
Mining Version Archives for Co-changed Lines
–Extended Version–

Thomas Zimmermann1 Sunghun Kim2 Andreas Zeller1 E. James Whitehead Jr.2
1 Department of Computer Science

Saarland University
Saarbrücken, Germany

{tz, zeller}@acm.org

2 Department of Computer Science
University of California
Santa Cruz, CA, USA

{hunkim, ejw}@cs.ucsc.edu

ABSTRACT
Files, classes, or methods have frequently been investigated in re-
cent research on co-change. In this paper, we present a first study
at the level of lines. To identify line changes across several ver-
sions, we define the annotation graph which captures how lines
evolve over time. The annotation graph provides more fine-grained
software evolution information such as life cycles of each line, fix-
inducing changes in the line level, and related changes: “Whenever
a developer changed line 1 of version.txt she also changed line 25
of Library.java.”

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—corrections, version control; D.2.9
[Management]: Software configuration management

General Terms
Management, Measurement

1. INTRODUCTION
One of the most frequently used techniques for mining version
archives isco-change. The basic idea is that items that are changed
together, are related to each other. These items can be of any
granularity; in the past co-change has been applied to changes in
modules [6], files [2], classes [7], and methods [15]. All these ap-
proaches stopped at the granularity of methods. Applying them to
more fine-grained items such as blocks or lines seemed infeasible,
in particular since they are difficult to identify across versions.

Typically lines are identified by their line number. However,
since lines may be moved within files, e.g., when other lines are
inserted or deleted before, line numbers are not fixed across ver-
sions and thus not suitable as identifiers for co-change analysis.
We abstract line evolution from line numbers by representing each
line as several nodes in a graph (one node for each revision); edges
connect lines (nodes) that evolved from each other. We call this
graph anannotation graph(Section 2).

This paper is an extended version of a paper [16] that appeared in the
proceedings of the Mining Software Repositories workshop that was held
on May, 22–23, 2006 in Shanghai, China. Please cite the workshop version.

Today, many SCM systems such as CVS and Subversion come
with an annotation feature that returns for each line the last mod-
ification. Such information is not enough to track lines across re-
visions. In contrast, using the annotation graph we can build more
general annotation algorithms that returnall past modifications in-
stead of just the last one (Section 3). Such annotations provide
information about the life cycle of lines. Additionally, they in-
crease the precision for the recognition of fix-inducing changes
(Section 4).

In recent research, data mining on co-change information was
used to recommend related locations such as files [14] and meth-
ods [17] after one initial change. In Section 5 we show that this
is also possible for lines: “Whenever a developer changed line 1
of version.txt she also changed line 25 of Library.java.” In Sec-
tion 6 we discuss related work and Section 7 closes the paper with
an outlook on future work.

2. TRACKING LINES
Tracking how lines evolve over time requires the identification of
lines across several versionsof a file. Within one single version,
lines are typically identified by line numbers or in some cases by
their contents. However both cases do not work when applied to
several versions: line numbers may change when other lines are
deleted or inserted, and the content of lines may be modified.

The translation of line numbers is one solution to this problem.
When applied to two versionsr1 andr2, we can use standard text
differencing algorithms, likeGNU diff. As sketched in Figure 1, a
possible result might be that lines 1–9 were not changed, then lines
10–12 were inserted inr2, thus lines 10–15 ofr1 correspond to
lines 13–18 ofr2, etc. This also works for modified parts, where
the differencing algorithm outputs the lines that are related: lines
16–20 ofr1 were changed into the lines 19–23 ofr2.

When analyzing more than two versions, we can compose these
line number translations: As a results we get chains of lines (see
Figure 1): line 15 inr1 corresponds to line 18 inr2, which remains
line 18 inr3 where it was changed.

2.1 What are Annotation Graphs?
To capture how lines evolve over time, we introduce the annotation
graph. The annotation graph is a multipartite graph where each part
corresponds to one version of a file. Within each part/version every
line is represented by a single node; edges between node indicate
that a line originates from another: either by modification or by
movement. Whether a line was changed in a revision is captured
by labels, e.g., bold nodes indicate changes lines.

