant for the UI element
label instead.

D. In-Concept Outliers

The next two steps combine in-category classification with
overall classification, a two-stage setup first introduced with
the MUDFLOW anomaly detector [5]. For each concept ci, we
determine the set of UI elements E = {e1, . . . en} that are
members of ci, i.e. E =

S250
j=1{e · cj 2 C(e)}. For each UI

?
Button1

✔
Button2

✔

Button

?
... ...

✔

Button1

Button3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

AndroidHttpClient
NetworkInfo
Resources

AndroidHttpClient
SQLiteDatabase
ConnectivityManager

AndroidHttpClient
AccountManager
Resources

AndroidHttpClient

ContextWrapper
ConnectivityManager

lo
gi

n

login

sign in

login

sign up

Fig. 9. Per-concept outlier detection. For each concept such as “Login”,
BACKSTAGE selects UI elements whose labels are related to this concept and
uses their APIs as features. It then takes a new unknown UI element, and
determines its outlier score with respect to the “normal” UI elements. The
higher the score, the less “normal” the app behaves inside the given concept.

element, we identify the set of its associated APIs. For each
API, we use a string composed of class name and method
name as its feature. For ContentResolver and Intent APIs,
we additionally supply the associated URIs. As an example,
consider Figure 4, showing the APIs used in the “Login”
concept.

As illustrated in Figure 9, we then use the ORCA outlier
detector to run an outlier analysis on the set E; by default, we
consider the five nearest neighbors of a sample. To measure the
dissimilarity between samples, BACKSTAGE uses the Jaccard
distance metric, which is well-suited for data with a large
number of binary features.

The resulting distance serves as an outlier score: The higher
the distance of a sample, the less “normal” are its features. We
normalize the outlier score as oi 2 [0 . . . 1]. Each UI element e
is then assigned its outlier score oi, representing how much e
is an outlier in the concept i with respect to its APIs used.

E. Overall Classification

Across all 250 concepts, we aggregate the individual outlier
scores for each UI element, assigning each element e an
outlier vector (“anomaligram”) O = (o1, . . . , o250), with oi
again being the outlier score for concept i. As illustrated in
Figure 10, these vectors are then used to train a 1-class ⌫-
SVM classifier which then can classify a vector (and thus,
its associated UI element) into “likely normal” or “likely
abnormal”.

The result is a fully automatic warning mechanism for
UI elements, which, when triggered, points developers to a
mismatch between UI element labeling and the functionality it
uses. Developers can resolve the mismatch either by adapting
the GUI label (or context) to the functionality, or vice versa.

VII. EVALUATION

Since our analysis uses most widely used apps, with a
high level of maturity, visible GUI errors as those prevented

TABLE IV
CONCEPTS MINED FROM UI LABELS

abort · about · accept · account · account info · achievement · activate · activation ·
activity · add · add content · add email · add list · add photo · address · admin ·
agree · agreement · album · alert · alphabet · amazon · amount · answer · app ·
apply · appointment · apps · architecture · archive · attach · audio · authenticate ·
authorize · average · baby · back · background · backup · badge · bangalore ·
barbie · barcode · baseball · bath · beauty · bedroom · begin · birth · block ·
bluetooth · board · broadcast · build · business · buy · bypass · cache · calculator ·
calendar · call · calorie · camera · campus · cap · card · cardio · career · celsius ·
challenge · change · chapter · chart · check · checkout · cheer · choose · city ·
claim · clean · clear · click · clock · cloud · code · colombia · come · comment ·
commentary · connect · contact · continue · contribution · coupon · cpu · create ·
create account · credit · credit card · custom · customer · customize · cycle · data ·
day · deal · debug · decline · default · delete · demo · departure · deposit ·
description · desire · destination · detail · device · dictionary · do · download ·
draw · edit · edit account · editor · electron · email · enable · enter · error ·
examination · execute · export · facebook · fax · feedback · fiction · file · fill ·
find · folder · follower · friend · gallery · google play · handoff · health · hello ·
image · import · information · install · instrument · internet · invoice · itinerary ·
jupiter · keyboard · launch · league · license · list · location · log · login · map ·
meal · merge · message · mild · mode · news · next · notification · ok · open ·
order · panorama · password · payment · paypal · people · permission · phone ·
photo · picture · play · please · power usage · premium · prev · price · privacy ·
profile · project · projector power · pushup · quiz · redeem · register · reminder ·
report · reset · retry · roster · rule · save · save account · scan · scanner · search ·
send · setting · share · shopping · show · shutter · skip · sms · space · stay · store ·
submit · subscription · sync · taxi · term · test · theme · ticket · tip · title · twitter ·
unlock · update · upgrade · upload · url · user · vehicle · vehicle · version · view ·
virus · voice · wallpaper · website · weight · workout · zone

