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Abstract—When interacting with user interfaces, do users
always get what they expect? For each user interface element
in thousands of Android apps, we extracted the Android APIs
they invoke as well as the text shown on their screen. This
association allows us to detect outliers: User interface elements
whose text, context or icon suggests one action, but which actually
are tied to other actions. In our evaluation of tens of thousands
of UI elements, our BACKSTAGE prototype discovered misleading
random UI elements with an accuracy of 73%.

I. INTRODUCTION

One of the central principles in user interface design is
the principle of least astonishment—that is, a user interface
element should behave in a manner consistent with how its
users expect it to behave. Such user expectations typically stem
from similar programs which users are familiar with: If a UI
element says “Print”, “Save”, “OK”, “Close”, or “Cancel”, our
experience with other programs using these labels gives us an
idea of what to expect; and if the result does not match our
expectation, we see this as a problem.

The possibly most dangerous mismatches, however, are
those we do not even notice. Figure 1 shows the signup screen
of TRIPWOLF, a popular travel guide app. To use its services,
one has to sign up with a social network account or an e-mail
address, clicking on “Join TRIPWOLF”. The interesting thing
about this Signup button is that it not only sends the e-mail
address, but also the precise user location to the TRIPWOLF
servers, using the LocationManager API. This is a problem,
since Signup buttons normally is not supposed to send out
our current location—and thus, this button shows a mismatch
between user expectation and actual behavior.

In this paper, we check the advertised functionality of UI
elements against their implemented functionality: “This Signup
button should not send a location, but it does”. The idea is to
mine app stores – containing hundreds of thousands of apps
with graphical user interfaces – and model users’ expectations
with respect to a particular UI element. The expected behavior
results from similar UI elements in other apps.

Our approach consists of five steps, summarized in Figure 2:
App Collection We start with a collection of thousands of

ANDROID apps, all taken from the Google Play Store by
using the ANDROZOO [3] dataset.

Mining UI elements. We statically analyze the code and re-
sources of each app to identify its set of UI elements,
including those that would be set or changed dynamically.
UI elements include text input, buttons, and more.
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Fig. 1. For each UI element, BACKSTAGE determines the APIs it triggers,
and checks for anomalies: The TRIPWOLF Signup button sends the current
location to TRIPWOLF servers.

Context and APIs. For each UI element, we extract its as-
sociated text—both labels shown on the element it-
self, context from the surrounding screen, as well
as the APIs that would be triggered by the UI
element. In our example, “Join TRIPWOLF” uses
LocationManager.getLastKnownLocation() to retrieve the
precise current location, and startActivity to switch to the
next input screen.

Cluster Analysis. From associated text of all UI elements,
we clustered their verbs and nouns into 250 concepts—
clusters of words with a minimal semantical distance
using a WORD2VEC model [13]. For each UI element,
we determine the distance between its text and the
concepts. A button named “Share”, for instance, would be
semantically close to the concepts of “friend” (to share)
and “finances” (a share). Figure 3 shows the label of all
UI elements that form the “Signup” concept.
For each button, we also extract the APIs used. Figure 4
shows the ANDROID packages used by Signup buttons.
The “normal” behavior of a Signup function is to access
the network via android.net or org.apache.http. Several
signup functions also access android.telephony to access
the country code of either the current network or the
inserted SIM card. The android.location package also is
frequently used—but only to access the current local time.
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Fig. 2. How BACKSTAGE works. For each ANDROID app in a collection (Step 1), BACKSTAGE statically analyzes app code and GUI descriptions to extract
UI elements (Step 2). For each UI element, it identifies its textual description and context on the screen, as well as the APIs that it triggers (Step 3). Across
all apps, BACKSTAGE then clusters UI elements with semantically related descriptions APIs (Step 4) and detects outliers (Step 5)—such as the Signup button
from Figure 1 that sends out the current location.

Fig. 3. Labels of semantically related UI elements, forming a “Login”
concept. Based on its label and its context on the screen, the “Join TRIPWOLF”
Signup button is associated with this concept.

Fig. 4. The ANDROID API packages used by the functions triggered by the UI
elements in Figure 3. “Normal” functions of login buttons include accessing
the Internet and switching to a new screen.

Outlier Detection. For each concept, we use outlier detection
to identify those UI elements that invoke uncommon APIs,
indicating differing (and possibly unexpected) behavior.
Accessing the current precise location is rarely used in the
Signup cluster—and thus, the TRIPWOLF Signup button is
flagged as an anomaly.

The BACKSTAGE approach is in no way restricted to security
and privacy issues; instead, it generalizes to arbitrary mis-
matches between what a UI element shows and what it actually
does. The BACKSTAGE approach thus also can catch simple
GUI programming mistakes: If, for instance, a programmer
included a button named “Signup” that always stays on the

same screen, or sends a text message, or prints a file, this
error could also be caught by BACKSTAGE. Even translation
issues stemming from automatic app conversion mistakes can
be detected.

BACKSTAGE extends the state of the art with two important
contributions:

1) In contrast to other work leveraging app collections to
detect general mismatches between advertised and imple-
mented behavior, BACKSTAGE detects anomalies at the GUI
level rather than the app level. CHABADA [7] or similar
approaches [17], [18], for instance, would characterize
TRIPWOLF as perfectly normal, because as a travel app,
it would be expected to access the current location. The
fact that the location is already accessed while signing
up is only detected by BACKSTAGE.

