
HATARI: Raising Risk Awareness

Jacek Śliwerski
International Max Planck Research School

Max-Planck-Institut f ür Infor matik
Saarbrücken, Germany

sliwers@mpi-sb.mpg.de

Thomas Zimmermann · Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany

{tz, zeller}@acm.org

ABSTRACT
As a software system evolves, programmers make changes which
sometimes lead to problems. The risk of later problems signifi-
cantly depends on the location of the change. Which are the loca-
tions where changes impose the greatest risk? Our HATARI proto-
type relates a version history (such as CVS) to a bug database (such
as BUGZILLA) to detect those locations where changes have been
risky in the past. HATARI makes this risk visible for developers
by annotating source code with color bars. Furthermore, HATARI
provides views to browse through the most risky locations and to
analyze the risk history of a particular location.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control, reverse engineering;
D.2.8 [Metrics]: Complexity measures, Process metrics, Product
metrics

General Terms
Management, Measurement, Reliability

1. INTRODUCTION
Developers frequently change software in order to improve quality.
Unfortunately, not all changes are beneficial. Any bug database
will show a significant fraction of problems that are reported some
time after some change has been made.

When it comes to determining the risk of a change inducing a
later problem, the location of the change is a significant factor. In
this work, we attempt to identify the individual risk for all code lo-
cations—by examining, for each location, whether earlier changes
caused problems. Our HATARI1 prototype makes this risk visible
for developers by annotating source code with color bars. Further-
more, HATARI provides views to browse through the most risky
locations and to analyze the risk history of a particular location.

1Hatari is the Swahili word for “risk” or “danger”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

HATARI determines the risk of locations automatically from proj-
ect artifacts—in particular, the project’s version archive (such as
CVS) and the project’s bug database (such as BUGZILLA):

1. HATARI starts with a bug report in the bug database, indicat-
ing a fixed problem. HATARI extracts the associated change
from the version archive, giving us the location of the fix.

2. HATARI determines the earlier change at this location that
was applied before the problem was reported. This earlier
change is the one that caused the later fix, which is why we
call it fix-inducing.

3. For each location, HATARI determines all changes that were
ever applied to the location, and computes the individual risk
of change as a percentage of fix-inducing changes.

Why would one want to know about the past risk of changes?

• Locations that are risky to change are typical candidates for
maintenance, such as extra documentation or restructuring.

• When it comes to quality assurance, changes that occur at
risky locations should get more attention in changing, test-
ing, and reviewing than changes at “safe” places.

In this paper, we demonstrate how HATARI determines risky loca-
tions and makes them usable to the programmer. We also present
benefits for the user, and briefly discuss how HATARI advances be-
yond the state of the art.

2. RISKY LOCATIONS
Every programmer knows that there are locations in the code where
it is difficult to get things right. As an example, suppose you are a
programmer working on the ECLIPSE source code; your task is to
change the function resolveClasspath() in Figure 1. At a first
glance, resolveClasspath() looks like any other function and
should not be too difficult to change. However, its change history
tells us a different story:

Revision 1.3 fixed bug 16313, “NPE out of StandardSourcePath-
Provider”, and added a null pointer check to the function to
avoid NullPointerExceptions (NPE).

Revision 1.4 fixed bug 7999, “Source lookup with Runtime JRE”,
and deleted the complete function resolveClasspath().

Revision 1.5 fixed bug 26681, “Multiple output folder”, and added
a new implementation of resolveClasspath(). This im-
plementation was not perfect, it was revised later in revision
1.7 to deal with several kinds of classpath entries.

107

(1) Risk
annotations

Different
granularities

(3) Risk history
browser

(2) Most risky
locations

Identified fixes and
fix-inducing changes

high
risk

low
risk

Figure 1: The HATARI plug-in for ECLIPSE annotates source code with colors that indicate risk (1). For maintenance, developers
can browse through all risky locations (2) or investigate the risk history of particular locations (3).

Revision 1.7 tried to fixed bug 44877, “Wrong JDK source lookup
if Compile-JDK <> Debug-JDK”, by adding code for a new
entry RuntimeClasspathEntry.CONTAINER .

Revision 1.8 undid the previous fix for bug 44877 in revision 1.7.

Revision 1.10 fixed bug 34297, “allow a launch configuration
classpath to be ’default plus”’, by adding code for a new
entry IRuntimeClasspathEntry.OTHER .