produced the aggregated vector by averaging the vectors of
each word included. WORD2VEC can handle these new phrases
pretty well.

We then used soft spherical k-means clustering [8] to cluster
the labels into 250 concepts, listed in Table IV. As examples
of such a concept, Figure 3 shows the word cloud of the
“login” concept, Figure 7 shows the word cloud for the “share”
concept, and Figure 8 for the “shopping” concept.

C. Membership

For each UI element, we now determine its membership—
the proximity pi 2 [0 . . . 1] of its labels to the concept i, where
pi = 1 means a perfect fit into the concept, whereas p = 0
implies no membership. This gives us a membership vector
v = (p1, . . . , p250). We then associate each UI element e with
those concepts i for which the membership is higher than a
threshold of 0.5, i.e., pi > 0.5. Thus, each element e is now
associated with a set of concepts C(e) = {c1, . . . , cn}.

Some UI elements spot labels that would not be associated
with any concept, resulting in C(e) = ;. For these elements,
we repeat the above process mixing the original label vec-
tors with their context. More specifically, we calculate the
membership for each phrase surrounding a UI element and
consider ones with the maximum value. If C(e) is still empty,
we use the three concepts most relevant for the UI element
label instead.

D. In-Concept Outliers

The next two steps combine in-category classification with
overall classification, a two-stage setup first introduced with
the MUDFLOW anomaly detector [5]. For each concept ci, we
determine the set of UI elements E = {e1, . . . en} that are
members of ci, i.e. E =

S250
j=1{e · cj 2 C(e)}. For each UI

?
Button1

✔
Button2

✔

Button

?
... ...

✔

Button1

Button3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

AndroidHttpClient
NetworkInfo
Resources

AndroidHttpClient
SQLiteDatabase
ConnectivityManager

AndroidHttpClient
AccountManager
Resources

AndroidHttpClient

ContextWrapper
ConnectivityManager

lo
gi

n

login

sign in

login

sign up

Fig. 9. Per-concept outlier detection. For each concept such as “Login”,
BACKSTAGE selects UI elements whose labels are related to this concept and
uses their APIs as features. It then takes a new unknown UI element, and
determines its outlier score with respect to the “normal” UI elements. The
higher the score, the less “normal” the app behaves inside the given concept.

element, we identify the set of its associated APIs. For each
API, we use a string composed of class name and method
name as its feature. For ContentResolver and Intent APIs,
we additionally supply the associated URIs. As an example,
consider Figure 4, showing the APIs used in the “Login”
concept.

As illustrated in Figure 9, we then use the ORCA outlier
detector to run an outlier analysis on the set E; by default, we
consider the five nearest neighbors of a sample. To measure the
dissimilarity between samples, BACKSTAGE uses the Jaccard
distance metric, which is well-suited for data with a large
number of binary features.

The resulting distance serves as an outlier score: The higher
the distance of a sample, the less “normal” are its features. We
normalize the outlier score as oi 2 [0 . . . 1]. Each UI element e
is then assigned its outlier score oi, representing how much e
is an outlier in the concept i with respect to its APIs used.

E. Overall Classification

Across all 250 concepts, we aggregate the individual outlier
scores for each UI element, assigning each element e an
outlier vector (“anomaligram”) O = (o1, . . . , o250), with oi
again being the outlier score for concept i. As illustrated in
Figure 10, these vectors are then used to train a 1-class ⌫-
SVM classifier which then can classify a vector (and thus,
its associated UI element) into “likely normal” or “likely
abnormal”.

