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ABSTRACT
Mutation testing measures the adequacy of a test suite by
seeding artificial defects (mutations) into a program. If a
mutation is not detected by the test suite, this usually means
that the test suite is not adequate. However, it may also be
that the mutant keeps the program’s semantics unchanged—
and thus cannot be detected by any test. Such equivalent
mutants have to be eliminated manually, which is tedious.

We assess the impact of mutations by checking dynamic
invariants. In an evaluation of our JAVALANCHE framework
on seven industrial-size programs, we found that mutations
that violate invariants are significantly more likely to be de-
tectable by a test suite. As a consequence, mutations with
impact on invariants should be focused upon when improv-
ing test suites. With less than 3% of equivalent mutants, our
approach provides an efficient, precise, and fully automatic
measure of the adequacy of a test suite.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering—Testing and De-
bugging

General Terms
Experimentation

Keywords
Dynamic Invariants, Mutation Testing

1. INTRODUCTION
How do we know a test suite is adequate in finding de-

fects? Among the best ways is mutation testing: seeding
defects into a program and checking whether the test suite
finds them. Such defects can be created automatically, us-
ing a set of mutation operators to change (“mutate”) random
program parts. A mutation that is not detected (“killed”)
by the test suite indicates that the test suite was unable to
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detect the seeded defect—and therefore is likely to miss sim-
ilar, true defects in the code. Test managers can use such
results to improve their test suites such that they detect
these mutants.

Mutation testing has been shown to be an effective mea-
surement for the quality of a test suite [2] and superior to
commonplace assessments such as coverage metrics [27, 8].
However, mutation testing is known to be very expensive. A
well-known issue is its large usage of computing resources.
A less known, but far more significant cost, though, comes
from the problem of equivalent mutants. These are mutants
that leave the program’s overall semantics unchanged—and
therefore cannot be caught by any test suite: The result of
mutation testing—”surviving” mutations not found by the
test suite—thus mixes the most valuable and the least valu-
able mutations in one set. Therefore, when one assesses
surviving mutants, one must first eliminate equivalent mu-
tants. This problem is widespread; its solution is tedious. In
an experiment on a sample of 20 random mutations on the
12,000-line JAXEN program [9], we found 40% of the non-
detected mutations to be equivalent. On average, it took us
30 minutes to assess one single mutation for equivalence. If
we had assessed all 4,110 non-detected mutations, this task
would have cost us 2,055 hours, or two person-years; actu-
ally, it can be assumed that the ratio of equivalent mutants
increases further as we improve the test suite.

The problem of assessing mutation equivalence has been
noted before, but rarely quantified. Frankl et al. [8] state:

Although our experiments were designed to mea-
sure effectiveness, we also observed that using
these criteria, particularly mutation testing, was
costly. Even for these small subject programs, the
human effort needed to check a large number of
mutants for equivalence was almost prohibitive.

In the past, a number of efforts have been attempted to
reduce the cost of equivalent mutants. Various heuristics
based on mutant similarity have been suggested [3]. Static
program analysis, in particular path constraints, can detect
many cases of equivalent behavior [20]. Program slicing can
assist in narrowing down the impact of a mutation [11]. Ge-
netic algorithms have been suggested to specifically evolve
mutants detected by at least one test case [1]. None of these
techniques has yet been shown to scale to large programs.

In this work, we suggest an alternate, novel way to elim-
inate equivalent mutants. Our approach is based on the
assumption that a non-equivalent mutant must impact not
only the program code, but also the program behavior—just
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Figure 1: The JAVALANCHE process. After learning dynamic invariants from test suite execution, JAVALANCHE

instruments the program with invariant checkers (Step 1), generates mutations (Step 2), runs the test suite
on each mutation (Step 3), and ranks mutations by the number of violated invariants. Finally, the tester
(Step 4) improves the test suite to detect the top-ranked mutations.

like a defect must impact program execution to produce a
failure. To characterize the “normal” behavior, we use dy-
namic invariants, learning pre- and postconditions for every
function as observed during its executions. Our hypothesis
is that a mutation which violates such invariants causes dif-
ferent behavior—and therefore is much more likely to also
violate the program’s semantics than a mutation which satis-
fies all learned invariants. We actually propose that testers
focus on those mutations that violate the most invariants
(i.e. have the greatest impact on program behavior), and
still are not caught by the test suite. Our framework, named
JAVALANCHE, is summarized in Figure 1.

In this paper, we explain how to assess the impact of
mutations using dynamic invariants, and we demonstrate
the usefulness of our approach by empirically showing that
mutations that violate invariants are much less likely to be
equivalent. After giving a motivating example (Section 2)
and introducing our mutation framework (Section 3), the
paper makes the following contributions:

1. We present a scalable, effective, and efficient method
to learn the most common invariants (Section 4) and
to check them (Section 5).

2. We demonstrate a novel method for classifying and
ranking the impact of changes (mutations) on invari-
ants (Section 6).

3. Our evaluation shows that focusing on mutations with
the highest impact has a low ratio of equivalent mu-
tants (Section 7)—making mutation testing efficient
and applicable in practice.

After discussing the related work (Section 8), Section 9 closes
with conclusion and consequences.

