
Mining Operational Preconditions

Andrzej Wasylkowski
Dept. of Computer Science

Saarland University, Saarbrücken, Germany
wasylkowski@cs.uni-sb.de

Andreas Zeller
Dept. of Computer Science

Saarland University, Saarbrücken, Germany
zeller@cs.uni-sb.de

Abstract

A procedure’s client must satisfy its precondition—

that is, reach a state in which the procedure may be

called. Preconditions describe the state that needs to

be reached, but not how to reach it. We use static

analysis to infer the sequence of operations a vari-

able goes through before being used as a parameter:

“In parseProperties(String xml), the parameter xml

normally stems from getProperties().” Such opera-
tional preconditions can be learned from code examples

and checked to detect anomalies. Applied to AJ, our

OP-M prototype found 288 violations of operational

preconditions, uncovering 9 unique defects and 48 unique

code smells.

1. Introduction

When using a function, a client must ensure that the
function’s precondition is satisfied—the condition that has
to be met before its execution. Even simple functions
can have surprisingly complex preconditions. The AJ
method reapPropertyList(List list), for instance,
takes a list, as indicated by the parameter type. In order
to function properly, though, list must be nonempty, its
first element must be a class, and subsequent elements must
be objects whose node class is equal to the class being the
first element of the list. Using JML specification syntax, this
precondition reads as:

static List ASTNode.reapPropertyList(List list)

@requires list.size() >= 1

@requires list.get(0) instanceof Class

@requires \forall int i; 0 < i && i < list.size();

list.get(i) instanceof StructuralPropertyDescriptor &&

((StructuralPropertyDescriptor)list.get(i)).

getNodeClass() == list.get(0)

This is an example of an axiomatic precondition, which is
the base of several verification and validation approaches.
While it describes the precise state of the program and the

method’s parameters, it does not tell how to achieve this

state: Where does list come from? How do we construct
it such that the precondition is satisfied?

To answer such questions, programmers usually re-
fer to usage examples in existing code. In the case of
reapPropertyList(), we can examine one of its callers,
say, getPropertyList(), to learn that the list in ques-
tion would be constructed from a set of properties. Without
explicitly stating the reapPropertyList() precondition,
the code in Figure 1 shows how to meet it.

public List getPropertyList (Set properties) {

List list = new ArrayList ();

createPropertyList (this.cl, list);

Iterator iter = properties.iterator ();

while (iter.hasNext ()) {

Property p = (Property) iter.next ();

addProperty (p, list);

}

reapPropertyList (list);

if (list.size () == 0)

Debug.log ("Empty property list");

return list;

}

Figure 1. Sample usage of reapPropertyList.

Looking for such examples and extracting what needs

to be done for the precondition to be satisfied is diffi-
cult and error-prone. We therefore introduce the concept
of operational preconditions specifying how to satisfy a
function’s requirements. Operational preconditions come
in the form of sets of sequential constraints, expressing
control and data flow through function calls. Figure 2
shows the operational precondition for the list parame-
ter of reapPropertyList(), as extracted from the call-
ing function getPropertyList(). After the constructor
and the initialization via createPropertyList(), further
properties are added with addProperty() before the ac-
tual call. The goal of this research is to mine operational
preconditions from code in order to detect their violations.

We have implemented a tool called OP-M that learns
operational preconditions and checks them against viola-
tions. In seven open source programs OP-M detected

list.<init>() ≺ createPropertyList(...,list)

list.<init>() ≺ addProperty(...,list)

list.<init>() ≺ reapPropertyList(list)

createPropertyList(...,list) ≺ addProperty(...,list)

createPropertyList(...,list) ≺ reapPropertyList(list)

addProperty(...,list) ≺ addProperty(...,list)

addProperty(...,list) ≺ reapPropertyList(list)

Figure 2. Operational precondition for the list pa-

rameter of reapPropertyList(), where e1 ≺ e2

means “e1 precedes e2”

115 violations that were defects or code smells. These vio-
lations include seven previously unknown AJ defects,
two of which lead to crashes.

This paper is organized as follows. We first give a high-
level summary of our technique, followed by detailed de-
scriptions of all steps involved (Section 2). Our experiments
with OP-M are reported in Section 3. After discussing
the related work (Section 4), Section 5 closes with conclu-
sions and consequences.

2. Mining Operational Preconditions

We have implemented the OP-M tool that learns and
checks operational preconditions of methods by static pro-
gram analysis. The basic idea is as follows: If a method

is called sufficiently often, we can inspect all its callers

and deduce from them the operational preconditions of the

method. More specifically, the process of learning opera-
tional preconditions and detecting their violations consists
of the following steps:

• OP-M takes a program as its input. For each stat-
ically identifiable object in that program, OP-M
creates a set of sequential constraints that character-
ize the way this particular object is being used. (See
Section 2.1.)

• For each method called in the program OP-M
looks for sets of sequential constraints that are common

to many objects passed as actual parameters to that
method. Each such set forms an operational precon-

dition; Figure 2 shows an example. (See Section 2.3.)

• OP-M looks through all the objects used as actual
parameters and identifies those that violate the opera-
tional preconditions found. These are reported to the
user for investigation. (See Section 2.4.)

2.1. Creating Sequential Constraints

The first step in learning operational preconditions and
detecting their violations is creating sequential constraints
for all statically identifiable objects in the program. Our

analysis is intraprocedural, so each method is analyzed sep-
arately and each has its own set of statically identifiable ob-
jects it uses. By a statically identifiable object we mean the
following: formal parameters of methods (including the im-
plicit this parameter), objects created via new, return val-

ues of method calls (as in x = map.items()), values read
from fields (including static fields, as in x = System.out),
and explicit constants (such as null and "OK").