As an example consider Figure 2 which represents the changes
of Figure 1 in an annotation graph. Edges connect lines that relate

unchanged

unchanged

unchanged
changed

unchanged

unchanged

unchanged

changed

1-9

10-15

16-20

1-9

10-12

13-17

19-23

1-9

10-12

13-17

19-23

18 18

r1 r2 r3

Figure 1: Tracking lines across several versions.

inserted

r2
1

5

9

10
11
12

13

17
18

19

23

r3
1

5

9

10
11
12

13

17

18

19

23

r1
1

5

9

10

15

16

20

modified
modified

Figure 2: Tracking lines with the annotation graph.

to each other across revisions, e.g., line 1 in revisionsr1, r2, and
r3. Modifications such as from lines 16–20 inr1 to lines 19–23
in r2 result in a complete bipartite subgraph for that area. In other
words, every node from 16 to 20 inr1 is connected with every node
from 19 to 23 inr2.

Formally, an annotation graphG = (V, E) for a file withn revi-
sionsr1, . . . , rn (sorted by their creation time) consists of nodes

V =

n[
i=1

{(ri, m) | m ∈ {1, . . . , numberof lines(ri)}}

and edgese = ((ra, la), (rb, lb)) ∈ E for which

1. rb is a direct successor ofra and

2. lb originates fromla—either by modification (contents dif-
fer) or by movement (contents and relative position are
equal)

Additionally, when lines were changed, we label the correspond-
ing nodes with a description of the change such as the author
who changed the lines, or the transaction in which the lines were
changed. To access this information, we define two functionsau-
thor(v) andtransaction(v)wherev = (r, l) represents linel in re-
visionr.

2.2 How to Read GNU’s diff
In order to construct an annotation graph, we need to compare all
subsequent revisions of a file. For computing textual differences,
we use theGNU diff tool. Figure 3 shows a sample output for com-
paring two revisions 1.11 and 1.12 of the file AntUIPlugin.java.
The diff tool returns a list of regions that differ in the two files;
each region is called ahunk.A hunk starts with a so-calledchange
commandwhich describes the kind and the regions of the change
(e.g.,8c8,9). Next come the affected lines of both files (separated
by ---), however, for computing annotation graphs, we only need
change commands.

A change command“consists of a line number or comma-sep-
arated range of lines in the first file, a single character indicating
the kind of change to make, and a line number or comma-separated
range of lines in the second file”(taken from [10]). Basically, there
are three different kinds of changes, each of them results in a dif-
ferent change command.

Modifications fct — The lines in rangef of the first revision
were replaced with the lines in ranget of the second revision.
For example, in Figure 3 the change command8c8,9 tells
us that line 8 of revision 1.11 was replaced by lines 8 and 9
in revision 1.12.

In an annotation graph, modifications result in a complete
bipartite subgraph. In the above example this means, that for
(1.11, 8) there are two outgoing edges, one to(1.12, 8) and
the other to(1.12, 9).

Additions lar — The lines in ranger of the second revision were
inserted after linel of the first revision. For example, in Fig-
ure 3 the change command9a11 means that line 11 was
inserted in revision 1.12 after line 9 of revision 1.11.

For the annotation graph, additions of lines do not result in
any edges, only the positions of following lines have to be
updated.

Deletions rdl — The lines in ranger from the first revision
were deleted; linel is the position where they would have
appeared. For example, in Figure 3 the change command
17d18 means that line 17 was deleted from revision 1.11.

For the annotation graph, deletion of lines do not result in
any edges, only the positions of following lines have to be
updated.

When comparing two text files withGNU diff, we have to specify
several options that are discussed in Section 2.4.

2.3 How to Compute Annotation Graphs
Once we have computed the change commands for all subsequent
revisions, we can use this information to build an annotation graph
for a file.

When computing an annotation graph, one can either start from
the first revision computing forward (to the last revision), or start
from the last revision computing backward. Figure 4 shows an
forward-directedalgorithm that starts with the first revision.

First the algorithm creates nodes for each revision and each line
with the methodcreateNode(see Comment 1). Next, it iterates over
all pairs(revL, revR) of subsequent revisions (Comment 2).

For each pair it computes the differences (hunks) betweenrevL
and revR (Comment 3) which then are sorted by their position
R from in the later revisionrevR (Comment 4). These hunks are
then processed to create edges between nodes (Comment 5):

– for unchanged lines exactly one edge between the matching
linesposLandposR(see Comments 6 and 10);

– for modified lines all possible edges, which means
posL ∈ {L from. . . , L to} andposR∈ {R from. . . , R to}
(see Comment 7);

– for inserted and deleted lines no edges are created.