2. EXAMPLE: MUTATING ASPECTJ
When conducting mutation testing, one eventually wants

the test suite to detect all mutants. There are multiple rea-
sons why a mutant may not be detected, though:

1. It may not be executed. This problem can be addressed
by standard test coverage criteria.

2. It does not impact the program semantics. These are
the ones that are hard to assess.

3. The test suite is unable to detect it. These are the
mutants that help us in improving the test suite, and
the ones we actually look for.

public int compareTo(Object other) {

return 0; 0 ⇒ 1

}

Figure 2: A mutation that is not executed. The
defect induced by the change from 0 to 1 is never
executed (or tested) in ASPECTJ.

Let us present a few mutations to the ASPECTJ compiler,
as applied and assessed by our JAVALANCHE framework.
None of these mutations are caught by the test suite.

Most Java objects implement a compareTo() method, com-
paring individual objects. However, the Checker.compareTo()
method in Figure 2 always returns zero. When JAVALANCHE

mutates it to return a value of one instead—how will this im-
pact the ASPECTJ compiler? In the entire ASPECTJ source
code, there are no less than 165 occurrences of “compareTo”;
also, compareTo() could be called from within built-in Java
classes such as sorted containers.

Fortunately, we do not have to check all these occurrences—
simply because Checker.compareTo() is never executed (nei-
ther by the test suite nor the whole program) and therefore,
no mutation will ever have any impact on any execution.
Non-executed code can be uncovered by mutation testing,
as in this example, but simple statement coverage does so
much more efficiently. In the remainder of this paper, we
assume that mutations are applied only to code executed
during test.

In Figure 2, one might have thought that changing the
return value would always be a non-equivalent mutant, but
this is not the case. Figure 3 shows the compareTo() method
of the ASPECTJ BcelAdvice class, where JAVALANCHE also
increments one return value. This code is executed, so we
actually need to check all explicit (and implicit) call sites.

Callers of Java compareTo() methods are required to only
check for the sign of the return value. It turns out that
the usages of compareTo() in ASPECTJ are no exception.
Therefore, the mutation from +1 to +2 does not change the
semantics of the program—this is a “classic” equivalent mu-
tant. However, a single equality check for the return value
+1 rather than for an arbitrary positive value would make
compareTo() non-equivalent. This is why all call sites have
to be evaluated.1

1Obviously, the problem could be alleviated by precisely
specifying the contract of BcelAdvice.compareTo()—does
it guarantee to return +1, or just a positive number?



public int compareTo(Object other) {
if (!(other instanceof BcelAdvice))
return 0;

BcelAdvice o = (BcelAdvice)other;

if (kind.getPrecedence() !=
o.kind.getPrecedence()) {

if (kind.getPrecedence() >
o.kind.getPrecedence())

return +1; +1 ⇒ +2
else
return -1;

}
// More comparisons...

}

Figure 3: A mutation that has no impact. All users
of BcelAdvice.compareTo() only check for the arith-
metic sign of the return value, making this an equiv-
alent mutant.

public LazyMethodGen getLazyMethodGen(String name,
String signature, boolean allowMissing) {

for (Iterator i = methodGens.iterator(); i.hasNext();){
LazyMethodGen gen = (LazyMethodGen) i.next();
if (gen.getName().equals(name) &&

⇒ ! (gen.getSignature().equals(signature)))
return gen;

}
if (!allowMissing)
throw new BCException("Class " + this.getName() +

" does not have a method " + name +
" with signature " + signature);

return null;
}

Figure 4: A mutation that is not detected. This mu-
tation in the LazyClassGen class changes 39 invariants
of 18 methods, but is not caught by the ASPECTJ

test suite.

Finally, a trickier example. In Figure 4, we see the method
getLazyMethodGen() of the LazyClassGen class in ASPECTJ.
This method takes a method name and signature and returns
a LazyMethodGen object with the same name and signature,
or null. The mutation negates a condition and thus changes
the behavior such that a LazyMethodGen is only returned
when the names match but the signatures do not.

This change impacts not only the behavior of the method
itself, but also violates the inferred pre- and postconditions
of at least 18 other methods scattered all throughout the
program. Yet, this mutation is not detected by any test,
implying that the ASPECTJ test suite is not adequate with
respect to such defects. Although a test triggers this behav-
ior, it fails to check for the caused error. As a consequence,
a test manager should extend the test suite such that this
mutation would be detected, too.

3. GENERATING MUTANTS
Our original motivation for mutation testing was assessing

the adequacy of test suites of large-scale programs. Of the
existing mutation tools such as µJava [14], none met our
requirements in terms of automation and scalability. We
therefore decided to implement our own mutation engine as
the core of JAVALANCHE.

The key features of our implementation are:

Table 1: JAVALANCHE mutation operators

Replace numerical constant. Replace a numerical
constant X by X + 1, X − 1, or 0.

Negate jump condition. Replace a conditional jump
by its counterpart. This is equivalent to negating a
conditional statement or subexpression in the source
code.

Replace arithmetic operator. Replace an arithmetic
operator by another one, e.g. + by −.

Focus on sufficient mutation operators. The idea of se-
lective Mutation is to use a small set of mutation op-
erators that is a sufficiently accurate approximation of
the results obtained by using all possible operators [19].
JAVALANCHE therefore uses the same small set of op-
erators as proposed by Offutt [19] and later adapted
by Andrews et al. [2], listed in Table 1.