2) In contrast to existing work checking for mismatches
at the GUI level, BACKSTAGE is not restricted towards
stealthy behavior or privacy issues; instead, it provides a
general means to detect mismatches between advertised
and implemented behavior at the GUI level. The ASDROID
approach [11], for instance, would not catch the TRIP-
WOLF issue, as it is neither set up for sign up processes
nor location leaks nor general GUI programming mistakes.

Further contributions of the present paper include our dis-
covery of UI elements and associated text, taking into account
GUI resource files as well as the dynamic reassignment of
properties of UI elements (Section II); text extraction for UI
elements including context on the same screen (Section III);
deep analysis of callbacks, extracting APIs and intent types
(Section IV; descriptive statistics of UI element and API usage
(Section V); and finally outlier detection (Section VI) and
its evaluation (Section VII) introducing UI mutation analysis.
The relationship to existing work is detailed in Section VIII.
Section IX closes with conclusion and future work.

II. MINING UI ELEMENTS

To detect mismatches between the advertised functionality
of GUI elements against their implemented functionality, BACK-
STAGE has to analyze applications following three main steps:



1) identify UI elements and extract their text labels, 2) collect
the relevant text around each UI element to better define its
semantic given the context, and 3) identify the behavior that
each UI element would trigger.

As easy as it may initially seem, implementing a sound
technique to analyze the Android UI is not trivial, given the
complexity of the Android GUI [20].

We now provide some background knowledge on the An-
droid GUI, i.e. how to declare elements and how they can be
arranged in the layout. We then proceed with explaining how
we extract the information that BACKSTAGE needs.

A. Android Activities and their Layout

In the Android framework, an activity is a single screen
containing several UI elements, such as buttons and text
fields, organized in a hierarchy. Each app can, and typically
does, contain multiple activities. The layout of the activity
is usually declared in an XML file named layout.xml.
Different files and names can be used though, as developers
can bind an activity to the layout XML file thanks to the
android.app.Activity:setContentView(layoutFileId)
method. Refer to Listing 1 for an example of a layout file.

1 <?xml version="1.0" encoding="utf−8"?>
2 <LinearLayout android:layout_width="fill_parent"
3 android:layout_height="fill_parent">
4 <fragment android:id="@+id/fragment"
5 class="uinomaly.fragmentclass".../>
6 <Button android:id="@+id/buttonOK"
7 android:text="@string/buttonOK"
8 android:onClick="xmlDefinedOnClick"
9 style="@style/okButtonStyle"/>

10 <ImageButton android:id="@+id/imageButtonPrint" ...
11 android:src="@drawable/print_button"
12 android:contentDescription="@string/printText" />
13 </LinearLayout>

Listing 1. A Sample Activity layout declared in a XML file.

Besides using XML files, developers can create the entire
activity layout dynamically in the app code. This strategy
is rarely used, since it is error-prone and makes the main-
tenance of the GUI harder. Given their little prevalence, entire
dynamically generated screen layouts are out of the scope of
BACKSTAGE for now.

B. Dealing with Layout Reuse and Complex Elements

A layout can be entirely or partially reused in different
activities in multiple ways:
<include> and <merge> XML tags. Developers can include

other XML files by means of the <include> tag. To do this
they simply have to specify the file Id such as <include
layout="@layout/reusableLayout"/>. Developers can
also use the <merge> tag to achieve the same purpose,
with the advantage of eliminating redundant hierarchical
elements.

Inflate layouts programmatically. LayoutInflater instan-
tiates the corresponding layout file into a View object.

The View object can later be added to the layout of the
activity.

Fragments. Fragments are, in essence, modular sections of
an activity. There are two different ways to include a
fragment into an activity:

1) Declare it in the layout file of the activity directly (see
lines 5–11 in Listing 1 for an example).

2) Dynamically create the fragment in the activity code
by means of the FragmentManager class.

BACKSTAGE handles all these forms of layout reuse.
Additional challenges in the analysis of the GUI comes

from dealing with complex elements such as menus, and the
ANDROID framework provides several of them:
Option Menus. Option menus are placed at the top right

corner on a screen. They usually give access to func-
tionalities that are relevant for the application regard-
less of the context (e.g. the Settings button). Option
menu items can be easily created by implementing the
onCreateOptionsMenu method of the activity.

Contextual Menus. Contextual menus appear when the user
presses a UI element with a long-click. They can
display further actions for a specific element espe-
cially inside a ListView. They are created by im-
plementing the onCreateContextMenu method, and
they can be bound to UI elements by means of
registerForContextMenu(elementId).

Navigation-Drop-Down Menus. Navigation-drop-down
menus are used for a quick and easy navigation through
the whole application and can be identified through a
small triangle in the lower right corner of the showed text.
The menu items are specified through an implementation
of an adapter with the according array of strings.
To create such menus, the developer can invoke the
setListNavigationCallbacks(adapter,navListener)
method on an ActionBar instance. Even if this menu
was deprecated in the Android API level 21, BACKSTAGE
can still detect it, since it aims to also support apps
written for old ANDROID versions.