Every statically identifiable object participates in some
operations performed by the method that uses it. For exam-
ple, if x is a formal parameter of foo (and therefore a stati-
cally identifiable object associated with foo) and foo calls
bar(x), then calling bar is an event associated with x, be-
cause x is being passed as an actual parameter to bar. An
event associated with an object is one of the following:

• a method call (including constructor calls) with the ob-
ject being used as the target or a parameter (possibly
in multiple positions), e.g., x.bar(y, z) is an event
associated with x, y, and z.

• a method call with the object being the value that was
returned, e.g., x = map.items() is an event associ-
ated with x.

• field access with the object being the value that was
read, e.g., x = System.out is an event associated
with x.

• a comparison of a return value of a method with a
boolean or integer constant, e.g., list.size() == 0
is an event associated with list. (Actually, two events
associated with list stem from this expression: the
call to size() and the comparison of the return value
of that call with 0.)

Consider the code shown in Figure 1. There are six events
associated with the list object:

• e1 — the ArrayList constructor call

• e2 — the call to createPropertyList()

• e3 — the call to addProperty()

• e4 — the call to reapPropertyList()

• e5 — the call to ArrayList.size()

• e6 — comparing ArrayList.size() with 0

A sequential constraint associated with an object is a
pair of events associated with this object, in which the first
event precedes the second one (not necessarily directly, i.e.,
there may be other events that happen in between). The
precedence relation is based on control flow, i.e., if there is
a flow of control from an event e1 to e2, we say that e1 pre-

cedes e2, denoted as e1 ≺ e2. Using the above-enumerated
events associated with the list object, we can construct
many sequential constraints from them. One example is

2

e2 ≺ e4, another is e3 ≺ e3 (because it is possible to call
addProperty() multiple times). In general, sequential
constraints for an object represent an ordering of events that
are associated with this object.

The component of OP-M that extracts sequential
constraints was adapted from the JADET tool [33]. One of
the most important innovations we have introduced for the
purpose of mining operational preconditions is that a com-
parison of the value returned from a call with a constant
is treated as a separate event. This allows us to not only
represent the fact that, for example, Iterator.next() is
called after Iterator.hasNext(), but also that for this
to happen hasNext() must have returned true. Another
important OP-M feature is that it keeps track of the po-
sition of the parameter being used when passing an object
to a method. While JADET could only report that “An ob-
ject that was used in a call to createPropertyList()was
later used in a call to addProperty()”, OP-M extends
this to “An object that was used as the first parameter in a
call to createPropertyList() was later used as the sec-

ond parameter in a call to addProperty()”. This allows
OP-M to distinguish between objects being passed to
the same methods, but as different parameters.

2.2. Fine Points of the Analysis

Before we further describe how OP-M learns opera-
tional preconditions from sequential constraints, we would
like to make a slight digression and present some of the
challenges involved in mining OPs. We will also explic-
itly list trade-offs we made to get a scalable and practical
implementation.

Usage across method boundaries. One of the potential
problems that we have to solve when trying to spec-
ify an operational precondition of a method is that the
OP may cross methods’ boundaries. Consider again
the example shown in Figure 1. Just by looking at
getPropertyList(), we were able to discover the
operational precondition of reapPropertyList().
But what would happen if getPropertyList() was
split in two parts? To discover the association between
them, we would need interprocedural analysis. Our
analysis is, however, intraprocedural. The drawback is
of course that we lose information. On the other hand,
though, our approach scales very well (see Section 3)
and we avoid potential problems with too many aliases
causing imprecision and resulting in too vague OPs.

Choosing the right granularity. addProperty() and
createPropertyList() are part of an oper-
ational precondition of reapPropertyList().
But which other methods are being called by
createPropertyList()? Should its callees be part

of the operational precondition? In fact, deciding on
the right granularity—considering a method as an
atomic operation or as the union of its callees—can
be difficult. OP-M’s granularity is fixed: The
OPs of a method contain only operations that are
performed directly by the caller of the method. This is
on purpose, as we find that very often methods operate
on a specific abstraction level and we want our OPs to
express operations on that level, too.

Aggregating usage alternatives. As there are multiple

ways a precondition can be satisfied, there can be mul-
tiple operational preconditions. One example is the
JPanel class, which is a part of the J SGUI

framework. Each panel is associated with a layout
manager, which is by default a flow layout manager.
If the user wants the panel to use another manager, this
can be either given when constructing the JPanel ob-
ject or set later using the setLayout() method (see
Figure 3). Both are equivalent and each constitutes a
separate operational precondition for methods that re-
quire the panel to have a non-default layout manager.
OP-M is fully capable of creating multiple OPs for
a single formal parameter of a single method.

public void createGUI () {

...

JPanel panel1 = new JPanel (new BorderLayout ());

panel1.add (checkbox, BorderLayout.NORTH);

...

JPanel panel2 = new JPanel ();

panel2.setLayout (new BorderLayout ());

panel2.add (textarea, BorderLayout.WEST);

...

}

Figure 3. Setting a layout manager.

No primitives. We focus on objects only, ignoring prim-
itive values. We have experimented with operations
on primitive values being part of OPs. For instance,
if a primitive value was an actual parameter of a
method, we would include operations on it as part of
the method’s OPs. However this caused a too large
drop of precision and resulted in many sequential con-
straints of the form “first add two numbers and then
multiply them”, which were not helpful.