The result is a fully automatic warning mechanism for
UI elements, which, when triggered, points developers to a
mismatch between UI element labeling and the functionality it
uses. Developers can resolve the mismatch either by adapting
the GUI label (or context) to the functionality, or vice versa.

VII. EVALUATION

Since our analysis uses most widely used apps, with a
high level of maturity, visible GUI errors as those prevented

Share

Shopping

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage

Classifying per Context

?
Button1

✔
Button2

✔

Button

?

... ...
✔

Button1

Button3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

AndroidHttpClient
NetworkInfo
Resources

AndroidHttpClient
SQLiteDatabase
ConnectivityManager

AndroidHttpClient
AccountManager
Resources

AndroidHttpClient

ContextWrapper
ConnectivityManager

lo
gi

n

login

sign in

login

sign up

Overall Anomalies

Button1

✔
Button2

✔

Button

??

... ...

✔

Button1

Button3

ClassifyingTraining

Classifier
✔ ✘

Button

✘

ab
or

t

ab
ou

t
ac

ce
pt

ac
co

un
t

ac
co

un
t i

nf
o

ac
hi

ev
em

en
t

ac
tiv

at
e

... zo
ne

...

...

...

Outliers

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

JOIN TRIPWOLF
JOIN TRIPWOLF

Handler	
Bundle	
startActivity

TelephonyManager	
Handler	
Bundle	
startActivity	
SharedPreferences

EditText

startActivity	
LocationManager

EditText	
Uri

startActivity

✔ ✘

Evaluation

How well does Backstage 
discover UI anomalies?

“Label replace”
mutation:
assign a GUI element
a different label –
e.g. “Guides” is
replaced by “Open”
or “Print”

“Label crossover”
mutation:
swap labels of
two GUI elements –
e.g. “Welcome”
gets “Special
Offers” label
and vice versa

Results
TABLE V

BACKSTAGE ACCURACY FOR “RANDOM” LABEL REPLACE MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 75%
Mutant TP = 3369 FN = 1630 4999 Recall = 67%
Correct FP = 1100 TN = 4056 5156 Accuracy = 73%
Total 4469 5686 10155 Specificity = 79%

TABLE VI
ACCURACY FOR “HIGH DISTANCE” LABEL REPLACE MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 76%
Mutant TP = 3528 FN = 1471 4999 Recall = 71%
Correct FP = 1096 TN = 4060 5156 Accuracy = 75%
Total 4624 5531 10155 Specificity = 79%

results in a recall rate of 3369/4999 = 67%. As expected, high
distance mutations (Table VI) have an even higher chance
(71%) of being detected. Even if the programmer confuses
two buttons (Table VII), BACKSTAGE detects every second
such mistake. All these results should be interpreted from the
standpoint that to the best of our knowledge, there is no other
approach which would detect such mismatches.

A high recall means little, though, if the precision is low;
that is, if the UI elements reported by BACKSTAGE contain
many false positives. For “random” mutations (Table V),
the precision is 75%, meaning that three out of four UI
elements reported will actually be abnormal; high distance
mutations fare even slightly better, with 76%. For “crossover”
mutations (Table VII), BACKSTAGE still has a precision of 69%;
a bit more than two out of three UI elements reported will
be true anomalies. This high precision makes BACKSTAGE a
practical tool. As shown in Figure 12, one can trade an even
higher precision for lower recall and vice versa by choosing
alternative anomaly thresholds.

So what are the limitations of BACKSTAGE at this point?
Obviously, the semantic distance between the given and the
correct label is crucial. If this distance is high, as indicated
by our “high distance” mutations, BACKSTAGE can easily find
them. But if this distance is low, BACKSTAGE fails. Errors
that BACKSTAGE misses typically would be semantically close
to each other and not differ in the APIs used—for instance,
“Search with Google” and “Search with Bing” will use the
same APIs, namely interacting with a remote server. If the
labels are semantically almost equivalent, as in “Stop” vs
“Abort” vs “Cancel”, BACKSTAGE will have a hard time differ-
entiating them, just as humans will.

D. Threats to Validity

As any empirical study, our evaluation is subject to multiple
threats to validity. In terms of external validity, the biggest
threat is our mutation model, which may or may not be
representative for real programming errors, as far as GUIs are
concerned. We are not aware of a comprehensive source for
this kind of data, and thus must speculate.