For modifications and additions, we label the nodes of the later
revision revR with information about the change, such as author
and transaction (see Comment 8). These labels are later used to
compute annotations that are more general than the ones provided
by existing SCM systems (see Section 3).

2.4 How to Use GNU’s diff
Most SCM systems can compute textual differences between two
revisions. However, when we constructed the annotation graph us-
ing hunks computed by thediff and rdiff command ofCVS, we
observed several problems: (1) the computation of differences was
rather slow, (2) the differences were not minimal, thus adding un-
necessary edges to the annotation graph, (3) in some cases, line
feeds were not handled correctly.

To avoid the above problems, we decided to compute the textual
differences with theGNU diff tool. This means, first we checked out
all revisions, and then called thediff command with the following
options:

–text “Treat all files as text.”
In the presence of special charactersdiff treats files as binary
and just returns whether they differ or not. With this option,
we forcediff to treat all files as text files. (Of course, we
do not compare any binary files; the annotation graph makes
only sense for text files.)

–minimal “Try hard to find a smaller set of changes.”
Thediff tool uses optimizations; as a result, the differences
are not always minimal. With this option we disable these
optimization in order to always get the minimal set of differ-
ences.

–strip-trailing-cr “Strip trailing carriage return on input.”
On Windows, lines end with both theline feedandcarriage
returncharacters, but on Unix only with theline feedcharac-
ter. With this option, trailingcarriage returncharacters are
ignored.

The–strip-trailing-cr option turned out to be very effective to ad-
dress thecarriage returnproblem thatdiff andCVS suffer from.
For 7,131 out of the 334,518 revision pairs we investigated for
ECLIPSE, the differences stored in theCVS archive were solely
caused by changes in line termination. In other words, although
there was no actual change by the user, there was a change stored
in theCVS repository.

2.5 How to Recognize Large Modifications
One problem for annotation graphs are changes thatmodify large
parts of a file, since they results in a large number of edges. As an
example consider the left part of Figure 5. When we investigate the
evolution of line 42 and go back in time, we come across a large
modification. If we take this modification into account, line 42
originates from every modified line. Such a result is not reasonable
for evolution analysis.

In order to reduce noise, we treat large modifications not as a
modifications but as combined deletions and additions. This means
that for large modifications, we do not create any edges in the an-
notation graph (see the sketch in the right part of Figure 5).

$ diff AntUIPlugin.java::1.11 AntUIPlugin.java::1.12

8c8,9
< import java.net.*;

> import java.net.MalformedURLException;
> import java.net.URL;
9a11
>
17d18
< import org.eclipse.swt.graphics.Font;
24c25,31
...
51c61,68
...

Figure 3: Sample output of GNU diff

// 1: Create nodes
for (int i = 0; i < revisions.length; i++) {

for (no = 1; no <= numberOfLines(revisions[i]) {
createNode (revisions[i], no);

}
}

// 2: Create edges
for (int i = 1; i < revisions.length; i++) {

Revision revL = revisions[i-1];
Revision revR = revisions[i];

// 3: Compute difference between revisions
Hunk[] hunks = computeDifferences(revL, revR);

// 4: Sort hunks ascending by R_from.
Arrays.sort(hunks);

// 5: Iterate over all hunks
int posL = posR = 1;
for (int j = 0; j < hunks.length; j++) {

Hunk hunk = hunks[j];

// 6: Create edges for unchanged lines
while (posL < hunk.L_from() && posR < hunk.R_from()) {

createEdge (revL, revR, posL, posR);
posL++; posR++

}

// 7: Create edges for modified lines
if (hunk.isChange()) {

for (int l = hunk.L_from(); l < hunk.L_to(); l++) {
for (int r = hunk.R_from(); r < hunk.R_to(); r++) {

createEdge (revL, revR, l, r);
}

}
}

// 8: Set labels for changed and inserted lines
if (hunk.isChange() || hunk.isDeletion()) {

for (int r = hunk.R_from(); r < hunk.R_to(); r++) {
labelNode (revR, r, ...);

}
}

// 9: Update positions
if (hunk.isChange() || hunk.isDeletion()) {

posL = hunk.L_to() + 1;
}
if (hunk.isChange() || hunk.isAddition()) {

posR = hunk.R_to() + 1;
}

}

// 10: Copy edges for unchanged lines
while (posL < hunk.L_from() && posR < hunk.R_from()) {

createEdge (posL, posR);
posL++; posR++

}
}

Figure 4: Algorithm for computing an annotation graph

large modification ignore large modifications

42 42

Figure 5: Ignoring huge modifications for annotation graphs.