2.3. Learning Operational Preconditions

After sequential constraints for all objects in the program
have been created, OP-M can start learning operational
preconditions for all methods called in that program. For a
given method M OP-M looks for sets of sequential con-
straints that are common to many objects passed as actual
parameters to M. Each such set forms an operational pre-
condition. Thus, each OP not only represents what needs

3

to be done, but also in what order, because sequential con-
straints represent ordering among events. However, since
operational preconditions are supposed to describe what
needs to be done before passing an object to M, sequen-
tial constraints where one of the events happens after M has
been called can be filtered out as irrelevant. This is because
if an event happens after the call, it cannot possibly be a
factor influencing the correctness of the call.

After this preliminary filtering comes the time for actual
learning. OP-M needs to decide whether remaining se-
quential constraints associated with the actual parameters
of M are really relevant or just noise—that is, infrequent
usages that are particular to specific callers. Our solution
to this problem is as follows: If a particular set of sequen-
tial constraints occurs frequently (i.e., at several call sites
to M), then all elements in this set are relevant and, in fact,
constitute an OP of M. For example, if there are many
calls to reapPropertyList(list)1, but before only
a few of them adjustPropertyList(list) is called,
the sequential constraint adjustPropertyList(list) ≺
reapPropertyList(list) will occur rarely and thus will
be discarded as not being part of true OPs. This learning by
eliminating noise is done by formal concept analysis.

Concept analysis is, broadly speaking, a technique for
finding patterns [16]. It takes as its input a set of conceptual
objects, a set of conceptual properties, and a cross table as-
sociating objects with properties. Figure 4 shows a sample
cross table with rows being conceptual objects and columns
being conceptual properties. Concept analysis produces all
concepts found in the cross table, where a concept is a set
of objects A and a set of properties B such that every object
in A is associated with all properties from B and sets A and
B are maximal, i.e., it is not possible to add elements to one
set without influencing the second one. Intuitively, a con-
cept is a rectangle (not necessarily contiguous) in the cross
table: Figure 4 shows two such rectangles.

We use the C tool [23] for formal concept analysis,
with conceptual objects being statically identifiable objects;
and conceptual properties being sequential constraints. For
each method called in the program we create a separate
cross table such that we can focus only on objects passed to
that method. We also introduce a parameter called minimum

support, which puts a lower boundary on the number of con-
ceptual objects in a concept. This makes sure that C
reports sets of sequential constraints that are common to at
least minimum support many statically identifiable objects
passed to the method; it thus eliminates noise caused by
infrequent usage. The resulting sets are operational precon-
ditions of that method. Figure 2 shows the operational pre-
condition for the reapPropertyList() method used by
the code in Figure 1.

1Of course the names of the objects being passed are irrelevant, but we
give them for clarity.










  
 





 
 
 
  

  

  




  

Figure 4. Detecting violations via concept analysis.

Each rectangle corresponds to an operational pre-

condition; gaps indicate potential violations [23].

2.4. Finding Violations

As its last step, OP-M looks through all the objects
used as actual parameters and identifies those that violate
the operational preconditions found. Consider the code
shown in Figure 1 and the OP of the reapPropertyList()
method as shown in Figure 2. It is clear that the
list object satisfies the OP. But if, say, a call to
createPropertyList() was missing, we would say that
list violates the OP. The same if this call happened for ex-
ample after all the calls to addProperty. Generally, we can
say that if there are sequential constraints that are present

in the OP, but missing in the object passed to the method,

the object violates the OP.

However, we need to weaken the condition given above
a bit. After all, if the OP is violated by many objects, it
is more probable that the OP is too restrictive than that all
those objects are in an incorrect state when being passed
to the method. We deal with this by introducing a parame-
ter called minimum confidence, which is a number between
zero and one. We calculate the confidence of a potential vi-
olation using the formula c = sOP/(sOP+ sPV) where c is the
confidence, sOP is the support of the OP (i.e., the number of
objects that adhere to this OP) and sPV is the support of the
potential violation (i.e., the number of objects that violate
the OP in the same, particular way). Just as we used min-
imum support to ensure that only frequently occurring sets
of sequential constraints get reported as OPs, we use mini-
mum confidence to ensure that only infrequently occurring
divergences from OPs get reported as real violations.

To detect violations in the way described above, we again
use C [23]. Detecting violations is equivalent to de-
tecting “gaps” in the concept analysis cross table. In Fig-
ure 4, we can see that the object O violates the OP repre-
sented by the set of sequential properties S , because it con-
tains only the subset S ′ of those properties. We can also
say that the confidence of this violation is 0.75, because the

4

support of the OP S is 3 (the set S is common to three ob-
jects, so sOP = 3) and there is only one violation of the
OP that consists of elements in S ′ only (so sPV = 1). Thus,
c = sOP/(sOP + sPV) = 3/(3 + 1) = 0.75. Detecting viola-
tions in this way was introduced by Lindig [23] and used in
our previous work on detecting object usage anomalies [33].
In the context of this paper, the important thing is that we
can find both OPs and their violations in a way that is both
effective and efficient.

3. Evaluation

To evaluate the effectiveness of OP-M, we have ap-
plied it to several complex J projects (see Table 1):
A-R, a cognitive agent based social simulation toolkit,
A T, a servlet container, AUML, a UML

design tool with cognitive support, AJ, an aspect-
oriented extension to the J programming language,
A, a bittorrent client, C, an email client, and
E, a programmer’s text editor. All the experiments were
performed under the following conditions:

• We analyzed all classes that truly belong to the project2

and all methods whose libraries were available.3

• A potential violation is characterized by two numbers:
the support of the operational precondition being vio-
lated and the confidence of the violation. We consid-
ered a potential violation as a real one and thus worth
reporting only if the following two conditions were
met: (1) its support was at least 20 and (2) its confi-
dence level was at least 0.9. These constants were ob-
tained by empirically testing a few alternatives in order
to balance the number of false positives and true nega-
tives, but we did not systematically investigate if these
are the optimal values.

