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ABSTRACT
Where do most vulnerabilities occur in software? Our Vul-
ture tool automatically mines existing vulnerability databa-
ses and version archives to map past vulnerabilities to com-
ponents. The resulting ranking of the most vulnerable com-
ponents is a perfect base for further investigations on what
makes components vulnerable.

In an investigation of the Mozilla vulnerability history, we
surprisingly found that components that had a single vulner-
ability in the past were generally not likely to have further
vulnerabilities. However, components that had similar im-
ports or function calls were likely to be vulnerable.

Based on this observation, we were able to extend Vul-
ture by a simple predictor that correctly predicts about half
of all vulnerable components, and about two thirds of all
predictions are correct. This allows developers and project
managers to focus their their efforts where it is needed most:
“We should look at nsXPInstallManager because it is likely
to contain yet unknown vulnerabilities.”

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification—Statistical
methods; D.2.5 [Software Engineering]: Testing and De-
bugging—Testing tools; D.4.6 [Operating Systems]: Se-
curity and Protection—Invasive software.

General Terms: Security, Experimentation, Measurement

Keywords: Software Security, Prediction

1. INTRODUCTION
Many software security problems are instances of general

patterns, such as buffer overflow or format string vulnerabil-
ities. Some problems, though, are specific to a single project
or problem domain: JavaScript programs escaping their jails
are a problem only in web browsers. To improve the secu-
rity of software, we must therefore not only look for general
problem patterns, but also learn specific patterns that apply
only to the software at hand.

Modern software development usually does a good job in
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tracking past vulnerabilities. The Mozilla project, for in-
stance, maintains a vulnerability database which records
all incidents. However, these databases do not tell how
these vulnerabilities are distributed across the Mozilla code-
base. Our Vulture tool automatically mines a vulnerability
database and associates the reports with the change history
to map vulnerabilities to individual components (Figure 1).

Vulture’s result is a distribution of vulnerabilities across
the entire codebase. Figure 2 shows this distribution for
Mozilla: the darker a component, the more vulnerabilities
were fixed in the past.The distribution is very uneven: Only
4% of the 10,452 components were involved in security fixes.
This raises the question: Are there specific code patterns that
occur only in vulnerable components?

In our investigation, we were not able to determine code
features such as, code complexity or buffer usage that would
correlate with the number of vulnerabilities. What we found,
though, was that vulnerable components shared similar sets
of imports and function calls. In the case of Mozilla, for
instance, we found that of the 14 components importing
nsNodeUtils.h, 13 components (93%) had to be patched be-
cause of security leaks. The situation is even worse for those
15 components that import nsIContent.h, nsIInterface-
RequestorUtils.h and nsContentUtils.h together—they
all had vulnerabilities. This observation can be used for
automatically predicting whether a new component will be
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Figure 1: How Vulture works. Vulture mines a vul-
nerability database (e.g. a Bugzilla subset), a version
archive (e.g. CVS), and a code base, and maps past
vulnerabilities to components. The resulting predic-
tor predicts the future vulnerabilities of new compo-
nents, based on their imports or function calls.



Figure 2: Distribution of vulnerabilities within Mozilla’s codebase. A component’s area is proportional to its
size; its shade of gray is proportional to its number of vulnerabilities. A white box means no vulnerabilities,
as is the case for 96% of the components.

vulnerable or not: “Tell me what you import or what you
call, and I’ll tell you how vulnerable you are.”

After discussing the scope of this work (Section 2), the
remainder of this paper details our original contributions,
which can be summarized as follows.

• We present a fully automatic way of mapping vulner-
abilities to components (Section 3).

• We provide empirical evidence that vulnerabilities cor-
relate with component imports (Section 4).

• We show how to build fully automatic predictors that
predict vulnerabilities of new components based on
their imports and function calls (Section 5).

• Our evaluation on the Mozilla project shows that these
predictors are accurate (Section 6).

After discussing related work (Section 7), we close with con-
clusions and future work (Section 8).