$ cvs annotate -r 1.17 Foo.java
. . .

19: 1.11 (john 12-Feb-03): public int a() {
20: 1.11 (john 12-Feb-03): return i/0;

. . .
39: 1.10 (mary 12-Jan-03): public int b() {
40: 1.14 (kate 23-May-03): return 42;

. . .
59: 1.10 (mary 17-Jan-03): public void c() {
60: 1.16 (mary 10-Jun-03): int i=0;

. . .

Figure 6: CVS annotations for Foo.java

For recognizing large modifications we use a heuristic. Let
lengthL andlengthR be the lengths of the left (L) and right (R) re-
gion of a hunkfct , andfile lengthL andfile lengthR be the lengths
of the corresponding files. A hunk is a large modification if one of
the following conditions hold:

– Region lengths exceed a threshold

lengthL > max(α · file lengthL; β)
∨ lengthR > max(α · file lengthR; β)

– Ratio of region lengths exceeds a threshold

lengthL
lengthR

<
1

γ
∨ γ <

lengthL
lengthR

The first condition recognizes changes that affect large parts of a
file, in contrast, the second one recognizes changes that insert or
delete large portions to or from a region. For our experiments, we
usedα = 0.10 andβ = γ = 4.

3. ANNOTATING LINES
Most SCM systems come with an annotation feature that returns
for each line when it was inserted and by whom. For instance, the
CVS annotations in Figure 6 for revision 1.17 of file Foo.java, tell
us that line 39 was inserted by Mary in revision 1.10 and line 40
was inserted by Kate in revision 1.14. In this section, we briefly
show how to compute such annotations using the annotation graph.
While SCM systems typically return only information about the
last change, the annotation graph can provide more general anno-
tations that collect information aboutall past changes.

Annotating with the last change. When computing annotations
for a revisionrs, we perform for each linels a backward-
directed breadth-first search in the annotation graph, starting
from node(rs, ls). The search stops when we visit a node
(rx, lx) that is labeled as a change (either the line was added

or modified). We then annotate the linels with information
from revisionrx, such as the revision identifier, the author, or
the time of the change. Note that for a linels the last change
is unique, thuslx andrx are unique too. It may also hold that
rs = rx in case(rs, ls) is already labeled as a change.

Annotating with all changes. When annotating a revisionrs with
all changes, we also perform for each linels a backward-
directed breadth-first search in the annotation graph, starting
from node(rs, ls). However, we do not stop when visiting a
changed node; instead we collect for every visited node that
is labeled as a change, its information in (multi)sets. Once
the breadth-first search is completed, we annotate the linels
with these sets.

4. FIRST APPLICATIONS
In this section, we present first applications for the annotation
graph. We show how to investigate thelife cycles of linesand how
to improve the localization of fix-inducing changes.

4.1 Life Cycle of Lines
In order to investigate the life cycle of lines for the complete
ECLIPSEproject (snapshot 2005-11-23) we annotated all text files
with information aboutall past changes. In particular, we collected
the revision identifiers and the authors. Additionally, we ignored
lines containing whitespace or single curly braces. Computing the
annotations took approximately 10 hours for 31,950 files.1Using
these annotations we are able to provide answers to the following
questions.

How frequently are lines changed?.We computed for each
line thechange count, that is the number of distinct revisions in its
annotation. Note that we also counted the addition of a line as a
change. Figure 7 shows the distribution of the change count broken
down to different file extensions. We observe that most lines are
changed only one time, in other words, they are inserted to a file
and never touched again. This is the case for almost every line in
.dtd and.txt files. In contrast, lines in.properties files are
more frequently modified (44% at least once). Such files are used
to separate properties (e.g., text messages) from the actualECLIPSE
source code.

How many developers change a line?.We repeated the
above experiment, but instead of counting lines, we counted how
many different developers change a line. Figure 8 shows the results,
once again broken down to file extensions. For most file extensions,
we observe that more than 90% of all lines are changed by only one
author. The only exceptions are.htm (85%), .java (86%), and
.properties (67%).