Drawer Layouts. Drawers are panels that can be opened with
a swipe from the outer vertical side of the screen to the
middle. A drawer can be created with a DrawerLayout
tag in the XML layout file.

Tab Views. Tab views are created dynamically via
actionBar.newTab(), and can later be added to
an action bar. Each tab view is represented by a
fragment.

III. EXTRACTING TEXT LABELS FROM UI ELEMENTS

In the previous section, we gave an overview of how
activities work and how they can declare different UI elements.
The goal of BACKSTAGE is to extract, for each UI element in
the app, the text on its label.

There are several ways in Android to define the text of UI
elements:
Label assignment in layout files. Developers can define the

label of UI elements in the XML layout file by using the



TABLE I
A SET OF ATTRIBUTES RESPONSIBLE FOR BINDING TEXT TO UI ELEMENTS

android:text android:title android:textOn
android:hint android:contentDescription android:textOff
android:label

TABLE II
A SET OF ATTRIBUTES RESPONSIBLE FOR BINDING ICONS TO UI

ELEMENTS

android:background android:drawableRight android:drawableTop
android:src android:drawableLeft android:drawableBottom
android:drawableEnd android:drawableStart

android:text attribute. Refer to line 13 in Listing 1 for
an example. The text can be defined either by using the
reference to the app’s resources with the "@string/"
prefix or directly by providing the string that will be
displayed. Even if the second option is deprecated, since
it introduces localization problems, BACKSTAGE supports
it. There are more attributes that can be used to set a
label for a UI element (refer to Table I), and BACKSTAGE
supports all of them.

Label assignment in Java code. As discussed in
Section II-B, layout templates can be reused across
different activities. However, the text of the UI elements
in such layouts usually differs depending on the
context (i.e. activity). Therefore, developers usually
assign a textual label to such UI elements in the code
depending on the activity. View:setText(resourceId)
and View:setText(text) allow to redefine labels for
UI elements. Refer to Listing 2, lines 4 and 6 for an
example.

Label assignment in style files. Developers can assign la-
bels to UI elements using the styles.xml file. This option
is typically used when the text of UI labels changes
depending on the style. Developers can specify labels
of UI elements by creating an <item> with the attribute
name="android:text". Refer to Listing 1, line 15 as an
example.

Beside all the aforementioned cases, which BACKSTAGE fully
supports, our prototype deals with string concatenation by
analyzing StringBuilder instances. Moreover, it performs a
backward analysis from the setText method parameter if the
relevant string is not specified there directly, but rather stored
in some variables in other parts of the code.

A. Dealing with Icons

Icons are prevalent in GUIs, as they can represent the
semantic of UI elements in an intuitive way. A camera icon,
for instance, can be easily interpreted by a user as a button to
take pictures. Icons are extensively used in mobile GUIs also
because they are more space efficient than text.

A sample use of icons for UI elements is reported in
Listing 1, where the print_button icon is bound to the
ImageButton element. The full list of attributes responsible
for binding icons to UI elements is presented in Table II.

TABLE III
A SET OF STANDARD CALLBACKS IN ANDROID

afterTextChanged onTextChanged onKey
onEditorAction onClick onDrag
onHover onLongClick onChronometerClick
onKeyboadDismiss onItemClick onItemLongClick
onItemSelected onNothingSelected onScroll
... (42 more) ...

Given their prevalence, BACKSTAGE analyzes icons as well;
actually, UI elements with icons make 22% of our whole
dataset. BACKSTAGE handles icons by extracting relevant text
to describe them. Icons, in fact, should also come with an
alternative text, which can be read out loud to the user by
a speech-based accessibility service. Developers can specify
such alternative text in the android:contentDescription
attribute of the UI element (refer to Line 12 in Listing 1).
This information is what BACKSTAGE extracts and uses for UI
elements that use icons instead of text labels.

B. Extracting Context of Text Labels

Well-designed applications usually have semantically mean-
ingful text labels to improve the application usability. For
example, a label “Send SMS” on a button would make it clear
that the user would send an SMS message by clicking that
button. However, most of the times text labels are generic in
their semantic, and can only be correctly interpreted given their
context. This is the case, for instance, of labels such as “OK”
or “Yes”, which are highly prevalent. The expected behavior
for clicking an “OK” button is to confirm an operation that
has been mentioned earlier or is described somewhere else in
the GUI. As a consequence, together with the text label for a UI
element, BACKSTAGE collects all the surrounding text, which
we interpret as relevant context to understand the semantic of
the label itself. More precisely, for each UI element we collect
all the text that the activity containing the element displays.

IV. MAPPING AND ANALYZING CALLBACKS

BACKSTAGE characterizes each UI element, represented by
the text label and its surrounding text, with the behavior that it
would trigger at runtime. As a proxy to represent the behavior,
it uses the set of the Android API invocations that are reachable,
and therefore can be executed. As a preliminary step, though,
it needs to identify the callbacks, since these are the entry
points of the analysis. A callback is a special function that is
bound to a particular event on a UI element that triggers its
execution. The most well-known example of callback is the
onClick function, which gets executed when the user clicks
on some UI element on a screen.