Table 1 contains a list of our case study subjects, includ-
ing their size (number of classes, number of methods) and a
short summary of our results (number of methods for which
operational preconditions have been deduced, number of vi-
olations found and time needed to perform the analysis).

3.1. Case Study: AspectJ

The largest program in our set is AJ, a compiler for
the AJ language. AJ is an extension to the J
programming language making it possible to define cross-
cutting concerns that can be later compiled into the byte-

2For example, we ignored third-party libraries in the A-R jar file.
3Surprisingly, this was not the case for all methods. In A T,

there is a reference to a non-existent method from JM library. In
A, the Apple Cocoa-Java classes were not available for analysis. In
the AJ compiler, the package org.aspectj.bea.jvm was missing.

code. AJ is a sufficiently complex, big and mature
project to put our technique to a good test.

OP-M reported 288 violations of operational precon-
ditions in AJ. Each reported violation contained the
following information: the operational precondition being
violated, the object that violates the precondition and the
set of sequential constraints that are missing (i.e., needed
to satisfy the operational precondition). It is important to
notice that OP-M not only reports violations, but also
shows what is missing; if the violation is indeed a defect,
it shows how to fix it. We inspected those 288 violations
manually and classified them into four categories:

Defects. This category is self-explanatory, but there is one
important point we want to make here. It sometimes
happens that there is a method that violates the contract
of its base class, but the application itself does not fail
because of this. However, if the method is public, we
still mark it as defective, because someone may cause
it to fail by following the contract to the letter.

Code smells. This category contains all violations that are
not defects, but the violating methods have properties
indicating that something may go wrong [15] or they
might be improved in a way that improves readability,
maintainability or performance of the program. An ex-
ample might be a method that uses a for loop to iterate
through a collection and breaks unconditionally out of
the first iteration. If the collection can have at most one
element, this code will work, but it cannot be treated as
fully correct.

False positives. This category contains all violations that
are neither defects nor code smells.

Out of the 288 violations reported for AJ, we cate-
gorized 9 as defects, 48 as code smells and the rest as false
positives. This means that 57 or 20% of the violations are
worth investigating. Also, all violations are unique, i.e.,
each object violating an operational precondition appears
only once. We achieved this by automatically removing all
duplicates and retaining only one violation for each object.
We frequently observed that all violations by the same ob-
ject are more or less equivalent and thus fall into the same
category, i.e., all are either defects or code smells or false
positives. As a consequence, we have found 9 unique de-
fects and 48 unique code smells in AJ; we applied the
same duplicate removal for our other subjects.

Let us present some of the most interesting violations
found. Out of nine defects found by OP-M in AJ,
two are severe enough to cause a compiler crash (reported as
bugs #218167 and #218171 in the AJ bug database and
corrected after our report). Both are simple typos occurring
in two different methods; both violate the operational pre-

5

Table 1. Details of the OP-M case study subjects

Methods

Program Origin # Classes Total Analyzed # Methods with OPs Total time

A-R 0.8.2 www.acis.nl/researchdocs 344 3 401 3 401 81 3:24
A T 6.0.16 tomcat.apache.org 1 295 15 178 15 177 137 4:02
AUML 0.24 argouml.tigris.org 1 653 12 123 12 123 174 5:17
AJ 1.5.3 www.eclipse.org/aspectj 2 957 36 045 36 044 347 9:21
A 2.5.0.0 azureus.sourceforge.net 3 585 22 367 22 359 160 5:22
C 1.2 www.columbamail.org/drupal 1 165 6 894 6 894 73 1:43
E 4.2 www.jedit.org 641 4 327 4 327 48 1:11

for (Iterator it = c1.iterator(); it.hasNext();) {

E e1 = (E) it.next();

...

for (Iterator it2 = c2.iterator(); it.hasNext();) {

E e2 = (E) it2.next();

...

}

...

}

Figure 5. In AJ, an inner loop checks the iter-

ator of the outer loop.

conditions of the Iterator.next() method. The skeleton
of the defective code is shown in Figure 5.

Four of the defects are located in methods that vio-
late the contract of the methods they override. All of
them take a progress monitor instance as one of the pa-
rameters; in all cases, the overridden method says this in-
stance may be null. One of the operational precondi-
tions of IProgressMonitor.done() states that the mon-
itor should be the return value from the factory method
Policy.monitorFor(IProgressMonitor). It turns out
that this very method handles null by returning an instance
of the class NullProgressMonitor. This solves the prob-
lem of the monitor being null. Since the defective meth-
ods do not have this call and do not check explicitly for
null (which would be an acceptable, but inferior alterna-
tive), they throw a NullPointerException exception if
they are called with null as the progress monitor, in spite
of the correctness of such a call in itself.

Figure 6 shows an example of a violation marked as a
code smell. The checkcast() method is correct, but one
of its callees might cause maintenance problems in the fu-
ture. OP-M reported this method because it violates the
operational precondition of the writeUnsignedShort()
method, which states that resizeByteArray() should be
called first. At the first sight this looks like a defect in
OP-M, but a closer look reveals that there are two
identical implementations of resizeByteArray() in two
classes, where one class inherits from another. Because the
method in the base class is private, it cannot be called by

protected void checkcast (int baseId) {

this.countLabels = 0;

if (classFileOffset + 2 >= bCodeStream.length) {

resizeByteArray();

}

...

writeUnsignedShort (...);

...