Revision 1.12 fixed bug 29890, “Debug Platform Source Lookup
Facilites” and revised the change in 1.10 to deal with new
cases and added a missing null pointer check.

To cut a long story short, all changes to resolveClasspath()
resulted in later fixes. And the story still goes on: revision 1.15
added a missing else block that was forgotten in revision 1.12.

Obviously, resolveClasspath() is a function that is difficult
to get right—it was changed 9 times, and all of these changes were
fixes. Worse even, 8 out of these 9 fixes directly resulted in an exter-
nally visible problem, as documented in the ECLIPSE bug database.
This means that resolveClasspath() is risky to change—almost
all people who tried got it wrong.2

At this point, note that “risky to change” is different from “fre-
quently fixed”. Although resolveClasspath() is both frequently
fixed as well as risky to change, there are locations A where changes
frequently induce fixes in other locations B. In such cases, the lo-
cations B are frequently fixed. However, blaming B for the prob-
lems would be barking at the wrong tree: Fixes and problems were
induced by the changes in A, which is thus risky to change.

By relating the change history to the bug database, we can lo-
cate this risk of change—and make it visible to developers. Our
2In fact, resolveClasspath() holds the record for being the most
risky location in ECLIPSE.

HATARI prototype annotates locations with color bars that indicate
their risk (see Figure 1). In addition, HATARI provides views to
browse through the most risky locations and to analyze the risk his-
tory of a particular location. In the next sections, we will describe
HATARI’s integration into ECLIPSE and its underlying techniques.

3. HATARI’S ECLIPSE INTEGRATION
Our HATARI prototype integrates risk information into ECLIPSE in
three ways (see Figure 1):

Annotating locations. For each location HATARI measures its past
risk and displays it as a colored box on the left side of the ed-
itor. Inspired by the Emerald tool [4], we use a scale of green
and different shades of red to visualize the risk of change at
a location. These annotations are intended to raise the risk
awareness among developers when they make changes.

Risk history view. If a developer clicks on an annotation, the risk
history view is opened for the location. This view contains
information about past fixes, fix-inducing-changes, and reg-
ular changes. Furthermore, it has functionality to compare
different revisions, so that developers can reconstruct the risk
history of a location (like we did in Section 2). The main use
of this view is for maintenance, e.g., to find out why a partic-
ular location is risky.

Risky locations view. Another tool for maintenance is the risky lo-
cations view which contains a ranking of all locations based
on their risk values.

All that HATARI needs to make it work is a version archive (such as
CVS) and a problem archive (such as BUGZILLA).

108

Bug 42233 was reported.

1.14 1.16

b() was
changed

c() was
changed

a() was
changed

1.11 1.18

Fixed Bug
42233

Changed:
a() b() c()

Figure 2: Locating fix-inducing changes for bug 42233

4. HOW HATARI WORKS
Let us now briefly discuss how HATARI obtains the risk informa-
tion. HATARI proceeds in four automatic steps:

1. HATARI identifies the fixes made to a software system.

2. For each of these fixes, HATARI identifies the fix-inducing
change(s) that last touched the fixed locations.

3. For each of the fix-inducing changes, HATARI determines
their location.

4. Finally, for every location in the source code, HATARI mea-
sures their risk of change.

The following sections provide details on these steps.

4.1 Identifying Fixes
In order to locate fix-inducing changes, HATARI first needs to know
if a change is a fix. While advanced version control systems al-
low the programmer to specify the nature of a change, CVS has no
such feature. Therefore, we identify fixes based on the log mes-
sage that is supplied with a change. Specifically, HATARI looks for
keywords such as “Fix”, as introduced by Mockus and Votta [5] as
well as for references to bug databases, as introduced by Fischer
et al. [3] as well as Čubranić and Murphy [2]. In Figure 2, both
approaches would recognize revision 1.18 as a fix, because of the
keywords “Fixed” and “Bug” and because of a bug identifier in the
bug database “42233”.

In addition to these techniques, we also map user information
from version archives to problem archives and vice versa; the basic
idea is that whenever a problem is marked as “closed” in the bug
database, the most recent change made by this developer is likely
to be the fix that closed the problem [9].

Formally, let B be the set of all bug reports; the set of all changes
is C. HATARI establishes links (b, c) between a bug report b and a
fix c and collects such links in a bug-change relation L ⊆ B × C.

4.2 Locating Fix-Inducing Changes
After HATARI has isolated fixes, it determines the earlier changes
which caused these fixes. We call such changes fix-inducing. Note
that a fix-inducing change also induces the problem which lead
to the fix. Although we’d like to know about problem-inducing
changes, we can only identify the change which lead to the prob-
lem once we have the fix.