There are dozens of predefined UI callbacks available in
Android, but developers can also implement their own custom
callbacks and bind them to any UI element. In this paper,
however, we deal only with the predefined set of Android
callbacks, which we report in Table III.



A. Detecting Callbacks of UI Elements

Developers can declare a callback for a UI element either
statically in a layout file or dynamically in the app code.
Defining callbacks in a layout file. The most straightfor-

ward way to define callbacks is to directly declare them
in the layout XML file together with the corresponding
UI element. Refer to Listing 1, Line 14 for an example.
However, only onClick callbacks can be defined this way.

Defining callbacks in code. This is common practice when
UI elements are reused in different parts of the appli-
cation. Developers can redefine onClick callbacks of UI
elements by using the setOnClickListener method. Refer
to Listing 2, Line 8 for an example. The same applies for
all callbacks listed in Table III.

Similarly to Section III, UI elements on reusable layouts can
have different callbacks depending on the context. To track the
context of the callback, we keep track of the class name that
declares it. Context is very important for binding APIs to their
corresponding text for UI elements in reusable layouts.

B. Analyzing Callbacks

BACKSTAGE employs a static analysis built on top of the
SOOT framework to map callbacks to APIs [19]. The analysis
works along the following steps:

1) BACKSTAGE identifies callbacks from the UI analysis phase
as discussed in Section IV-B, and sets them as entry
points for the call graph construction.

2) It builds the call graph thanks to the Rapid Type Analysis
algorithm (RTA), which limits the over-approximation by
identifying those classes in the program that are possibly
instantiated [6].

3) For each callback it collects all the reachable Android API

invocations in the transitive closure of its call graph.
As discussed in Section IV-A, callbacks can be assigned to

UI elements directly in the code. Beside the simple case when
a single callback is bound to a single button, there are cases
when one callback is bound to multiple buttons. Consider, as
an example, the code in Listing 2 where the same myClick
callback is assigned to both okButton and cancelButton.
This example shows that to precisely assign API invocations
to the right button the analysis should be context-sensitive,
i.e. it should be able to correctly bind the okButton to the
branch at Line 16 and the cancelButton to the one at Line 19
respectively.

Our BACKSTAGE prototype implements a static context-
sensitive analysis that correctly handles such cases for buttons,
alert dialogs, and menu items.

The code included in apk files often includes libraries. As
a consequence, many API invocations that BACKSTAGE would
identify with its analysis belong to third party libraries. Our
initial manual evaluation of the analysis results showed that
many of these library invocations are infeasible in practice.
This is due to the over-approximation of static analysis. To
reduce this problem, we decided to limit the analysis only on
the application code, thus excluding libraries from the analysis.

1 @Override
2 protected void onCreate(Bundle savedInstanceState) {
3 Button okButton = (Button) findViewById(R.id.ok_button);
4 okButton.setText(R.string.okButton);
5 Button cancelButton = (Button) findViewById(R.id.cancel_button);
6 cancelButton.setText(R.string.cancelButton);
7 okButton.setOnClickListener(myClick);
8 cancelButton.setOnClickListener(myClick);
9 }

10
11 View.OnClickListener myClick = new View.OnClickListener() {
12 public void onClick(View v) {
13 switch (v.getId()) {
14 case R.id.ok_button:
15 //action if button is the okButton
16 break;
17 case R.id.cancel_button:
18 //action if button is the cancelButton
19 break;
20 }
21 }
22 };

Listing 2. An example of assigning the same callback to multiple buttons
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Fig. 5. Distribution of extracted UI elements

To achieve this goal, we filter classes based on their package
name. Thus, for instance, when analyzing the Twitter app, we
would focus only on classes belonging to the com.twitter
package.

Furthermore, we also included a parameter to limit the depth
of the call graph analysis starting from entry points. In fact,
the farthest the code is from the entry points, the more likely it
contains infeasible invocations. The default settings, which are
what we used in our experiments, consider only invocations
to the Android API that are in methods with a maximum depth
of five calls from the corresponding callback.

V. THE ANDROID APPS DATASET AND ITS UI ELEMENTS

BACKSTAGE needs a large number of apps in order to point
out relevant outliers. To this end, we created a large dataset
that includes the top 600 Android apps in each category of the
Google Play Store as displayed in the US in July 2016. We
chose the US market in order to maximize the number of apps
using English as the main language. Instead of crawling the
Google Play store to download the app APKs, we retrieved
them from ANDROZOO [3].
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As a result of this step we collected 12,000 apps, which is
less than one would originally expect. This is because either
Google Play lists less than 600 top apps for some categories,
or because ANDROZOO did not have the desired APK.

Given that BACKSTAGE works on detecting anomalies in the
graphical user interface, we filtered out those apps with little
to no GUI and those apps whose UI is mainly made of drawings
on canvases (e.g. interactive games). As a heuristic to filter out
the apps we could not analyze, we computed the ratio between
the number of layout files and the number of activities in an
app. We ignored those apps that had a ratio lower than 70%.
The intuition behind this heuristic is that there is usually one
layout file for each activity. When this is not the case, it means
that the activity does not have a UI that can be analyzed with
our approach (i.e. there are no labels with text, buttons, etc.).
This heuristic, in essence led us to ignore all apps listed in the
GAMES, ANDROID_WEAR, COMICS, and APP_WIDGET categories.
Using this filtering heuristic allowed us to remove from our
dataset those apps that are out of the scope of this work.