}

Figure 6. A code smell in AJ: The

resizeByteArray() callee is implemented twice

with the same code in the same class hierarchy.

checkcast(), so there is a second implementation pro-
vided. Moreover, both copies of resizeByteArray() can
do their work correctly, because fields they access are pub-
lic! So the implementation hides the method in order to
prevent it being abused, but allows access to the fields to
everyone. This code does not fail, but its design is dubious.

Analyzing AJ from creating sequential constraints
to discovering violations took less than 10 minutes on a 1.83
GHz Intel Core Duo machine.4 We have investigated all
288 violations manually, looking at each of them and de-
ciding whether the violation is a defect, a code smell or a
false positive. The categorization process took us altogether
about twelve hours, which is about two and a half minutes
per violation on average, including, if needed, the creation
of test cases or code changes that would trigger the defect.
We were able to dismiss many violations as false positives
quickly thanks to OP-M giving us rough information on
what the fix should be (the missing sequential constraints).
On the other hand, some violations were difficult enough
to require half an hour or more of investigation. When we
were unsure if the code was correct and were unable to trig-
ger incorrect behavior, we classified it as correct and the
violation as a false positive to make sure that our reported
precision rate is not an overestimation of what an expert in
the project would achieve.

4The component we adapted from JADET was optimized, which is the
reason why the times are much better than reported for JADET alone [33].

6

Table 2. Summary of the results for the experiment subjects. (See Section 3.2 for a discussion.)

Violations

Program Total Investigated # Defects # Code smells # False positives Efficiency

A-R 0.8.2 42 42 4 15 23 45%

A T 6.0.16 42 42 0 5 37 12%
AUML 0.24 185 26 1 6 19 27%
AJ 1.5.3 288 288 9 48 231 20%
A 2.5.0.0 189 107 1 13 93 13%

C 1.2 34 34 2 9 23 32%
E 4.2 8 8 0 2 6 25%

788 547 17 98 432 21%

public JStatusBar () {

...

JPanel rightPanel = new JPanel ();

rightPanel.setOpaque (false);

rightPanel.add (resizeIconLabel,

BorderLayout.SOUTH);

...

}

Figure 7. A defect in C. Using border lay-

out constants for this particular JPanel instance

is wrong. The code does not crash just because

JPanel ignores its misuse.

3.2. Other Case Study Subjects

In addition to AJ, we have applied OP-M to
several other projects (see Table 1). For those other projects,
we only investigated a limited number of top-ranked viola-
tions5. A summary of the results of those investigation can
be found in Table 2. For each of the projects, we present
the total number of violations, the number of violations that
we actually investigated, the number of defects, code smells
and false positives found by investigating them and the effi-
ciency, i.e. the percentage of violations that were defects or
code smells.6 Overall, 21% of all violations we have inves-
tigated were defects or code smells.

Let us take a closer look at some of the defects we found
in programs other than AJ. Figure 7 shows a construc-
tor in the C code. This constructor is defective be-
cause it uses border layout constants when adding compo-
nents to the panel, which uses flow layout. The code works,
however, because flow layout ignores constants it receives,

5We have used a slightly changed version of the ranking system used
by JADET [33]

6In case of AUML, we also found 15 violations in generated code.
We decided to not classify these and to ignore them when calculating the
efficiency.

public String getPreferredEmail () {

Iterator it = getEmailIterator ();

IEmailModel = (IEmailModel) it.next ();

...

}

Figure 8. This C code misses a call to

hasNext, which can cause this method to throw

an exception.

as it does not expect any. How did OP-M detect this
defect? It turns out that one of the operational precondi-
tion of the two-parameter version of the add() method is
that the JPanel is created using a default constructor and
that the setLayout() method is called afterwards.7 Since
there is a call to the two-parameter version of the add()
method and JPanel is created using its default constructor,
what is missing is the call to setLayout(). Two other de-
fects in C and A are shown in Figure 8 and
in Figure 9.

3.3. Limitations and Threats to Validity

The most important limitation of our approach is that it
needs substantial code bases to learn from. While this lim-
itation can be partially circumvented (e.g. if one wants to
use some library and wants OP-M to check if one is not
making any mistakes, one can use someone else’s program
to learn from), it is an unavoidable price for the ability to
tap into developers’ knowledge and experience that is con-
tained in those code bases. Also, OP-M is only useful
for single-threaded programs, but it can handle the whole
J language, including exception handling. Another lim-

7Another, equally good, operational precondition is that the layout is
specified as a parameter to the JPanel’s constructor; this one, however, is
not applicable here, because the default constructor has been used instead;
note how one precondition—having a non-default layout—is equivalent to
several operational preconditions.

7

protected void loadPluginList () {

...

List bits = new ArrayList ();

while (...) {

...

if (...) {

bits.add (...);

break;

}

else {

bits.add (...);

...

}

}

String version = (String) bits.get (0);

String cvs_version = (String) bits.get (1);

String name = (String) bits.get (2);

...

}

Figure 9. This A code does not check the

size of the bits list before accessing its elements.

This defect is now fixed.

itation is the abstraction we use, namely sequential con-
straints: these are not only context-insensitive (so cannot
express the fact that for example pop() should not be called
more times than push() was) but also weaker than a regu-
lar language, for example they cannot distinguish between a
method being called two times in a row and multiple times
in a loop.

We have identified the following threats to validity:

• We have investigated seven programs with different ap-
plication domains, sizes and maturity and our results
seem fairly consistent across those programs. How-
ever, it is possible that they do not generalize to ar-
bitrary projects; proprietary, closed-source programs
may have very different properties.

• The tools we have used (JADET and C) could be
defective. We think this is very improbable, especially
for C, whose implementation is publicly avail-
able [23]. As for JADET as well as the OP-M code,
we have used and thoroughly validated it, so we be-
lieve that any defects left affect only a small number of
violations and thus do not spoil the results overall.