Once more, consider the example in Figure 2, where HATARI
has identified the change in revision 1.18 to be a fix. HATARI first
computes the differences between the earlier revision (1.17) and
the fixed revision (1.18). As a result it gets the lines that have been
changed by the fix.

Next, HATARI annotates each line of the earlier revision (1.17)
with the most recent author and revision that touched this line.

Figure 3: Relating changes to locations.

Right now, we use the CVS annotate command, but it is straight-
forward to implement a similar feature for other version control
systems.

HATARI uses these annotations and the set of changed lines to
find candidates for fix-inducing changes. For our example, we as-
sume that lines 20, 40, and 60 have been changed; thus our candi-
dates are the changes leading to revisions 1.11, 1.14, and 1.16.

Finally, HATARI uses the bug database to rule out changes that
cannot be fix-inducing because they have been made after the bug
was reported, i.e., they cannot be real causes for the bug. In our
example, revisions 1.14 and 1.16 are not fix-inducing. Without the
connection to the bug database, they would be marked fix-inducing
and therefore be false positives.

In our example, revision 1.11 is the only fix-inducing change.
Frequently, but not always, such fix-inducing changes introduced
the bug that has been fixed later on. However, such changes are
always unstable and thus risky.

Formally, we define a induced-change relation J ⊆ C × C that
connects two changes ci and cj with each other if and only if cj

changed a line that was introduced in ci; in terms of CVS this means
that ci is included in the annotations of cj−1 for the lines changed
by cj . The induced-change relation can be build for any changes,
regardless whether cj is a fix or not.

For fix-inducing changes, we combine the bug-change relation L
and the induced-change relation J . Every change cd that is later un-
done by a fix cf for a bug report b, is fix-inducing, if b has been re-
ported after cd was performed. Thus the set of fix-inducing changes
F is defined as:

F = {cd | ∃ (cd, cf) ∈ induced-change relation J,
∃ (b, cf) ∈ bug-change relation L,
timestamp(cd) < timestamp(b) < timestamp(cf)}

Note that fix-inducing changes are not known as fix-inducing when
they are made. They can only be identified as fix-inducing when
the corresponding fix is made.

4.3 Assigning Locations to Changes
Before HATARI can investigate the risk of locations, it has to assign
changes to locations. Currently, HATARI supports three different
kinds of locations:

File granularity. We get the affected file directly from the fix-
inducing changes. For this granularity we need no additional
preprocessing.

Class granularity. We assign fix-inducing changes to classes by
mapping the lines changed by a fix to the surrounding class.

Member granularity. We assign fix-inducing changes to mem-
bers of classes, such as methods and fields, by mapping the
lines changed by a fix to the surrounding member.

Zimmermann and Weißgerber describe how to map changed lines
to locations like classes and their members [10]. The idea is sketched

109

in Figure 3, where the change in line 8 affects the class Cat and
the field Cat.COLORS. In the case of HATARI, we can additionally
assume that a fix-inducing change is in the same location as its cor-
responding fix. This reduces the number of revisions that HATARI
has to parse because for one fix there may be several fix-inducing
changes. Using the mapping for fixes, HATARI assigns to each fix-
inducing change the touched locations.

4.4 Measuring Past Risk
Finally, HATARI has to determine the risk of each location in the
source code. We define the past risk of a location e as the likelihood
that a change made to this location was later undone by a fix.

riskpast(e) =
|{cb | cb ∈ F, cb changed e}|
|{c | c ∈ C, c changed e}|

The motivation behind this definition is that unrisky changes are
never touched again or only by changes that introduce new features.
As mentioned before, we can easily assign changes to locations.

Finally, HATARI visualizes this risk for each location, and ranks
the locations according to their risk of change, as shown in Figure1.

5. PRACTICAL BENEFITS
What does the usage of HATARI mean for the programmer? To
start with, HATARI is helpful to make choices: If some task can
be realized in a number of ways, the risk of change at different
locations can be an important factor to consider.

Just as in real life, we cannot always avoid risk. However, know-
ing about risk, we can take appropriate precautions. If a change
has to be made at a risky location, the programmer can examine the
past history, and learn why earlier changes have lead to problems.
Furthermore, a change to a risky location means that extra effort
should be spent on reducing the risk; for instance, changes made to
risky locations may be specially reviewed or tested.