Moreover, given that BACKSTAGE semantically groups sim-
ilar text labels, it needs to work on a dataset made of a
single language. We chose English for its prevalence, and we
relied on LangDetect [15] to detect the language of the GUI
text. Similarly to the previous heuristic, we removed from our
dataset those apps that had less than 70% of the resources in
English. 203 apps were removed in this step.

We analyzed the remaining apps, giving a time budget of
two hours for each app, and killing the process afterwards. We
could not analyze 356 apps due to this timeout, and we thus
removed them from the dataset too.

Despite these filtering processes, our dataset remains signif-
icantly large: We analyzed a total of 87,100 UI elements, which
included 722 unique UI element types (Button, ImageButton,
RadioButton, ToggleButton and 718 additional custom button
types), and we extracted a total of 11,055 unique text labels.
Figure 5 shows the distribution of UI elements in our dataset.

We analyzed more than 48,000 unique callbacks, whose
analysis identified over 1 million API invocations, in which
they refer to 2,602 unique APIs. Figure 6 shows the average
number of method invocations that BACKSTAGE could find from
each category of UI element.

Fig. 7. Wordcloud for the “share” concept

Fig. 8. Wordcloud for the “shopping” concept

VI. DETECTING OUTLIERS

Now that we do have collected all necessary information,
let us now detail how BACKSTAGE detects outliers.

A. NLP Preprocessing

We first subjected all words to NLP preprocessing. From
all the words in our UI elements, we retained only verbs and
nouns present in the WordNet [14] and WORD2VEC [13] En-
glish dictionaries. We then lemmatized them, i.e., we grouped
together the different inflected forms of a word so they can be
analyzed as a single item.

B. Concepts

In any kind of anomaly detection, the first step is to
determine relationships between items. For the words in our UI
elements, this meant to identify those words that are related
to each other. In our experiments, we found approaches that
rely on words frequently occurring together (such as Latent
Dirichlet Allocation or LDA) to be of only limited use; we
attribute this to mobile screens only having a limited amount
of space for text. Instead, we relied on the WORD2VEC [13]
approach capturing the semantic distance between words.
GOOGLE provides a pre-trained model based on the Google
News corpus with 100 billion words (“googlenews-vectors-
negative300.bin”). For each word the model produces an
embedding into the high–dimensional vector space. By means
of it WORD2VEC can determine, for instance, that the word
“queen” is closely related to “king” and “woman”.

We used WORD2VEC to determine the semantic distance
between all words in UI elements, which is the cosine distance
between the associated vectors. The model provided contains
only a few phrases, though, labels commonly consist of more
then one word. Thus, for each of the compound labels we



TABLE IV
CONCEPTS MINED FROM UI LABELS

abort · about · accept · account · account info · achievement · activate · activation ·
activity · add · add content · add email · add list · add photo · address · admin ·
agree · agreement · album · alert · alphabet · amazon · amount · answer · app ·
apply · appointment · apps · architecture · archive · attach · audio · authenticate ·
authorize · average · baby · back · background · backup · badge · bangalore ·
barbie · barcode · baseball · bath · beauty · bedroom · begin · birth · block ·
bluetooth · board · broadcast · build · business · buy · bypass · cache · calculator ·
calendar · call · calorie · camera · campus · cap · card · cardio · career · celsius ·
challenge · change · chapter · chart · check · checkout · cheer · choose · city ·
claim · clean · clear · click · clock · cloud · code · colombia · come · comment ·
commentary · connect · contact · continue · contribution · coupon · cpu · create ·
create account · credit · credit card · custom · customer · customize · cycle · data ·
day · deal · debug · decline · default · delete · demo · departure · deposit ·
description · desire · destination · detail · device · dictionary · do · download ·
draw · edit · edit account · editor · electron · email · enable · enter · error ·
examination · execute · export · facebook · fax · feedback · fiction · file · fill ·
find · folder · follower · friend · gallery · google play · handoff · health · hello ·
image · import · information · install · instrument · internet · invoice · itinerary ·
jupiter · keyboard · launch · league · license · list · location · log · login · map ·
meal · merge · message · mild · mode · news · next · notification · ok · open ·
order · panorama · password · payment · paypal · people · permission · phone ·
photo · picture · play · please · power usage · premium · prev · price · privacy ·
profile · project · projector power · pushup · quiz · redeem · register · reminder ·
report · reset · retry · roster · rule · save · save account · scan · scanner · search ·
send · setting · share · shopping · show · shutter · skip · sms · space · stay · store ·
submit · subscription · sync · taxi · term · test · theme · ticket · tip · title · twitter ·
unlock · update · upgrade · upload · url · user · vehicle · vehicle · version · view ·
virus · voice · wallpaper · website · weight · workout · zone

produced the aggregated vector by averaging the vectors of
each word included. WORD2VEC can handle these new phrases
pretty well.

We then used soft spherical k-means clustering [8] to cluster
the labels into 250 concepts, listed in Table IV. As examples
of such a concept, Figure 3 shows the word cloud of the
“login” concept, Figure 7 shows the word cloud for the “share”
concept, and Figure 8 for the “shopping” concept.