Use mutant schemata. Traditional mutation testing tools
produce a new mutated program version for every ap-
plicable mutation possibility. For a system like AS-

PECTJ, this would result in 47,146 different mutated
versions, which are too many to be handled effectively.
To reduce the number of generated versions, we use
mutant schema generation [26]. Mutant schema gen-
eration produces a metaprogram that is derived from
the program under study and contains multiple mu-
tations. Each mutation is guarded by a conditional
statement that can be switched on and off at runtime.

Use coverage data. Not all tests in the test suite execute
every mutant. In order to avoid executing those tests,
we collect coverage information for each test. When
checking mutants, we execute only those tests that are
known to cover the mutated statement.

Since JAVALANCHE works directly on Java byte code, it
also avoids costly recompilation. As shown in Section 7,
JAVALANCHE easily scales up to large-scale programs like
ASPECTJ. The overall development effort into JAVALANCHE

(including learning and checking invariants—see Sections
4 and 5) was 12 person-months.

4. LEARNING INVARIANTS
To deduce invariants, JAVALANCHE relies on the invari-

ant detection engine of DAIKON [7]. Invariants are learned
in three steps: First, we run an instrumented version of the
program and collect a trace of all parameter and field ac-
cesses. Second, we analyze the trace and generate input
files for DAIKON. Finally, we feed those files into DAIKON

to deduce invariants.

Tracing. JAVALANCHE uses ASM [13] to instrument Java
classes. It injects code that writes interesting events
such as field accesses, beginning and end of methods
into a compact trace file. On average, our current
JAVALANCHE implementation produces ∼30 MB/s of
trace data.

DAIKON analyzes Java programs through CHICORY,
a front-end for tracing Java programs. CHICORY uses
all variables in the scope of a method, regardless of



Table 2: Invariants used by JAVALANCHE.

Unary invariants. Compare a one-word variable (any
Java type other than long, float, or double) X
against X 6= 0, X 6= null, X ≤ c, c ≤ X,
c1 ≤ X ≤ c2, where c, c1, c2 are constants.

Binary invariants. Compare two one-word variables
X1 and X2 against X1 = X2, X1 > X2, X1 < X2.

Strings and other objects are only checked for being null.

whether they were accessed or not. Consequently, the
invariant detection engine has to deal with a lot more
data, which lead to out-of-memory errors for some of
the larger subjects in our case study. In contrast,
JAVALANCHE uses only those variables that were ac-
tually accessed by a method, which greatly reduces the
amount of data to be analyzed and allows for learning
invariants even from very large programs.

Generating Daikon Files. In the second phase, for every
method that is invoked at least once, JAVALANCHE

generates program point declarations for the begin-
ning (ENTER) and the end (EXIT ) of the method.
For every method invocation, JAVALANCHE generates
DAIKON trace entries for the corresponding ENTER
and EXIT program points.

Running Daikon. The generated files are then fed into
DAIKON, which supports over 85 different types of in-
variants. For performance reasons, we decided to limit
DAIKON to those types of invariants that occur most
frequently in practice. In a small experiment using a
total of 94 different runs of our subject programs, we
detected those DAIKON invariants that occurred most
frequently. Our current configuration uses 28 different
types of invariants, summarized in Table 2, accounting
for over 95% of all invariants found in our sample.

As a consequence, JAVALANCHE easily handles large pro-
grams like ASPECTJ with reasonable efficiency.

5. CHECKING INVARIANTS
JAVALANCHE learns invariants from the unmutated pro-

gram, and checks for violations in the mutated program. To
check for invariant violations of the mutations, we use a
runtime checking approach that is similar to the approach
pioneered by DIDUCE, a tool to learn invariants and detect
violations at run-time [10].

For each learned invariant, we insert statements into the
bytecode that check for invariant violations before and after
a method. If an invariant is violated, this is reported and
the run resumes. All this allows for efficient and scalable
checking of invariants.

6. CLASSIFYING MUTATIONS
The output of JAVALANCHE is a ranked list of the muta-

tions applied to a program. For each mutation, the output
contains the following information:

Detectability. A flag indicates if the mutant was detected
(“killed”) by the test suite. A mutant is considered
detected if at least one test fails, runs into a timeout,
or throws an exception.

Impact. Each invariant represents a different property of
“normal” program runs. The more properties violated,
the higher the impact of the mutation on the program
execution. We therefore use the number of invariants
violated by a mutation to measure impact; the greater
the impact of a mutation, the higher the ranking.

In this work, we are only interested in mutants that are
not detected by the test suite. Using JAVALANCHE, we split
this set of “surviving” mutants into two:

Non-Violating mutants (NVM) Mutants that do not vi-
olate any invariant. These mutants do not impact the
program with respect to its dynamic invariants.

Violating mutants (VM) Mutants that violate at least
one invariant.

The idea behind our approach is that violating mutants
are less likely to be equivalent since they violate the typical
behavior of the program as captured by invariants. This
assumption will be investigated in the following section.

7. EVALUATION
In order to evaluate our approach, we have conducted

three different experiments. In Section 7.2, we manually
assessed a sample result for equivalent mutants. In Sec-
tion 7.3, we compare the detection rates of mature test suites
for invariant-violating mutants (VM) and non-violating mu-
tants (NVM). Section 7.4 investigates whether the mutants
with the highest impact have the highest detection rate, im-
plying a low number of equivalent mutants.