What are the most frequently changed lines?.Figure 9
shows most frequently changed lines ofECLIPSE. We observe that
most of these lines store version numbers. The line at the third
position (that contains the copyright notice) has obviously been
counted too often. This is because it was once changed together
with the line containing the version (see position 1 of the list) in
the same hunk. We will address such problems by implementing
origin analysis for lines (see our future work in Section 7).

1All experiments were run on an Opteron cluster using eight pro-
cessors, each with 2 Mhz and 2 GB memory.

file revision line count line contents

. . . /jdt/internal/compiler/batch/messages.properties 1.474 17 347 compiler.version = 0.624, pre-3.2.0 milestone-4

org.eclipse.swt/Eclipse SWT/common/version.txt 1.199 1 196 version 3.215

. . . /jdt/internal/compiler/batch/messages.properties 1.474 18 188 compiler.copyright = Copyright IBM Corp 2000,
2005. All rights reserved.

. . . /commonj2me/org/eclipse/swt/internal/Library.java 1.188 25 180 static int MINORVERSION = 215;

. . . /commonj2se/org/eclipse/swt/internal/Library.java 1.192 25 180 static int MINORVERSION = 215;

org.eclipse.jdt.doc.isv/jdtOptions.txt 1.57 4 29 -classpath @rt@;../org.apache.ant/lib/ant.jar;../org.
eclipse.debug.core/@dot;[. . . many other classpath
entries follow]

Figure 9: Most frequently changed lines inECLIPSE.

.xml

.txt

.properties

.java

.ini

.html

.htm

.exsd

.dtd

88%

100%

56% 19% 11% 14%

77% 13%

78% 15%

92%

75% 15%

90% 7%

100%

1 change 2 changes 3 changes >3 changes

Figure 7: How frequently are lines changed?

4.2 Fix-Inducing Changes
Fix-inducing changes indicate potential bug introductions [13].
While modification requests can give only thelocationof a bug, fix-
inducing changes provide thetimewhen a bug was introduced. Fix-
inducing changes can be used to compute bug occurrence statistics,
classify buggy changes, and mine bug introduction patterns.

Locating fix-inducing changes..We locate fix-inducing
changes by mining change histories in SCM systems. First, we
identify bug-fixes based on the change log messages that are sup-
plied with a change. For example, we can identify bug-fix changes
by looking for keywordslike “Fixed” or “Bug” as introduced by
Mockus and Votta [11]. Once we know that a revision is a bug-fix,
we annotate each line of the preceding revision with the most recent
author and revision that changed this line to identify fix-inducing
changes.

For example, suppose the change log at revision 21 states “Fixed
bug #355”, which indicates that it is a bug-fix. One file was
changed in revision 21 (between revision 20 to revision 21) as
shown in Figure 10. There are three kinds of changes: deletion,
modification, and addition. To locate fix-inducing changes we need
the lines of revision 20, since by deleting or modifying those lines
a problem was fixed.

Assume a bug was fixed by deleting three lines in revision 20
(see Figure 10). Since they were deleted, the lines likely have intro-
duced the bug. Using SCMannotate, we get the revisions in which

.xml

.txt

.properties

.java

.ini

.html

.htm

.exsd

.dtd

92%

99%

67% 22% 7%

86% 11%

96%

96%

85% 9%

95%

100%

1 author 2 authors 3 authors >3 authors

Figure 8: How many developers change a line?

foo {

}

File at revision 20 File at revision 21

rev author

3 hunkim
3 hunkim
9 ejw

SCM annotation

Deletion

Modification

Addition

bar {
...
}

file at revision 3

Figure 10: Finding fix-inducing changes in the file level using
textual differences and annotations.

these lines were initially added. The first two lines were added in
revision 3, and the third line was added in the revision 9. Thus
we identify the file changes between revision 2 and 3 and between
revision 8 and 9 as fix-inducing changes [13].