C. Membership

For each UI element, we now determine its membership—
the proximity pi ∈ [0 . . . 1] of its labels to the concept i, where
pi = 1 means a perfect fit into the concept, whereas p = 0
implies no membership. This gives us a membership vector
v = (p1, . . . , p250). We then associate each UI element e with
those concepts i for which the membership is higher than a
threshold of 0.5, i.e., pi > 0.5. Thus, each element e is now
associated with a set of concepts C(e) = {c1, . . . , cn}.

Some UI elements spot labels that would not be associated
with any concept, resulting in C(e) = ∅. For these elements,
we repeat the above process mixing the original label vec-
tors with their context. More specifically, we calculate the
membership for each phrase surrounding a UI element and
consider ones with the maximum value. If C(e) is still empty,
we use the three concepts most relevant for the UI element
label instead.

D. In-Concept Outliers

The next two steps combine in-category classification with
overall classification, a two-stage setup first introduced with
the MUDFLOW anomaly detector [5]. For each concept ci, we
determine the set of UI elements E = {e1, . . . en} that are
members of ci, i.e. E =

⋃250
j=1{e · cj ∈ C(e)}. For each UI
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Fig. 9. Per-concept outlier detection. For each concept such as “Login”,
BACKSTAGE selects UI elements whose labels are related to this concept and
uses their APIs as features. It then takes a new unknown UI element, and
determines its outlier score with respect to the “normal” UI elements. The
higher the score, the less “normal” the app behaves inside the given concept.

element, we identify the set of its associated APIs. For each
API, we use a string composed of class name and method
name as its feature. For ContentResolver and Intent APIs,
we additionally supply the associated URIs. As an example,
consider Figure 4, showing the APIs used in the “Login”
concept.

As illustrated in Figure 9, we then use the ORCA outlier
detector to run an outlier analysis on the set E; by default, we
consider the five nearest neighbors of a sample. To measure the
dissimilarity between samples, BACKSTAGE uses the Jaccard
distance metric, which is well-suited for data with a large
number of binary features.

The resulting distance serves as an outlier score: The higher
the distance of a sample, the less “normal” are its features. We
normalize the outlier score as oi ∈ [0 . . . 1]. Each UI element e
is then assigned its outlier score oi, representing how much e
is an outlier in the concept i with respect to its APIs used.

E. Overall Classification

Across all 250 concepts, we aggregate the individual outlier
scores for each UI element, assigning each element e an
outlier vector (“anomaligram”) O = (o1, . . . , o250), with oi
again being the outlier score for concept i. As illustrated in
Figure 10, these vectors are then used to train a 1-class ν-
SVM classifier which then can classify a vector (and thus,
its associated UI element) into “likely normal” or “likely
abnormal”.

The result is a fully automatic warning mechanism for
UI elements, which, when triggered, points developers to a
mismatch between UI element labeling and the functionality it
uses. Developers can resolve the mismatch either by adapting
the GUI label (or context) to the functionality, or vice versa.

VII. EVALUATION

Since our analysis uses most widely used apps, with a
high level of maturity, visible GUI errors as those prevented
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Fig. 10. Classifying UI elements across multiple concepts. For each UI
element in our set, we determine its vector of probabilities of being an outlier
in each concept (Figure 9). A one-class classifier trained from these vectors
can label an unknown UI element as “likely normal” if it is normal across all
concepts, or “likely abnormal” instead.

by BACKSTAGE are typically quickly detected, reported, and
fixed. We thus resort to a well-established scheme used to
evaluate testing techniques. To evaluate how BACKSTAGE fares
as it comes to general GUI mismatches, we devised a setting
in which we would create synthetic GUI errors (mutations).
Specifically, we would take existing buttons and change their
labels such that they would no longer match the APIs used;
and then evaluate whether BACKSTAGE detects these mutations
as anomalies.

A. GUI Mutations

In detail, we implemented the following mutations, modeled
after mutation and crossover operations in genetic algorithms:
Label replace. Given a UI element e, we replace its label with

a label from another concept. This label is chosen in two
ways:
• randomly—that is, out of all the labels encountered

across all apps. This simulates a random error in
labeling a UI element.

• high distance—that is, from a concept that is semanti-
cally distant with respect to the original label; formally,
we assume a WORD2VEC semantic similarity of 0.2 or
less. This avoids the problem of equivalent mutants
known from code mutation in software testing.

Crossover. Given a UI element e, we would swap its label with
the label of a random UI element e′ 6= e in the same app.
This simulates the error of a developer confusing two UI
elements, swapping callbacks to UI elements within the
same application. The mismatches created by crossover
would be more subtle, as they occur within the same
range of app functionality.

All these mutations are applied on the data alone; we do not
actually change the code of existing apps. In terms of the
difference induced by the mutation, we would assume “high
distance” mutations to be the easiest to detect, followed by
random mutations, and finally crossover.

“Label replace”
mutation:
assign a GUI element
a different label –
e.g. “Guides” is
replaced by “Open”
or “Print”

“Label crossover”
mutation:
swap labels of
two GUI elements –
e.g. “Welcome” 
gets “Special
Offers” label
and vice versa

Fig. 11. GUI replace and crossover mutations as used to evaluate BACKSTAGE

To the best of our knowledge, this is the first time mutation
analysis is being applied to graphical user interfaces; this is
a consequence of BACKSTAGE being the first approach to find
general functionality mismatches in GUIs.