7.1 Evaluation Subjects
For the evaluation of the JAVALANCHE framework, we

used the seven open-source projects listed in Table 3. Each
program comes with a regression test suite. We removed
all tests that fail on the original version, as well as tests
whose outcome depends on the order of test execution. The
number given in Table 3 is the number of tests we conducted.

Table 4 gives the results for mutation testing the subject
programs. The second column shows the total number of
mutations, ranging from 1,533 for JTOPAS to 47,146 for AS-

PECTJ. The coverage rate of mutations, given in the third
column, indicates how many of the mutations actually were
executed. For most projects, it varies between 60–80%.2

The mutation score is the percentage of mutations de-
tected by the test suite, as given in the rightmost column.
A low mutation coverage implies a low mutation score; as
discussed in Section 2, a mutation not executed cannot be
detected by a test suite. Thus, we also give the mutation
score for the covered mutations. In ASPECTJ, 53% of the
executed mutations are detected, with the rate going up to
92% for XSTREAM.

Table 5 shows the time required by JAVALANCHE to per-
form the steps discussed in the previous sections. Columns
2–4 list the steps required to learn invariants. The domi-
nating step in terms of runtime is usually mining invariants

2For ASPECTJ, this rate is lower, since we only executed the
tests for the core package. The low coverage rate for BAR-

BECUE is due to the fact that one class accounts for 11,759
mutations alone, consisting mainly of the static initializa-
tions of maps for bar code values.



Table 3: Description of subject programs.

Project Program Test code Number Test suite Statement
Name Description Version size (LOC) size (LOC) of tests runtime (s) coverage (%)

ASPECTJ AOP extension to Java 1.6.1 94,902 14,736 321 21 33,15
BARBECUE Bar code creator 1.5b1 4,837 3,136 137 3 47.26
COMMONS Helper utilities 2.5-S 18,782 31,940 1,590 19 85.08
JAXEN XPath engine 1.1.1 12,449 8,371 680 10 66.79
JODA-TIME Date and time library 1.5.2 25,861 47,227 3,447 12 51.33
JTOPAS Parser tools 1.0(SIR) 2,031 3,185 128 3 80.68
XSTREAM XML object serialization 1.3.1 14,480 13,505 838 10 75.78

Lines of Code (LOC) are non-comment, non-blank lines as reported by sloccount. For ASPECTJ, we only considered the core package tests.

Table 4: Mutation statistics for the subjects of our evaluation.

Project Number of Mutation Mutation Mutation Score for
Name Mutations Coverage (%) Score (%) covered mutations (%)

ASPECTJ 47,146 30.31 16.02 52.95
BARBECUE 17,178 4.73 3.18 67.28
COMMONS 15,125 73.93 61.22 82.81
JAXEN 6,712 61.23 37.17 60.71
JODA-TIME 13,859 69.59 54.81 78.75
JTOPAS 1,533 76.65 54.99 71.74
XSTREAM 5,186 69.42 63.84 91.97

with DAIKON. Columns 5–8 list the steps required to in-
strument and check mutated versions of the program. The
rightmost column gives the total time needed to evaluate
each subject. Our record holder is again ASPECTJ, with a
one-time effort of 32 CPU-hours of learning invariants and
creating checkers, and another 14 CPU-hours for running
the mutation test.3 To our knowledge, this is the first time
mutation testing has been applied to a program of this size.

7.2 Are mutants that violate invariants
less likely to be equivalent?

We started our experiments with a manual assessment of
invariant-violating mutants vs. non-violating mutants.

7.2.1 Hypothesis
Our hypothesis was:

H1 Mutants that violate invariants are less likely to be
equivalent than mutants that do not violate invariants.

7.2.2 Experimental Setup
As discussed in Section 1, manually checking if a mutant

is equivalent requires a lot of effort. We therefore restricted
our evaluation to one project (JAXEN) and twelve samples
for each group. The non-violating mutants were chosen ran-
domly; the twelve violating mutants were those that had the
highest number of violations.

For each mutant, we first examined the source code around
the mutant; we then tried our best to come up with a test
case to trigger the mutant. If it was not possible to come
up with such a test, we considered the mutant to be equiva-
lent. Assessing the 24 mutants took us 12 person-hours (i.e.,
30 minutes per mutant on average), plus additional time to
write test cases for non-equivalent mutants.

3All times were measured on a 16-core 2.0GHz AMD
Opteron 870 machine with 32 GB RAM; we used up to
7 cores and 2 GB RAM per core. Note that CPU time
does not depend on the number of cores.

7.2.3 Results
The results of this manual inspection indicate that mu-

tants that violate invariants are more than twice as likely to
be non-equivalent:

Violating Mutants. For 10 out of the 12 inspected mu-
tants (10/12 = 83%), we could write a test that trig-
gers the mutant. Most of these mutations impacted
tracking input line numbers, a feature not covered by
the JAXEN test suite. We failed to write tests for the
remaining two mutants and therefore consider them to
be equivalent.

Non-Violating Mutants. We were able to write tests for
only 4 out of the 12 mutants (4/12 = 33%), and failed
to do so for 7 of the remaining mutants. We did not
categorize one mutant, since the behavior of the mu-
tant depends on the system locale.

A Fisher Exact Value test confirms the statistical signifi-
cance of the difference at p = 0.036. We therefore accept
our hypothesis H1—with a grain of salt, as the size of our
sample set was small.