Problems for fine-grained fix-inducing changes..A
problem occurs when we try to locate fix-inducing changes on en-
tity level (such as function or methods). Suppose the deleted source
code in revision 20 was part of the ’foo’ function (see Figure 10).
Note thatannotationsof SCM systems such as CVS or Subver-
sion includes only revision and author information. This means, we
know the first two lines in Figure 10 were added in revision 3 by
’hunkim’, but we do not know the actual line numbers in revision 3.
So in past research, it was assumed that the lines in revision 3 are

Fix-inducing changes
without annotation graph

Fix-inducing changes
with annotation graph

False positive (8.3%) Common False negative (6.5%)

1,012 11,254 776

Figure 11: Fix-inducing changes identified in the method level
with and without annotation graphs. We used 5,000 revisions
(from 06/2001 to 07/2004) of theECLIPSE (org.eclipse.jdt.core)
project. Without the annotation graph, identified fix-inducing
changes have 8.3% false positive and 6.5% false negatives (total
14.8% errors).

part of the ’foo’ function which was marked as a fix-inducing, al-
though it is not guaranteed that it existed in revision 3.

Suppose that at revision 3 the ’foo’ function does not exist, and
only the ’bar’ function exists shown in Figure 10. Then our as-
sumption is wrong and the ’foo’ function in revision 3 is not a fix-
inducing change (false positive). Since the SCM annotation does
not provide the line number of the annotated lines, it is not feasible
to identify the right function that includes the changed lines.

Improving precision with annotation graphs..The anno-
tation graph can address the problem by providing line level evolu-
tion information including line numbers in each revision. We can
then simple identify the function that includes the annotated lines
using line numbers provided by the annotation graph.

To demonstrate the usefulness of annotation graphs for locat-
ing fix-inducing changes, we identified method level fix-inducing
changes of theECLIPSE(org.eclipse.jdt.core) projectwith andwith-
out using annotation graphs. The left circle in Figure 11 shows
the count of method level fix-inducing changes identified without
using the annotation graph; the right circle shows the sane count
when using the annotation graphs. Without the annotation graph
we have about 8.3% false positive and 6.5% false negative (total
14.8% errors) fix-inducing changes. Thus annotation graphs pro-
vide information for accurate fix-inducing change identification.

5. FINDING RELATED LINES
In this section, we show how to compute related lines using fre-
quent pattern mining. In order to create the input for data mining,
we annotated all lines ofECLIPSE(snapshot 2005-11-23) with all
past changes. However, instead of revision ids that are only unique
per file, we used the corresponding transaction ids. As a result, we
get for every line the set of transactions that changed this line is
the past. By using transactions instead of revisions, we are able to
recognize patterns that are spread across several files.

For our experiments with frequent pattern mining, we used the
Apriori algorithm [1]. In order to keep the complexity low, we
applied the following optimizations:

– ignore lines containing whitespace or just a single curly brace

– investigate only modifications (not additions)

– combine lines with exactly the same change history to blocks
and use blocks instead of lines as input for mining

Using the above optimizations, we could reduce the size of the in-
put for data mining from 4,493,244 changes on lines to 255,778
changes on blocks and the calculation time to 19 seconds. On the
new input we mined for all patterns that had a minimum support
count of 23. The support count tells us how frequently lines that
are part of a pattern have been changed together in the past. For
lower support thresholds the computation did either not finish or
ran out of memory (more than 16G). Improving the mining perfor-
mance will remain future work.

Because of the high support count threshold we found only 29
patterns and only two them were interesting. The first pattern was
found in file plugin.xml where several lines defining icons. These
lines were changed together 23 times.

line 666: icon=”nl/icons/full/obj16/packageobj.gif”
676: icon=”nl/icons/full/elcl16/staticco.gif”
686: icon=”nl/icons/full/elcl16/constantco.gif”
717: icon=”nl/icons/full/obj16/packageobj.gif”
727: icon=”nl/icons/full/elcl16/staticco.gif”
737: icon=”nl/icons/full/elcl16/constantco.gif”
750: hoverIcon=”nl/icons/full/elcl16/exccatch.gif”
752: disabledIcon=”nl/icons/full/dlcl16/exccatch.gif”
753: icon=”nl/icons/full/elcl16/exccatch.gif”
762: icon=”nl/icons/full/obj16/packageobj.gif”
776: icon=”nl/icons/full/obj16/packageobj.gif”
808: hoverIcon=”nl/icons/full/etool16/runsbook.gif”
810: disabledIcon=”nl/icons/full/dtool16/runsbook.gif”
812: icon=”nl/icons/full/etool16/runsbook.gif”

The second pattern was spread across three different files: a text
file called version.txt, and two Java files, both named Library.java,
but within different directories. The lines contained information
about the minor version of an SWT component and were change
171 times together.

version.txt line 1: version 3.215
j2me/. . . /Library.java, line 25: static int MINORVERSION = 215;
j2se/. . . /Library.java, line 25: static int MINORVERSION = 215;

Using the above pattern, we can infer association rules such as:
“Whenever a developer changed line 1 of version.txt she also
changed line 25 of Library.java.”Such a rule holds with a high
confidence of 87% (171 out of 196 changes).