In terms of construct validity, there are several parts of
our analysis that induce noise. Our static analysis may over-

TABLE VII
BACKSTAGE ACCURACY FOR CROSSOVER LABEL MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 69%
Mutant TP = 2290 FN = 2475 4765 Recall = 48%
Correct FP = 1026 TN = 4121 5147 Accuracy = 65%
Total 3316 6596 9912 Specificity = 80%

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

Fig. 12. Precision vs. recall curves for “random” (left), “high distance”
(middle), and “crossover” (right) mutation types

approximate and report APIs to be part of the callback that
cannot be reached in actual executions. Likewise, our anomaly
detection model may overgeneralize, and thus come to false
conclusions; this is what our mutation model addresses, using
standard measures such as precision and recall.

VIII. RELATED WORK

Our work is related to three central strands of work, and in
each, there is one paper that stands out by having very much
inspired and influenced this work. In detail:
Detecting UI anomalies. ASDROID [11] by Huang et al. is

the first work to explicitly analyze mismatches between
user interfaces and program behavior. Its general setting
is similar to BACKSTAGE, in the sense that it maps UI
elements to invoked functions, and checks labels as well
as APIs invoked. However, it only checks for a small
set of fixed scenarios, such as sending text messages or
making phone calls in the background, both in terms of
labels analyzed as well as in the set of invoked APIs.
This is because ASDROID focuses on stealthy (malicious)
behavior only.
BACKSTAGE can be seen as a generalization of ASDROID.
By mining thousands of UI elements, BACKSTAGE can
detect arbitrary mismatches between user interfaces and
associated behavior. Such mismatches include stealthy
behavior as detected by ASDROID: On mature apps with
well-tested user interfaces, most anomalies found by
BACKSTAGE would show stealthy behavior, as this would
not be found during GUI testing. However, such mis-
matches also include misleading button labels, wrong API
associations and more; and all these would be discovered
by BACKSTAGE only.

Mining apps. The CHABADA [7] work by Gorla et al. was
the first work to explicitly detect arbitrary mismatches
between app descriptions and app behavior. The key idea
of CHABADA, mining app stores to analyze and classify
thousands of apps has since fueled a new research field,
namely app mining [1].

TABLE V
BACKSTAGE ACCURACY FOR “RANDOM” LABEL REPLACE MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 75%
Mutant TP = 3369 FN = 1630 4999 Recall = 67%
Correct FP = 1100 TN = 4056 5156 Accuracy = 73%
Total 4469 5686 10155 Specificity = 79%

TABLE VI
ACCURACY FOR “HIGH DISTANCE” LABEL REPLACE MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 76%
Mutant TP = 3528 FN = 1471 4999 Recall = 71%
Correct FP = 1096 TN = 4060 5156 Accuracy = 75%
Total 4624 5531 10155 Specificity = 79%

results in a recall rate of 3369/4999 = 67%. As expected, high
distance mutations (Table VI) have an even higher chance
(71%) of being detected. Even if the programmer confuses
two buttons (Table VII), BACKSTAGE detects every second
such mistake. All these results should be interpreted from the
standpoint that to the best of our knowledge, there is no other
approach which would detect such mismatches.

A high recall means little, though, if the precision is low;
that is, if the UI elements reported by BACKSTAGE contain
many false positives. For “random” mutations (Table V),
the precision is 75%, meaning that three out of four UI
elements reported will actually be abnormal; high distance
mutations fare even slightly better, with 76%. For “crossover”
mutations (Table VII), BACKSTAGE still has a precision of 69%;
a bit more than two out of three UI elements reported will
be true anomalies. This high precision makes BACKSTAGE a
practical tool. As shown in Figure 12, one can trade an even
higher precision for lower recall and vice versa by choosing
alternative anomaly thresholds.

So what are the limitations of BACKSTAGE at this point?
Obviously, the semantic distance between the given and the
correct label is crucial. If this distance is high, as indicated
by our “high distance” mutations, BACKSTAGE can easily find
them. But if this distance is low, BACKSTAGE fails. Errors
that BACKSTAGE misses typically would be semantically close
to each other and not differ in the APIs used—for instance,
“Search with Google” and “Search with Bing” will use the
same APIs, namely interacting with a remote server. If the
labels are semantically almost equivalent, as in “Stop” vs
“Abort” vs “Cancel”, BACKSTAGE will have a hard time differ-
entiating them, just as humans will.