In our sample, mutants that violate several
invariants are less likely to be equivalent.

7.2.4 Qualitative Analysis
In Figure 4, we already had seen an undetected ASPECTJ

mutation that violates several invariants; as discussed in Sec-
tion 2, we actually found comments that indicate a lack of
testing for this ASPECTJ class. Inspired by this example,
we also did a qualitative analysis of the JAXEN mutations,
checking how addressing them would improve the JAXEN

test suite.
The mutation with most impact on invariants is in line

102 of class org.jaxen.Context (Figure 5). The mutation
sets the initial size of the context to −1 instead of 0. This
violates several preconditions for methods that use this size
information during their computation, e.g. that the size is



Table 5: JAVALANCHE runtime (in CPU time) for the individual steps.

Run instru- Create Learn Create Scan mutants Check
Project mented Daikon invariants and test and collect mutated Total
Name test suite files (Daikon) checkers coverage data versions time

ASPECTJ 197s 3,716s 81,416s 34,477s 271s 51,730s 47h 43m
BARBECUE 17s 20s 985s 25s 142s 2,535s 1h 02m
COMMONS 183s 752s 12,200s 388s 186s 8,765s 6h 14m
JAXEN 288s 7,274s 19,854s 789s 2,980s 7,514s 10h 44m
JODA-TIME 276s 769s 49,068s 1,132s 2,745s 11,002s 18h 03m
JTOPAS 164s 3,134s 6,086s 81s 931s 2,649s 3h 37m
XSTREAM 172s 1,561s 18,160s 1,444s 6,445s 9,811s 10h 26m

Time reported is the time used to execute the steps (“user time”) measured using time;
System overhead (“system time”) is not included.

public Context(ContextSupport contextSupport)
{

this.contextSupport = contextSupport;
this.nodeSet = Collections.EMPTY_LIST;

this.size = 0; 0 ⇒ -1
this.position = 0;

}

Figure 5: A non-detected JAXEN mutation that vi-
olates the most invariants.

private Token plus()
{
Token token = new Token(TokenTypes.PLUS,

getXPath(),
currentPosition(),

currentPosition()+1 ); 1 ⇒ 0
consume();
return token;

}

Figure 6: A non-detected JAXEN mutation that vi-
olates the second most invariants.

greater than zero or in a certain range. However, while the
test suite checks the size of the underlying node set (whose
size seems to be tracked by Context’s size field) after cre-
ation of a Context object, it does not check the size of the
Context itself (in Test ContextTest). Thus, this is either
an insufficiency in the test suite, or a code smell, since the
size may always be computed from the underlying node set.

The mutation with the second largest invariant impact
can be found in line 615 of class XPathLexer (Figure 6). It
sets the end index of a plus token to the same value as the
begin index, making it a token of size 0. This leads to sev-
eral invariant violations that involve the tokenEnd field of
the Token class. The mutation, for example, has an effect on
the program whenever a string representation of this token
is requested, e.g. in error messages for wrong XPATH ex-
pressions. While the test suite checks for the errors, it does
not check the expressions enclosed in error messages. Such
checks take place for many other JAXEN messages, though;
thus, the above mutation again indicates ways to improve
the test suite.

7.3 Are mutations that violate invariants
more likely to be detected by actual tests?

The manual effort required for assessing mutations is not
only a problem in mutation testing itself; it is also a problem
when evaluating mutation testing approaches. In particular,
the precise rate of equivalent mutants can only be measured
by assessing all mutations manually, which is precisely the
problem we want to overcome. Therefore, for our second
experiment, we wanted to have an objective classification
that could be more easily automated.

7.3.1 An Indirect Evaluation Scheme
How do we detect that a mutation is non-equivalent? In

practice of mutation testing, this is done all the time: By
having the test suite detect the mutation. Any mutation
detected by the test suite, by definition, alters the program
semantics—and thus is non-equivalent. This fact that “de-
tected” implies “non-equivalent” leads to our key idea:

A mutant generation scheme whose mu-
tants are more frequently detected by the
test suite also produces fewer equivalent
mutants.

For mutation testing, we are not interested in detected
mutants, though; what we want is non-detected mutants,
as these help us to improve the test suite. But if a scheme
generally produces fewer equivalent mutants, this property
should hold whether the test suite detects them or not.
Hence, the ratio of equivalent mutants can be expected to
be lower in the set of undetected mutants as well.

In our case, the mutant generation scheme favors those
mutations with impact on invariants. If we can show that
impact on invariants correlates with detection by the test
suite, this means that impact on invariants also correlates
with non-equivalence, as non-equivalence is implied by test
suite detection. In formal terms, we have an implication

detected by test =⇒ non-equivalent

and if we can show (statistically) that

violates invariants
?

=⇒ detected by test

then we would conclude that

violates invariants =⇒ non-equivalent

This indirect evaluation approach relies on the assumption
that test suites, as they stand, are already good detectors



of changed behavior. This assumption also was the base of
previous studies [2, 17]; there is no reason to believe it would
not hold for our experiment subjects. (For actually applying
JAVALANCHE, rather than evaluating it, such a mature test
suite is not required; instead, it is our aim to achieve this
level of maturity.)