B. Evaluation Setting

For the evaluation of BACKSTAGE, we use the well-
established procedure for evaluating binary classifiers. In
detail:

1) We start with the set A of all mined UI elements. As
these come from mature apps with millions of users, we
assume the UI elements are almost all correct.

2) We create a random subset A′ ⊂ A with |A′| = 90% · |A|
and train BACKSTAGE from A′.

3) We create the set C ⊆ A with C ∩ A′ = ∅ and
consequently |C| = 10% · |A|. This will be our set of
“known correct” UI elements.

4) We create a set of mutants M derived from A, such that
|M | ≈ 10% · |A| = |C|. This will be our set of “known
incorrect” UI elements. Both mutation types are applied
with equal likelihood.

5) We create the testing set T = M ∪ C and have these UI
elements classified by BACKSTAGE.

This process is repeated five times. We assess the accuracy of
the BACKSTAGE classifier by means of standard metrics such
as precision (how many of the reported anomalies would be
mutants?) and recall (how many of the mutants would be
reported as anomalies?); all values would be mean values over
the five repetitions.

C. Results

The overall results of BACKSTAGE are summarized in the
confusion matrices in Table V, Table VI, and Table VII. Let
us discuss random mutations first, and then contrast the results
with the alternative mutation schemes.

As seen in Table V, of the 4,999 mutants fed into BACK-
STAGE, 3,369 are correctly classified as being abnormal, which



TABLE V
BACKSTAGE ACCURACY FOR “RANDOM” LABEL REPLACE MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 75%
Mutant TP = 3369 FN = 1630 4999 Recall = 67%
Correct FP = 1100 TN = 4056 5156 Accuracy = 73%
Total 4469 5686 10155 Specificity = 79%

TABLE VI
ACCURACY FOR “HIGH DISTANCE” LABEL REPLACE MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 76%
Mutant TP = 3528 FN = 1471 4999 Recall = 71%
Correct FP = 1096 TN = 4060 5156 Accuracy = 75%
Total 4624 5531 10155 Specificity = 79%

results in a recall rate of 3369/4999 = 67%. As expected, high
distance mutations (Table VI) have an even higher chance
(71%) of being detected. Even if the programmer confuses
two buttons (Table VII), BACKSTAGE detects every second
such mistake. All these results should be interpreted from the
standpoint that to the best of our knowledge, there is no other
approach which would detect such mismatches.

A high recall means little, though, if the precision is low;
that is, if the UI elements reported by BACKSTAGE contain
many false positives. For “random” mutations (Table V),
the precision is 75%, meaning that three out of four UI
elements reported will actually be abnormal; high distance
mutations fare even slightly better, with 76%. For “crossover”
mutations (Table VII), BACKSTAGE still has a precision of 69%;
a bit more than two out of three UI elements reported will
be true anomalies. This high precision makes BACKSTAGE a
practical tool. As shown in Figure 12, one can trade an even
higher precision for lower recall and vice versa by choosing
alternative anomaly thresholds.

So what are the limitations of BACKSTAGE at this point?
Obviously, the semantic distance between the given and the
correct label is crucial. If this distance is high, as indicated
by our “high distance” mutations, BACKSTAGE can easily find
them. But if this distance is low, BACKSTAGE fails. Errors
that BACKSTAGE misses typically would be semantically close
to each other and not differ in the APIs used—for instance,
“Search with Google” and “Search with Bing” will use the
same APIs, namely interacting with a remote server. If the
labels are semantically almost equivalent, as in “Stop” vs
“Abort” vs “Cancel”, BACKSTAGE will have a hard time differ-
entiating them, just as humans will.

D. Threats to Validity

As any empirical study, our evaluation is subject to multiple
threats to validity. In terms of external validity, the biggest
threat is our mutation model, which may or may not be
representative for real programming errors, as far as GUIs are
concerned. We are not aware of a comprehensive source for
this kind of data, and thus must speculate.

In terms of construct validity, there are several parts of
our analysis that induce noise. Our static analysis may over-

TABLE VII
BACKSTAGE ACCURACY FOR CROSSOVER LABEL MUTATIONS.

Classified as
Input Abnormal Normal Total Precision = 69%
Mutant TP = 2290 FN = 2475 4765 Recall = 48%
Correct FP = 1026 TN = 4121 5147 Accuracy = 65%
Total 3316 6596 9912 Specificity = 80%
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Fig. 12. Precision vs. recall curves for “random” (left), “high distance”
(middle), and “crossover” (right) mutation types

approximate and report APIs to be part of the callback that
cannot be reached in actual executions. Likewise, our anomaly
detection model may overgeneralize, and thus come to false
conclusions; this is what our mutation model addresses, using
standard measures such as precision and recall.