D. Threats to Validity

As any empirical study, our evaluation is subject to multiple
threats to validity. In terms of external validity, the biggest
threat is our mutation model, which may or may not be
representative for real programming errors, as far as GUIs are
concerned. We are not aware of a comprehensive source for
this kind of data, and thus must speculate.

In terms of construct validity, there are several parts of
our analysis that induce noise. Our static analysis may over-

TABLE VII
BACKSTAGE ACCURACY FOR CROSSOVER LABEL MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 69%
Mutant TP = 2290 FN = 2475 4765 Recall = 48%
Correct FP = 1026 TN = 4121 5147 Accuracy = 65%
Total 3316 6596 9912 Specificity = 80%

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec
is
io
n

Fig. 12. Precision vs. recall curves for “random” (left), “high distance”
(middle), and “crossover” (right) mutation types

approximate and report APIs to be part of the callback that
cannot be reached in actual executions. Likewise, our anomaly
detection model may overgeneralize, and thus come to false
conclusions; this is what our mutation model addresses, using
standard measures such as precision and recall.

VIII. RELATED WORK

Our work is related to three central strands of work, and in
each, there is one paper that stands out by having very much
inspired and influenced this work. In detail:
Detecting UI anomalies. ASDROID [11] by Huang et al. is

the first work to explicitly analyze mismatches between
user interfaces and program behavior. Its general setting
is similar to BACKSTAGE, in the sense that it maps UI
elements to invoked functions, and checks labels as well
as APIs invoked. However, it only checks for a small
set of fixed scenarios, such as sending text messages or
making phone calls in the background, both in terms of
labels analyzed as well as in the set of invoked APIs.
This is because ASDROID focuses on stealthy (malicious)
behavior only.
BACKSTAGE can be seen as a generalization of ASDROID.
By mining thousands of UI elements, BACKSTAGE can
detect arbitrary mismatches between user interfaces and
associated behavior. Such mismatches include stealthy
behavior as detected by ASDROID: On mature apps with
well-tested user interfaces, most anomalies found by
BACKSTAGE would show stealthy behavior, as this would
not be found during GUI testing. However, such mis-
matches also include misleading button labels, wrong API
associations and more; and all these would be discovered
by BACKSTAGE only.

Mining apps. The CHABADA [7] work by Gorla et al. was
the first work to explicitly detect arbitrary mismatches
between app descriptions and app behavior. The key idea
of CHABADA, mining app stores to analyze and classify
thousands of apps has since fueled a new research field,
namely app mining [1].

Label Replace Mutations

Label Crossover Mutations

Figures

• Backstage detects abnormal UI elements
with an accuracy of 73–75%

• First machine learning approach
to detect UI anomalies

• Mined 87,100 UI Elements in 12,000 apps

• 5 GB data set publicly available,  
with UI elements, labels, context, APIs…

App Mining

• For 100,000s of apps:

• Gather descriptions

• Gather metadata

• Gather code and UI features

• Find what is common 
and what is uncommon

Mining Apps 
for Anomalies

Andreas Zeller
Saarland University, Saarbrücken, Germany

Joint work with Alessandra Gorla, Ilaria Tavecchia, Vitalii Avdiienko, 
Konstantin Kuznetsov, and Florian Gross

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

"E-Mail""Join Tripwolf"

"Already have an account?"

startActivity

startActivity

1. App Collection 2. Mining GUI Elements 3. Context and APIs 4. Cluster Analysis

"Sign up" cluster

REGISTER

SIGN UP

JOIN TRIPWOLF

JOIN TRIPWOLF

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

LocationManager

JOIN TRIPWOLF

startActivity

LocationManager

5. Outlier Detection

Backstage App Mining

• For 100,000s of apps:

• Gather descriptions

• Gather metadata

• Gather code and UI features

• Find what is common 
and what is uncommon

http://www.st.cs.uni-saarland.de/appmining/

http://www.st.cs.uni-saarland.de/appmining/