7.3.2 Hypothesis
Given our limited set of mutations, the constrained range

of invariants checked, and the complexity and richness of the
test suites involved, it is not obvious at all that invariant vi-
olations would correlate with test outcome. The hypothesis
to be checked in our experiment was thus:
H2 Mutants that violate invariants are more likely to be

detected by actual tests.

7.3.3 Experimental Setup
Our setup for H2 is straight-forward: We execute the test

suite to learn dynamic invariants, identify surviving mutants
and classify them as violating or non-violating.

7.3.4 Results
Our results are summarized in Table 6. Let us compare

the detection rate of invariant-violating mutants (VMs) ver-
sus non-violating mutants (NVM) (columns 4 and 5). With
the exception of ASPECTJ, all projects show a higher detec-
tion rate for VMs. The difference is statistically significant
according to the χ2 test.

The difference can be dramatic: In JAXEN, for instance,
98% of invariant-violating mutants are detected versus 44%
of the non-violating mutants. This also means that in JAXEN,
the rate of equivalent mutants across all generated invariant
violators is not higher than 2%.

Mutants that violate invariants are more likely to
be detected by actual tests.

7.4 Are mutations with the highest impact most
likely to be detected?

For our third experiment, we wanted to explore what was
so special about ASPECTJ that the invariant-violating mu-
tations were less likely to be detected than the non-violating
mutations. In Table 6, we see that ASPECTJ has far more
violating mutants than all other projects combined. We
wanted to rank these invariants, focusing on those with
the highest impact: If a mutant violates many invariants, it
should have a strong impact on the behavior of the program
and is therefore less likely to be equivalent than mutants
that violate fewer invariants.

7.4.1 Hypothesis
In this experiment, we not only classify mutations by

whether they violate invariants or not, but we actually rank
them by impact—the number of invariants violated. This is
our hypothesis:
H3 The more invariants a mutant violates, the more likely

it is to be detected by actual tests.

7.4.2 Experimental Setup
Our experimental setup for H3 is the same as for H2

discussed in Section 7.3.3, except that we now compare the
detection rate of the top n% of the invariant-violating mu-
tants, where n ranges from 5–100.
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Figure 7: Detection rates (y) for the top x% muta-
tions with the highest impact.

7.4.3 Results
Our results can be easily summarized. For ASPECTJ,

there is a clear trend: The higher the ranking of a muta-
tion (= the more invariants it violates), the higher its likeli-
hood to be detected by the full test suite. This is shown in
Figure 7: The x axis shows the subset considered, ranging
from 5% (the top 5% mutations which violated the most in-
variants) to 100% (all mutations that violated at least one
invariant. The y axis shows the respective detection rate.

This trend holds for all projects (see Figure 7), except for
BARBECUE, the project with the lowest number of violat-
ing mutants: Just as ASPECTJ, the project with the highest
number of violating mutants, benefits from ranking, it is rea-
sonable to assume that the low number of violating invari-
ants in BARBECUE prevents a meaningful ranking. Still,
even focusing on the top 5% still yields a higher detection
rate than average.

In all seven projects, higher-ranked mutations are more
likely to be detected than all mutations (violating or non-
violating). For all projects except BARBECUE, higher-ranked
mutations are always more likely to be detected than the av-
erage across all violating mutations.



Table 6: Results for H2 and H3. Invariant-violating mutants (VM) have higher detection rates than non-
violating mutants (NVM); best results are obtained by ranking VMs by the number of invariants violated.

Top 5% Top 10% Top 25%
Project Number of Number of NVMs VMs p-value VMs VMs VMs
Name NVMs VMs detected (%) detected χ2 test detected detected detected

ASPECTJ 1159 13133 61.69 52.18 < 0.0001 91.77 91.93 89.49
BARBECUE 613 200 60.03 89.50 < 0.0001 70.00 80.00 82.00
COMMONS 10215 967 82.48 86.35 0.0021 95.83 95.83 90.46
JAXEN 2860 1250 44.48 97.84 < 0.0001 100.00 100.00 99.68
JODA-TIME 7523 2122 75.50 90.29 < 0.0001 97.17 92.92 95.09
JTOPAS 566 609 64.13 78.82 < 0.0001 100.00 93.33 90.13
XSTREAM 1835 1765 86.32 97.85 < 0.0001 100.00 100.00 100.00

VM = Invariant-Violating Mutant, NVM = Non-Violating Mutant.

In the rightmost columns of Table 6, we have shown the
detection rate of the 5%, 10%, and 25% violating mutations
with the highest impact. All detection rates are higher than
those of 100% non-violating mutations (column five), thus
confirming H3.

The more invariants a mutant violates, the more
likely it is to be detected by actual tests.

Again, this implies that the undetected high-impact mu-
tants will also have a low rate of equivalent mutants.

7.5 Discussion
The results of our case study suggest that developers should

not only focus on those mutations that violate invariants,
but that they actually should focus on those mutations that
violate the most new invariants—which is exactly the rank-
ing produced by JAVALANCHE.

Whenever mutation testing results in a large number of
undetected mutants, it thus seems a good idea to prioritize
the mutants by their impact on invariants:

1. By focusing on those mutants with the highest im-
pact on invariants, one creates a bias towards non-
equivalence. This is good, as this minimizes the num-
ber of equivalent mutants to deal with.