6. RELATED WORK
In this section we discuss work that is related to annotation graphs.

Annotating revisions. Chen et al. developed the CVSSearch
tool that annotates source code with the log messages from the last
code change and uses this information to guide programmers using
textual similarity[5]. Hassan and Holt annotated static dependency
graphs withsticky notes. A sticky note for a dependency contains
the developer who created it, including the time when it was created
and the log message that was provided with that change. In contrast
to the work by Chen et al. and Hassan and Holt, the annotation
graph considersall changes and not only the last ones.

Related changes.Ying et al. [14] and Zimmermann et al. [17]
applied data mining on co-change information in order to recom-
mend related locations such as files or methods. We applied the
same data mining techniques, however, our focus was on lines and
not on coarse-grained items such as methods or files.

Origin analysis. It is a common understanding that identifying
the same entity such as module, file, method, and function between
revisions is important for software evolution related analysis. Most
software evolution researchers use entity names (such as file names
and function names) as entity identifiers based on the assumption

that each entity is uniquely identifiable by its name over revisions.
Unfortunately names change over time. Godfrey et al. [8] and Kim
et al. [9] proposed algorithms called origin analysis, which identify
the same entities over revisions by computing entity similarities—
even when entity name changes. Origin analysis is similar to our
work in that origin analysis tries to map entities over revisions,
while the annotation graph maps lines over revisions. However,
origin analysis is very coarse-grained entity mapping compared to
the annotation graph. Origin analysis can benefit from annotation
graphs, since observing mapped lines over revisions can provide
a simple way to track entities such as functions and methods and
detect entity name changes.

Small changes. Sliwerski et al. showed how to locate fix-in-
ducing changes in version archives [13]. A subset of fix-inducing
changes has been investigated under the namedependenciesby Pu-
rushothaman and Perry [12] to measure the likelihood that small
changes introduce errors. Their dependency concept is similar to
the annotation graph, however our work focuses on the annotation
of line evolution in order to compute related changes.

Visualization. CCVisu provides a visualization to show a clus-
tering layout for co-changed entities [3]. Nodes represent entities,
and energy models are used to layout and cluster nodes. The ba-
sic idea of energy models is making entity nodes bigger and closer
if they changed together. CCVisu reveals related groups of entities
and allows developers to detect abnormal co-changes. For example,
we can identify related entities in cluster groups, which are gath-
ered together in the visualization. Suppose each node color repre-
sents modules of the corresponding entity. Then clusters with many
different colored nodes indicate a violation of modularization—
entities of many different modules are changing together too often.
Using the energy models and layout algorithms of CCVisu, we can
visualize line level co-changes in order to identify related lines and
detect abnormalities.

7. CONCLUSION
In this paper we presented the annotation graph which captures
the evolution of lines. With this graph we carried out a first in-
vestigation of the life cycle of lines and improved the localization
of fix-inducing changes for fine-grained entities such as classes or
methods. Additionally, we pointed out that it is possible to find
related lines with co-change analysis using the annotation graph.
However, data mining on co-change is still expensive. Thus our
future work will focus on improving the mining performance and
exploring other mining techniques.

Origin analysis on lines. Modifications result in a complete bi-
partite subgraph, since we cannot figure out which lines are
changed to which lines (see Section 2.2). We will apply ori-
gin analysis [8, 9] in the line level to identify the origin of
each line. This will lead to more precise annotation graphs.

Large modifications. The parameters for recognizing large mod-
ifications (see Section 2.5) were selected after a manual in-
spection of several code changes. We are planning a sensi-
tivity analysis to determine how our results depend on the
selection of these parameters.

Increase mining performance. Frequent pattern mining on line
level turned out to be too extensive. As a first optimization
we combined lines that shared the same history to blocks.
This yielded first results, however only for patterns with high
support count values. Currently, we investigate other opti-
mizations to find interesting patterns that have a low support.