Finally, a high risk of change is an indicator of high factual com-
plexity: How hard is it getting things right? Locations with a high
risk are candidates for measures that reduce complexity, such as re-
structuring or better documentation. Furthermore, risk as an indica-
tor for complexity can help in determining correlated code features,
or in calibrating software metrics.

6. RELATED WORK
HATARI is the first tool to use past risk as an indicator for future
risk, but it is not the first tool to correlate bug reports and version
histories.

The work closest to ours in spirit is the paper “Predicting Risk of
Software Changes” by Mockus and Weiss [6]. Just like Mockus and
Weiss’ work, we focus on predicting the risk of software changes.
However, we rely on the past risk of change to predict the future
risk—rather than relying on indicators like “frequently fixed” or
“size of change”. Furthermore, HATARI predicts the risk uniquely
from the location the change is applied to, and therefore is able
to predict the risk even before an actual change is made—which
allows for identifying those locations where change equals risk.

Several researchers in the past have combined problem and ver-
sion archives to search for locations which are likely to be defec-
tive [8, 7]. In contrast to all these approaches, HATARI does not aim
to predict the number of remaining defects, but the risk of intro-
ducing a new defect when making a change. Furthermore, HATARI
relies on a single, yet highly relevant factor—the risk in the past.

The concept of fix-inducing changes was introduced byŚliwerski
et al. who also presented initial mining results [9]. The similar con-
cept of fix-on-fix changes was originally proposed by Baker and

Eick [1]. However, while fix-on-fix changes focus on the induced
fix, HATARI investigates the original fix-inducing change.

7. CONCLUSION AND CONSEQUENCES
If a code location has caused problems in the past, it is likely to
do so in the future. HATARI identifies and locates this risk. Loca-
tions for which HATARI determines a high risk should be subject to
increased quality assurance, as well as possible restructuring.

On the practical side, HATARI can easily be plugged into exist-
ing projects. In particular, it needs no program analysis or other
knowledge about the process and the artifacts; all that is needed is
a version archive and a bug database. To make the results available
to programmers and managers, we turned HATARI into an ECLIPSE
plug-in that makes the risk of individual code changes visible to the
programmer.

By clicking on a shade, the programmer can explore the past
history, thus learning the earlier changes and induced problems that
occurred at that location. This is a benefit of HATARI: By relying
on one single factor (past risk), it brings much better explanations
than multi-factor metrics which predict risk by curve fitting.

For ongoing information on the HATARI project, see
http://www.st.cs.uni-sb.de/softevo/

Acknowledgments. The HATARI project is funded by the Deutsche
Forschungsgemeinschaft, grant Ze 509/1-1. Valentin Dallmeier and
Stephan Neuhaus provided valuable comments on earlier revisions
of this paper.

8. REFERENCES
[1] M. J. Baker and S. G. Eick. Visualizing software systems. In

Proceedings of the 16th International Conference on
Software Engineering, pages 59–70. IEEE Computer Society
Press, May 1994.

[2] D. Čubranić and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proc. 25th
International Conference on Software Engineering (ICSE),
pages 408–418, Portland, Oregon, May 2003.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proc. International Conference on Software
Maintenance (ICSM 2003), Amsterdam, Netherlands, Sept.
2003. IEEE.

[4] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen,
and J. Mayrand. Emerald: Software metrics and models on
the desktop. IEEE Software, 13(5):56–60, 1996.

[5] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proc. International
Conference on Software Maintenance (ICSM 2000), pages
120–130, San Jose, California, USA, Oct. 2000. IEEE.

[6] A. Mockus and D. M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2):169–180,
April–June 2000.

[7] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In International
Conference on Software Engineering (ICSE), May 2005.

[8] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs
are. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis,
pages 86–96, New York, NY, USA, 2004. ACM Press.

[9] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proc. International Workshop on
Mining Software Repositories (MSR), St. Louis, Missouri,
U.S., May 2005.

[10] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In Proc. International Workshop on
Mining Software Repositories (MSR 2004), pages 2–6,
Edinburgh, Scotland, UK, May 2004.

110

http://www.st.cs.uni-sb.de/softevo/

	Introduction
	Risky Locations
	HATARI's ECLIPSE Integration
	How HATARI works
	Identifying Fixes
	Locating Fix-Inducing Changes
	Assigning Locations to Changes
	Measuring Past Risk

	Practical Benefits
	Related Work
	Conclusion and Consequences
	References