2. As these invariants are originally learned from test
suite executions, this implies a bias towards mutations
whose induced behavior differs most from the “nor-
mal” behavior as characterized by the test suite. By
repeatedly re-learning invariants, this favors diversity
in the test suite—a diversity that is based on program
semantics (i.e., invariants) rather than program struc-
ture (i.e., standard coverage criteria). We consider
such semantic diversity to be a desirable feature of test
suites.

3. Focusing on high-impact mutants also implies focusing
on those areas where a defect can create the most dam-
age across the program execution. Again, we consider
such a focus a very valuable property of a test suite.

Our results also indicate that it is generally useful to focus
on those mutations that violate the most invariants. Even
in a program with few violating mutants like BARBECUE,
which did not benefit much from ranking (see the discus-
sion in Section 7.4.3), the top-ranked mutations consistently
yielded better detection results than the average mutation.

Finally, our results also place an upper bound on the num-
ber of equivalent mutants. Omitting BARBECUE due to its
low number of violating mutants, the detection rate for the

top 5% of violating mutations (Figure 7) is 92–100%, with
an average of 97%. Thus, only 3% of these high-impact
mutations were undetected, placing an upper bound on the
number of equivalent (undetectable) mutants. (Note that
in Section 7.2, only 17% of this small high-impact set were
actually found to be equivalent, suggesting an even lower
overall rate.) This very low rate is what makes our approach
to mutation testing efficient.

On average, focusing on the top 5% of invariant-violating
mutants yields less than 3% of equivalent mutants.

7.6 Threats to Validity
Like any empirical study, this study has limitations that

must be considered when interpreting its results.

Threats to external validity concern our ability to gen-
eralize the results of our study. The results of H1
should be considered promising, but not generalizable,
as the sample is small; the manual effort generally
stands in the way of larger studies. Regarding H2
and H3, we evaluated our approach on seven programs
with different application domains and sizes; some of
them were larger by several orders of magnitude than
programs previously used for evaluation of mutation
testing [20, 8, 11, 2]. Generally, our results were con-
sistent across a wide range of programs. Still, there is a
wide range of factors of both programs and test suites
that may impact the results, and we therefore cannot
claim that the results would be generalizable to other
projects. Prospective users are advised to conduct a
retrospective study like ours.

Threats to internal validity concern our ability to draw
conclusions about the connections between our inde-
pendent and dependent variables. Regarding H1, our
own assessment may be subject to errors, incompe-
tence, or bias; to counter these threats, all our assess-
ments are publicly available on the project Web site.
For H2 and H3, our implementation could contain
errors that affect the outcome. To control for these
threats, we ensured that earlier stages (Figure 1) had
no access to data used in later stages. Our statistical
evaluation was conducted using textbooks techniques
implemented in widely used frameworks. We advise
and support independent confirmation of our results
and make the necessary data available; see Section 9
for details.



Threats to construct validity concern the appropriateness
of our measures for capturing our dependent variables.
Regarding H1, being able to write a test is the ul-
timate measure whether a mutant is non-equivalent.
In H2 and H3, our assumption that the test suite
measures real defects is an instance of the “compe-
tent programmer hypothesis”also underlying mutation
testing [6]. This hypothesis may be wrong; however,
the maturity and widespread usage of the subject pro-
grams suggest anything but incompetence. Further
studies will help completing our knowledge on what
makes a test suite adequate.

8. RELATED WORK

8.1 Mutation testing
Originally proposed in 1971 by Richard Lipton in a term

paper [21], it took until 1978 until the first major work on
mutation testing was published [6]. Mutation testing frame-
works that are in use today include MOTHRA [5] for Fortran
programs and µJava [14] for Java.

A number of studies have shown the effectiveness of mu-
tation testing for assessing the adequacy of a test suite. An-
drews et al. [2] showed that carefully selected operators yield
trustworthy results—that is, generated mutants are simi-
lar to real faults. Walsh [27] found mutation testing to be
more powerful than statement or branch coverage. Frankl [8]
found mutation testing to be superior to all-use data flow
coverage criteria. All of these studies were conducted on
small programs, the largest one being the Space program
(5,905 LOC) from the Siemens suite [2]. Still, the common
conclusion that mutation testing is an effective technique for
improving test suites forms the basis for our research.

Most of the more recent evaluations used programs with
mature test suites, assuming the test suite is so exhaustive
that “all mutants that were not killed by any test case were
then deemed to be equivalent.” [2]. The assumption of hav-
ing a mature test suite is also the base for our automated
empirical evaluation; the assumption of the test suite de-
tecting all equivalent mutants is not.4

Assessing the state to check the impact of mutations is also
related to the concept of weak mutation testing, as proposed
by Howden [12]. Weak mutation testing assesses the effect
of a mutation by assessing the state after its execution: If
the state is different, then the mutation is detectable. Weak
mutation testing thus checks whether the test suite could
possibly detect a mutation; it does not matter whether the
tests actually pass or not. Strong mutation testing, which
is what we assume, assesses the test suite by determining
whether it actually detects a mutation.

4The assumption that every mutant not detected by a “per-
fect” test suite must be equivalent can be motivated as fol-
lows. If the ratio of equivalent mutants being created is
fixed, and the test suite is constantly being improved to
detect more and more mutations, than the ratio of equiva-
lent mutants among the non-detected mutations must raise
constantly—up to 100%. Unfortunately, this has an inter-
esting side effect. If I have an “almost perfect” test suite,
wouldn’t this imply that almost all of the non-detected mu-
tants would be equivalent? And how would we then ever be
able to come even close to perfection?