Visualize evolution of lines. Using the models and layout algo-
rithms, such as the ones implemented in EpoSee [4] or
CCVisu [3], we plan to visualize line level co-changes to
identify related lines and to detect abnormalities.

Build tool support. We are currently developing plug-ins that will
integrate annotation graphs into theECLIPSE development
environment. The user will be able to explore the evolution
of lines with anannotation graph browserand related lines
will be automatically displayed with tool tips.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors,Proceedings of
20th International Conference on Very Large Data Bases (VLDB 1994), pages
487–499. Morgan Kaufmann, September 1994.

[2] J. Bevan and E. J. Whitehead Jr. Identification of software instabilities. In
Proceedings of the 10th Working Conference on Reverse Engineering (WCRE
2003), pages 134–145, Victoria, Canada, 2003. IEEE Computer Society.

[3] D. Beyer and A. Noack. Clustering software artifacts based on frequent
common changes. InProceedings of the 13th IEEE International Workshop on
Program Comprehension (IWPC 2005), pages 259–268. IEEE Computer
Society Press, Los Alamitos (CA), 2005.

[4] M. Burch, S. Diehl, and P. Weißgerber. Visual data mining in software archives.
In Proceedings of the 2005 ACM symposium on Software visualization (SoftVis
2005), pages 37–46, New York, NY, USA, 2005. ACM Press.

[5] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and A. Michail.
CVSSearch: Searching through source code using CVS comments. In
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM 2001), pages 364–373, Florence, Italy, 2001. IEEE Computer Society.

[6] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. InProceedings of the International Conference on
Software Maintenance (ICSM 1998), pages 190–197, Bethesda, Maryland,
USA, 1998. IEEE Computer Society.

[7] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting
logical couplings. InProceedings of the 6th International Workshop on
Principles of Software Evolution (IWPSE 2003), pages 13–23, Helsinki,
Finland, 2003. IEEE Computer Society.

[8] M. W. Godfrey and L. Zou. Using origin analysis to detect merging and
splitting of source code entities.IEEE Transactions on Software Engineering,
31(2):166–181, 2005.

[9] S. Kim, K. Pan, and E. J. Whitehead Jr. When functions change their names:
Automatic detection of origin relationships. InProceedings of the 12th Working
Conference on Reverse Engineering (WCRE 2005), pages 143–152, Pittsburgh,
Pennsylvania, USA, 2005. IEEE Computer Society.

[10] D. MacKenzie, P. Eggert, and R. Stallman. Comparing and merging files.
http://www.gnu.org/software/diffutils/manual/, 2002.

[11] A. Mockus and L. G. Votta. Identifying reasons for software changes using
historic databases. InProceedings of the International Conference on Software
Maintenance (ICSM 2000), pages 120–130, San Jose, California, USA, 2000.
IEEE Computer Society.

[12] R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of small
source code changes.IEEE Transactions on Software Engineering,
31(6):511–526, 2005.

[13] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In
Proceedings of the 2005 International Workshop on Mining Software
Repositories (MSR 2005), St. Louis, Missouri, USA, 2005. ACM Press.

[14] A. T. T. Ying, G. C. Murphy, R. T. Ng, and M. Chu-Carroll. Predicting source
code changes by mining change history.IEEE Transactions on Software
Engineering, 30(9):574–586, 2004.

[15] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system
architecture (or not). InIWPSE ’03: Proceedings of the 6th International
Workshop on Principles of Software Evolution, pages 73–84, Helsinki, Finland,
2003. IEEE Computer Society.

[16] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead Jr. Mining version
archives for co-changed lines. InProceedings of the International Workshop on
Mining Software Repositories (MSR), Shanghai, China, may 2006.

[17] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version
histories to guide software changes.IEEE Transactions on Software
Engineering, 31(6):429–445, 2005.

http://www.gnu.org/software/diffutils/manual/

	Introduction
	Tracking Lines
	What are Annotation Graphs?
	How to Read GNU's diff
	How to Compute Annotation Graphs
	How to Use GNU's diff
	How to Recognize Large Modifications

	Annotating Lines
	First Applications
	Life Cycle of Lines
	Fix-Inducing Changes

	Finding Related Lines
	Related Work
	Conclusion
	References