• The results of the categorization process performed on
violations might depend on the expertise of the hu-
man applying the approach. However, if anything, this
would make our results better than reported—because
we have marked violations as defects only if we were
completely sure that they are indeed defects (e.g. by
crashing the program, making sure the contract was vi-
olated, seeing the code changed in the way suggested
by OP-M, etc.). An experienced developer may
spot potential problems where we see false positives.

4. Related Work

To the best of our knowledge, the present work is the first

to take an operational view at preconditions—learning and
checking what needs to be done to call a function. However,
there are many other approaches that learn from existing
code or that detect defects.

4.1. Learning from Code

Ernst et al. [13] have written the seminal work on infer-
ring invariants dynamically using DAIKON. All invariants
are of course axiomatic in our sense and thus incompara-
ble with operational preconditions. Ramanathan et al. [28]
produce axiomatic preconditions, unordered usage informa-
tion (“this value was also used as a parameter of the follow-
ing functions: . . . ”), origin information and constraints on
method calls of the form “a call to g is always preceded
by a call to f”. However, these constraints are “must” as
opposed to ours “may” and are created separately from the
static information mentioned earlier. The upshot of this is
that the interplay between methods that can be represented
is more limited than what OPs can represent. They used
their approach to find defects, too, but unfortunately did not
report on the rate of false positives.

There are many approaches to modelling behavior, in-
cluding the seminal work by Cook and Wolf [7], which
however applies to software development process and not
the software itself. Some are based on static analysis
[11, 30, 32], other on dynamic analysis [8, 17, 18, 27, 36],
grammar learning [4] or model checking [2,3,19,24]. They
allow one to understand how the program, class or objects
of a particular class behave or should be used, but their fo-
cus is on entities instead of operations. They can thus learn
which sequences of method calls are correct and which are
not, but not what to do to call a particular method.

The P tool by Yang and Evans [38] mines tem-
poral rules of program behavior. Their approach can only
discover behavior that fits into templates (such as alterna-
tion) provided by the user. These templates are limited
to occurrences of method calls and are thus weaker than
our sequential constraints that contain precise information
about the flow of objects between parameters of different
methods. Williams and Hollingsworth [35] mine software
repositories to find function usage patterns where one func-
tion is directly called after another one (perhaps condition-
ally), which is again more limited than our approach.

Some research has also been done in the area of sup-
porting programmers by providing them with examples of
usages of a particular API [26, 31, 37]. These have different
focus than OP-M: MAPO by Xie and Pei [37] provides
sample sequences of method calls, but does not relate them
to objects. This provides information about the order in

8

which the methods are typically called, but not how objects
flow through them. P by Mandelin et al. [26] and
XS by Sahavechaphan and Claypool [31] can only
provide information on how to create an object of a given
type. This means that if a method does not return any value
or returns a value of a frequently occurring type (like an in-
teger or Object), they cannot learn anything about how it
is typically used.

4.2. Automatic Defect Detection

There is an abundance of work on automatic defect de-
tection and we can just present several examples. Some
approaches are equipped with fixed lists of “defect pat-
terns” and check the code looking for places where these
are violated [12, 20]. These can be quite effective and
can be tweaked to include only those patterns, violations
of which are with high probability defects. This source
of strength is also their main limitation: the patterns are
project-independent and even though theoretically it is pos-
sible to create project-dependent patterns, this would mean
a lot of work that cannot be reused in other projects.

A lot of work has been done on detecting code that vi-
olates a specification given a priori. Testing [5], model
checking [6,29], and static analysis [10,14] have been used
for that purpose. These approaches are typically very ef-
fective and precise when looking for violations, but the
specification has to be provided by the user and this is
the main weakness. Creating specifications for project-
specific classes is a lot of work that cannot be reused in
other projects. Also, these approaches can find code that is
incorrect, but not one that is unnatural and can cause main-
tenance problems.

Another active research area, which is also the most re-
lated to our work, is on approaches that learn rules from
code [22,33], traces [9,34] and software repositories [21,25]
and then check the program for conformance with these
rules. PR-M [22] uses frequent itemset mining to find
sets of functions, variables and data types that frequently
appear together. OP-M is stronger than PR-M in
that it learns proper sequencing of calls, not just their oc-
currence and this allows us to detect a much broader range
of defects, e.g, the two defects that crash AJ could not
be detected by PR-M, because calls to both hasNext()
and next() are present; it is just that they do not occur
when they should.

Learning from dynamic traces [9,34] and software repos-
itories [21, 25] can be pretty effective, but requires more
than just code, i.e., good tests that exercise the program as
much as possible or an extensive history of software revi-
sions in the repository. The latter is typically not available
for new projects and the former guarantees accuracy, but
at the cost of not covering the whole code base and being

highly dependent on the quality of the test suite.
In own earlier work, we have created JADET, a tool for

detecting object usage anomalies [33]. JADET focuses on
whole usage patterns instead of preconditions and focuses
only on methods, in calls to which the object participated,
without taking the information about it being a parame-
ter, etc. into account. In contrast, OP-M learns and
checks as which specific parameter the object was used.

Thus, OP-M can distinguish between objects passed
to the same methods, but as different parameters, and pro-
vide a much more fine-grained picture. Furthermore, JADET

handles conditional preconditions dependent on the return
value of earlier methods (such as next() being called only
if hasNext() returns true).

There are also other differences: OP-M checks each
object passed to the callee for being a violation and JADET

looks only at callers as a whole. This means that if some
caller contains more than one call to a specific callee, and at
least one of them is correct and one incorrect, JADET would
not be able to find a defect, because the correct usage would
overshadow the incorrect one. The two defects that crash
AJ are in methods that contain two usages of an itera-
tor, with one being correct and another one not; neither of
these could be detected by JADET.