8.2 Equivalent Mutants
The issue of equivalent mutants has frustrated genera-

tions of mutation testers. In Section 1, we have quoted
Frankl et al. [8] on the enormous amount of work needed to
eliminate equivalent mutants. A number of researchers have
tackled the problem of detecting equivalent mutants. Bald-
win and Sayward [3] were the first ones to suggest heuristics
for detecting equivalent mutants. Their approach, based
on detecting idioms from semantics-preserving compiler op-
timizations, was shown by Offutt and Craft [18] to detect
approximately 10% of equivalent mutants.

In 1996, Offutt and Pan [20] realized that detecting equiv-
alent mutants is an instance of the infeasible path problem
which also occurs in other testing techniques. They pre-
sented an approach based on solving path conditions that
originate from a mutant. If the constraint solver can show
that all subsequent states are equivalent, the mutant is deemed
equivalent. The technique was reported to detect 48% of
equivalent mutants. A similar approach, based on program
slicing, was presented by Hierons and Harman [11]; this ap-
proach additionally provides guidance in detecting the lo-
cations potentially affected by a mutant. Modern change
impact analysis [24] can do this in presence of subtyping
and dynamic dispatch. The recent concept of differential
symbolic execution [23] brings the promise of easily detect-
ing potential impact of changes.

All of these techniques are orthogonal to ours; indeed, if
we can prove statically that a mutation will have no impact,
we can effectively omit the run-time tests. The question is on
how well these static approaches scale up when it comes to
detecting mutant equivalence in real programs. Offutt and
Pan [20]’s technique, for instance, was evaluated on eleven
Fortran 77 programs which“range in size from about 11 to 30
executable statements”. In contrast, the programs we have
been looking at are larger by several orders of magnitude.

8.3 Invariants and Contracts
The idea of checking program state at run-time is as old

as programming itself. Design by contract [16] mandates
specifying invariants for every public method in a program;
the resulting runtime checkers effectively catch errors at the
moment they originate.

If the programmer does not provide invariants, one can
infer them from program runs. This is the idea of dynamic
invariants, as realized in the DAIKON tool by Ernst et al. [7].
Most related to our work is the ECLAT tool by Pacheco and
Ernst [22] which selects, from a set of test inputs, a subset
that is most likely to reveal defects, by assessing the im-
pact of the inputs on dynamic invariants. McCamant and
Ernst [15] use dynamic invariants to check whether invari-
ants had changed after a code change—indicating a potential
problem in the future. (Our approach, of course, explicitly
looks for such invariant changes.)

Sosič and Abramson [25] suggest another technique to de-
tect the impact of changes. The idea of relative debugging
is to compare the execution of two programs (in our set-
ting, the original vs. the mutant) and automatically report
any differences in variable values. While the differences do
not translate into invariants, they could nonetheless serve as
impact indicators.

Our concept of efficient dynamic invariant checking was
inspired by the DIDUCE tool by Hangal and Lam [10], flag-
ging invariant violations as they occur during the run. Nei-



ther approach discussed in this section was applied to mu-
tation testing so far.

9. CONCLUSION AND CONSEQUENCES
If a mutant violates even very simple invariants, it is more

likely to be detectable by an actual test. When improving
test suites, test managers therefore should focus on those
surviving mutations that have the greatest impact on invari-
ants. With its low rate of equivalent mutants, our approach
provides a precise, reasonably efficient, and fully automatic
measure of the adequacy of a test suite—making mutation
testing finally scalable to large-scale programs.

Besides generally evolving JAVALANCHE, our future work
will concentrate on the following topics:

Alternative impact measures. While we consider viola-
tions of invariants to be particularly useful predictors
of failures, there are many ways to determine the im-
pact of a change. One can measure impact in anything
that characterizes a run; including coverage criteria
such as statement or branch coverage, sequences of ex-
ecuted methods [4], or numerical ranges of data and
increments [10]. First experiments with statement cov-
erage [9] indicate a better suitability for ranking mu-
tations for programs with small impact (Section 7.4);
taken on its own, statement coverage misses impact
that takes place on data alone. We want to examine
how these characteristics are suited and can be com-
bined for assessing the impact of a change and the
equivalence of the resulting mutation.

Impact as similarity measure. A common criticism against
mutation testing is that mutations may be different
from actual defects. From defect history, we can as-
sess how earlier defects impacted program execution—
and then generate mutations that have similar impact.
This will allow calibration of mutants to match a given
defect history.

Adaptive mutation testing. If we establish large impact
or similarity to defect history as desirable properties,
one can also evolve appropriate mutants—by assessing
the properties of the “fittest” mutants and propagat-
ing them to another generation of mutants [1]. This
will allow for automated natural selection of mutants,
optimizing them towards a specific goal—a maximum
impact or a maximum similarity with history.

Eventually, large-scale automation in mutation testing also
enables large-scale assessment of mutation testing, opening
the doors for lots of future research. To support this re-
search, our subject programs, instrumented with dynamic
invariant checkers, together with a description of the mu-
tants and tests from Section 7.2, are publicly available, al-
lowing for easy replication (and extension) of our experi-
ments. For more information, visit

http://www.st.cs.uni-saarland.de/mutation/
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