VIII. RELATED WORK

Our work is related to three central strands of work, and in
each, there is one paper that stands out by having very much
inspired and influenced this work. In detail:
Detecting UI anomalies. ASDROID [11] by Huang et al. is

the first work to explicitly analyze mismatches between
user interfaces and program behavior. Its general setting
is similar to BACKSTAGE, in the sense that it maps UI
elements to invoked functions, and checks labels as well
as APIs invoked. However, it only checks for a small
set of fixed scenarios, such as sending text messages or
making phone calls in the background, both in terms of
labels analyzed as well as in the set of invoked APIs.
This is because ASDROID focuses on stealthy (malicious)
behavior only.
BACKSTAGE can be seen as a generalization of ASDROID.
By mining thousands of UI elements, BACKSTAGE can
detect arbitrary mismatches between user interfaces and
associated behavior. Such mismatches include stealthy
behavior as detected by ASDROID: On mature apps with
well-tested user interfaces, most anomalies found by
BACKSTAGE would show stealthy behavior, as this would
not be found during GUI testing. However, such mis-
matches also include misleading button labels, wrong API
associations and more; and all these would be discovered
by BACKSTAGE only.

Mining apps. The CHABADA [7] work by Gorla et al. was
the first work to explicitly detect arbitrary mismatches
between app descriptions and app behavior. The key idea
of CHABADA, mining app stores to analyze and classify
thousands of apps has since fueled a new research field,
namely app mining [1].



The CHABADA approach comparing descriptions and APIs
is well reflected in the BACKSTAGE setting—except that
CHABADA classifies at the app level, whereas BACKSTAGE
classifies at the UI element level. BACKSTAGE can thus be
seen as a more fine-grained specialization of CHABADA
and similar approaches [17], [18], [24], [2], [23], [12]. By
working at the UI element level, BACKSTAGE can detect
abnormal behavior that would be missed by CHABADA.
In our introductory TRIPWOLF example, where a Signup
button accesses the precise user location, CHABADA would
have missed the anomaly, because at the app level, it is
perfectly normal for a travel app to access the precise
location. For a Signup function, however, it is not; and
thus, BACKSTAGE can detect the problem. The specializa-
tion on UI elements also allows BACKSTAGE to find many
more mistakes associated with bad GUI programming.

Relating UI elements and effects. GATOR [21] by Yang et
al. was the first work to provide precise mappings be-
tween ANDROID UI elements and their callbacks via a
pure static analysis. Earlier work had focused on dynamic
analysis and exploration, either in a black box [4] or a
grey box [22] style. The advantage of static analysis is
that it can explore and identify UI elements that would
be hard to reach dynamically—because accessing them
would require, say, a password, an in-app purchase, or
the defeat of a boss monster.
The analysis in BACKSTAGE follows the GATOR approach
in creating such mappings. However, we also address the
specific need to extract the visible text and context from
the UI elements, as well as to identify dynamic changes
of text, context, and callbacks. Our analysis can thus
be interpreted as a specialization of GATOR towards text
extraction.
UIPicker [16], SUPOR [9] and BIDTEXT [10] also analyze
UI elements of Android apps. However they do so to
automatically identify sensitive user inputs and sensitive
data disclosure. Their final aim, thus, is quite different
from ours.

One field that is missing in the above list is Human-Computer
Interaction (HCI). Interestingly, to the best of our knowledge
(and to the knowledge of HCI experts in the field), we are not
aware of any work in HCI that would rely on large-scale mining
and analysis of UI elements. BACKSTAGE thus opens the door
for general automatic anomaly detection in user interfaces,
considering features such as their visual appearance, their
natural language semantics, their layout, their interaction, or
their behaviors; and we see plenty of future potential in this
direction.

IX. CONCLUSION AND FUTURE WORK

BACKSTAGE is the first work to generally check the adver-
tised functionality of UI elements against their implemented
functionality. To this end, BACKSTAGE analyzes thousands of
existing UI elements for text and context shown to the user,
clusters them by common concepts, and in each cluster, detects
outliers—that is, UI elements that use different APIs than

the others. This approach is general and effective: In our
evaluation, BACKSTAGE was able to effectively identify GUI
behavior mismatches with high accuracy.

Despite these advances, we see BACKSTAGE not as an end—
but rather as a beginning of a new field “GUI mining”, where
we would mine thousands of GUIs to learn common vs.
uncommon features in behavior, appearance, and process. Our
future work will focus on the following topics:
Dynamic behavior. Despite the ease of static analysis, we

are considering using additional dynamic analysis and
exploration to assess dynamic features. Most notably, we
want to validate anomalies as reported by BACKSTAGE by
creating test cases that demonstrate the actual API access.

Automatic repair. Detecting that a UI element label does not
match its behavior allows for automatic suggestions of
better fitting labels. One idea we are investigating is to
identify labels of UI elements that use similar APIs and to
suggest them as automatic repairs: “This button should
be named ‘Send’.”

Alternate domains. Besides ANDROID apps, there are several
other domains with programs whose GUIs could be mined,
such as desktop applications.

Alternate GUI features. Besides looking for anomalies be-
tween text and behavior, one might also examine anoma-
lies in visual presentation (“The ‘Send’ button should be
highlighted”), layout, process, or visual images—opening
the door to general automatic anomaly detection and
recommendations for GUI design.

To facilitate assessment, reproduction, and extension, all of
BACKSTAGE is publicly available—from source code to build
instructions to evaluation scripts. For details, check out the
project site at

http://www.st.cs.uni-saarland.de/appmining/backstage/
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