5. Conclusions and Consequences

In modern object-oriented programs, most complexity
stems not from within the methods but from method compo-
sitions. OP-M both addresses and leverages this com-
plexity. It learns from actual method usage and detects de-
viant method compositions, thus automatically discovering
a surprisingly high number of both subtle and blatant de-
fects in well-tested production code.

As OP-M learns from code, it automatically adapts
to the project conventions at hand, making it orthogonal to
approaches that check for fixed patterns. The approach is
lightweight and easily scales to large bodies of code.

Despite these successes, we see much room for improve-
ment. Our future work will focus on the following topics:

Procedural languages. Parameters are a part of every pro-
gramming language, and therefore our approach eas-
ily extends to other languages. C and C++ program-
mers, for instance, could benefit from operational pre-
conditions such as “For close(int fd), the param-
eter fd normally stems from a call to open() and is
used in calls to read() and write() before the call to
close().” The challenge, of course, is to develop and
apply appropriate static analysis tools.

Interprocedural analysis. Right now, our analysis detects
anomalies only within procedures—it is an intraproce-
dural analysis. One may argue that going interproce-

9

dural would give further advantages, such as consid-
ering what happens inside a function called. Unfortu-
nately, breaking this abstraction barrier brings risks in
our context. As an example, consider the code

Thing t = ThingFactory.makeThing();

doSomething(t);

where makeThing(), among others, eventually in-
vokes the Thing constructor—which we can find out
via interprocedural analysis. Thus, we could make
the Thing constructor an operational precondition for
doSomething(). This would be an error, though,
because the point of ThingFactory is to use only
ThingFactory for creating Thing objects. Break-
ing the abstraction barrier via interprocedural analysis
brings opportunities, but also risks, and our future re-
search will investigate when and how to use it.

Usage abstractions. Our current model of operational pre-
conditions requires specific sequences of events, in-
cluding method calls. However, anomalies in parame-
ter usage can only be detected if there are sufficiently
many “normal” instances to learn from—and there are
many ways to achieve the state required by a function.
We want to search for abstractions that callers may
have in common, even if the parameters provided have
different sequential constraints associated with them.
Possible abstractions include common “deep” callees,
as inferred from interprocedural analysis, or common
type transformations.

Ranking violations. Most methods only have a small
number of callers to learn from. The resulting low
support is not so much a challenge for detecting

OP violations, but becomes a challenge when rank-

ing violations—in other words, telling programmers
which violations to focus upon first, and thus reduc-
ing the number of false positives. We expect usage ab-
stractions, as discussed above, to provide higher sup-
port and thus assist in ranking violations effectively.

Early programmer support. Once mined, operational
preconditions can be easily integrated into the pro-
gramming environment, making recommendations on
how to compose method invocations—and how to
avoid errors. Likewise, operational preconditions can
become part of the documentation, pointing program-
mers to functions that may be relevant for their task.

All in all, existing code examples form a resource that is
still seldom tapped for program analysis. As long as there
are more good examples than bad examples to learn from,
we can leverage the “good” code to identify the most blatant
“bad” code. The fact that such learning and detecting can

be done automatically, as realized in the OP-M tool,
should bring some promise and relief.

For future and related work regarding OP-M and
mining object usage, see

http://www.st.cs.uni-sb.de/models/

Acknowledgments. Irina Brudaru, Martin Burger, Valentin
Dallmeier, Michael D. Ernst, Yana Mileva and Venkatesh
Prasad Ranganath provided helpful and constructive com-
ments on earlier revisions of this paper. Patrick Cousot and
Michael D. Ernst sparked inspiring discussions. Andrzej
Wasylkowski is funded by the DFG-Graduiertenkolleg
“Leistungsgarantien für Rechnersysteme”.

References

[1] Proc. of the 10th European Software Engineering Confer-

ence held jointly with 13th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2005,

Lisbon, Portugal, September 5-9, 2005, 2005.
[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns

as partial orders from source code: from usage scenarios to

specifications. In ESEC-FSE ’07, pages 25–34, 2007.
[3] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of

interface specifications for Java classes. In POPL ’05: Proc.

of the 32nd ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, pages 98–109, 2005.
[4] G. Ammons, R. Bodík, and J. R. Larus. Mining specifi-

cations. In POPL ’02: Proc. of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, pages 4–16, 2002.
[5] S. Antoy and D. Hamlet. Automatically checking an imple-

mentation against its formal specification. IEEE Transac-

tions on Software Engineering, 26(1):55–69, 2000.
[6] T. Ball and S. K. Rajamani. Automatically validating tem-

poral safety properties of interfaces. In SPIN ’01: Proc. of

the 8th International SPIN Workshop on Model Checking of

Software, pages 103–122, 2001.
[7] J. E. Cook and A. L. Wolf. Discovering models of soft-

ware processes from event-based data. ACM Transactions

on Software Engineering and Methodology, 7(3):215–249,

1998.
[8] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller.

Mining object behavior with ADABU. In WODA ’06: Proc.

of the Fourth International Workshop on Dynamic Analysis,

pages 17–24, 2006.
[9] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect

localization for Java. In ECOOP ’05, 2005.
[10] R. DeLine and M. Fähndrich. Typestates for objects. In

ECOOP ’04, volume 3086 of Lecture Notes in Computer

Science, 2004.
[11] T. Eisenbarth, R. Koschke, and G. Vogel. Static object trace

extraction for programs with pointers. Journal of Systems

and Software, 77(3):263–284, 2005.
[12] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.

Bugs as deviant behavior: a general approach to inferring

errors in systems code. In SOSP ’01: Proc. of the 18th ACM

10

http://www.st.cs.uni-sb.de/models/

Symposium on Operating Systems Principles, pages 57–72,

2001.
[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to sup-

port program evolution. IEEE Transactions on Software En-

gineering, 27(2):99–123, 2001.
[14] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Ef-

fective typestate verification in the presence of aliasing. In

ISSTA ’06: Proc. of the International Symposium on Soft-

ware Testing and Analysis, pages 133–144, 2006.
[15] M. Fowler. Refactoring. Improving the design of existing

code. Addison-Wesley, 1999.
[16] B. Ganter and R. Wille. Formal Concept Analysis: Mathe-

matical Foundations. Springer, Berlin – Heidelberg – New

York, 1999.
[17] C. Ghezzi, A. Mocci, and M. Monga. Efficient recovery of

algebraic specifications for stateful components. In IWPSE

’07: Ninth international workshop on Principles of software

evolution, pages 98–105, 2007.
[18] J. Henkel and A. Diwan. Discovering algebraic specifica-

tions from Java classes. In ECOOP ’03, volume 2743 of

Lecture Notes in Computer Science, pages 431–456, 2003.
[19] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive

interfaces. In ESEC/FSE-13 [1], pages 31–40.
[20] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN

Notices, 39(12):92–106, 2004.
[21] S. Kim, K. Pan, and J. E. E. James Whitehead. Memories

of bug fixes. In FSE-14: Proc. of the 14th ACM SIGSOFT

International Symposium on Foundations of Software Engi-

neering, pages 35–45, 2006.
[22] Z. Li and Y. Zhou. PR-Miner: automatically extracting im-

plicit programming rules and detecting violations in large

software code. In ESEC/FSE-13 [1], pages 306–315.
[23] C. Lindig. Mining patterns and violations using concept

analysis. Technical report, Saarland University, Software

Engineering Chair, Germany, June 2007. Avaliable from

http://www.st.cs.uni-sb.de/publications/;

the software is available from

http://code.google.com/p/colibri-ml/.
[24] C. Liu, E. Ye, and D. J. Richardson. LtRules: an automated

software library usage rule extraction tool. In ICSE ’06:

Proc. of the 28th International Conference on Software En-

gineering (tool demonstrations), pages 823–826, 2006.
[25] B. Livshits and T. Zimmermann. DynaMine: finding com-

mon error patterns by mining software revision histories. In

ESEC/FSE-13 [1], pages 296–305.
[26] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid

mining: helping to navigate the API jungle. In PLDI ’05:

Proc. of the ACM SIGPLAN 2005 Conference on Program-

ming Language Design and Implementation, pages 48–61,

2005.
[27] J. Quante and R. Koschke. Dynamic protocol recovery. In

WCRE ’07: Proc. of the 14th Working Conference on Re-

verse Engineering, pages 219–228, 2007.
[28] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static

specification inference using predicate mining. In PLDI ’07:

Proc. of the 2007 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 123–134,

2007.

[29] S. P. Reiss. Specifying and checking component usage. In

AADEBUG ’05: Proc. of the Sixth International Symposium

on Automated and Analysis-Driven Debugging, pages 13–

22, 2005.
[30] A. Rountev, O. Volgin, and M. Reddoch. Static control-flow

analysis for reverse engineering of uml sequence diagrams.

In PASTE ’05: Proc. of the 6th ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and engi-

neering, pages 96–102, 2005.
[31] N. Sahavechaphan and K. Claypool. XSnippet: mining for

sample code. In OOPSLA ’06: Proc. of the 21st Annual

ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, pages 413–

430, 2006.
[32] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specifi-

cation mining using automata-based abstractions. In ISSTA

’07: Proc. of the 2007 international symposium on Software

testing and analysis, pages 174–184, 2007.
[33] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object

usage anomalies. In ESEC-FSE ’07, pages 35–44, 2007.
[34] W. Weimer and G. C. Necula. Mining temporal specifica-

tions for error detection. In TACAS ’05: Proc. of the 12th

International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 461–476, 2005.
[35] C. C. Williams and J. K. Hollingsworth. Recovering sys-

tem specific rules from software repositories. In MSR ’05:

Proc. of the 2005 International Workshop on Mining Soft-

ware Repositories, pages 1–5, 2005.
[36] T. Xie, E. Martin, and H. Yuan. Automatic extraction of

abstract-object-state machines from unit-test executions. In

ICSE ’06: Proc. of the 28th International Conference on

Software Engineering, pages 835–838, 2006.
[37] T. Xie and J. Pei. MAPO: mining API usages from open

source repositories. In MSR ’06: Proc. of the 2006 Inter-

national Workshop on Mining Software Repositories, pages

54–57, 2006.
[38] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perra-

cotta: mining temporal API rules from imperfect traces. In

ICSE ’06: Proc. the 28th International Conference on Soft-

ware Engineering, pages 282–291. ACM Press, 2006.

11

http://www.st.cs.uni-sb.de/publications/
http://code.google.com/p/colibri-ml/

	1 . Introduction
	2 . Mining Operational Preconditions
	2.1 . Creating Sequential Constraints
	2.2 . Fine Points of the Analysis
	2.3 . Learning Operational Preconditions
	2.4 . Finding Violations

	3 . Evaluation
	3.1 . Case Study: AspectJ
	3.2 . Other Case Study Subjects
	3.3 . Limitations and Threats to Validity

	4 . Related Work
	4.1 . Learning from Code
	4.2 . Automatic Defect Detection

	5 . Conclusions and Consequences