2. SCOPE OF THIS WORK
Our work is empirical and statistical: we look at correla-

tions between two phenomena—vulnerabilities on one hand
and imports or function calls on the other—, but we do not
claim that these are cause-effect relationships. It is clearly

not the case that importing some import or calling some
function causes a vulnerability. Programmers writing that
import statement or function call generally have no choice in
the matter: they need the service provided by some import
or function and therefore have to import or call it, whether
they want to or not.

Our hypothesis is that the cause of the vulnerability is
the import’s or function’s domain, that is, the range of ser-
vices that it uses or implements. It appears that some do-
mains are more risky than others, and being associated with
a particular domain increases the risk of having a vulnera-
bility. Different projects might have different risky domains,
which would lead Vulture to mine project-specific vulnera-
bility patterns.

We have also identified the following circumstances that
could affect the validity of our study:

Study size. The correlations we are seeing with Mozilla
could be artifacts that are specific to Mozilla. They
might not be as strong in other projects, or the cor-
relations might disappear altogether. From our own
work analyzing Java projects, we think this is highly
unlikely [29]; see also Section 7 on related work.

Bugs in the database or the code. The code to analyze
the CVS or import the Security Advisories into the



database could be buggy; the inputs to the machine-
learning methods or the code that assesses the effec-
tiveness of these methods could be wrong. All these
risks were mitigated either by sampling small subsets
and checking them manually for correctness, or by im-
plementing the functionality a second time starting
from scratch and comparing the results. For example,
some machine-learning inputs were manually checked,
and the assessment code was rewritten from scratch.

Bugs in the R library. We rely on a third-party R library
for the actual computation of the SVM and the predic-
tions [9], but this library was written by experts in the
field and has undergone cross-validation, also in work
done in our group [29].

Wrong or noisy input data. It is possible that the Mo-
zilla source files contain many “noisy” import relations
in the sense that some files are imported but actually
never used; or the Security Advisories that we use to
map vulnerabilities to components could accidentally
or deliberately contain wrong information. Our mod-
els do not incorporate noise. From manually checking
some of the data, we believe the influence of noise to
be negligible, especially since results recur with great
consistency, but it remains a (remote) possibility.

Yet unknown vulnerabilities. Right now, our predictions
are evaluated against known vulnerabilities in the past.
Finding future vulnerabilities in flagged components
would improve precision and recall; finding them in
unflagged components would decrease recall.

3. COMPONENTS AND VULNERABILITIES

3.1 Components
For our purposes, a component is an entity in a software

project that can have vulnerabilities. For Java, components
would be .java files because they contain both the definition
and the implementation of classes. In C++, and to a lesser
extent in C, however, the implementation of a component
is usually separated from its interface: a class is declared
in a header file, and its implementation is contained in a
source file. A vulnerability that is reported only for one file
of a two-file component is nevertheless a vulnerability of the
entire component. For this reason, we will combine equally-
named pairs of header and source files into one component.

In C, it is often the case that libraries are built around
abstractions that are different from classes. The usual case
is that there is one header file that declares a number of
structures and functions that operate on them, and several
files that contain those functions’ implementations. With-
out a working build environment, it is impossible to tell
which source files implement the concepts of which header
file. Since we want to apply Vulture to projects where we
do not have a working build environment—for example be-
cause we want to analyze old versions that we cannot build
anymore due to missing third-party software—, we simply
treat files which have no equally-named counterpart as com-
ponents containing just that file. We will subsequently refer
to components without any filename extensions.

Of course, some components may naturally be self-contai-
ned. For example, a component may consist only of a header
file that includes all the necessary implementation as inline

functions there. Templates must be defined in header files.
A component may also not have a header file. For example,
the file containing a program’s main function will usually
not have an associated header file. These components then
consist of only one file.

3.2 Mapping Vulnerabilities to Components
A vulnerability is a defect in one or more components that

manifests itself as some violation of a security policy. Vul-
nerabilities are announced in security advisories that pro-
vide users workarounds or pointers to fixed versions and help
them avoid security problems. In the case of Mozilla, advi-
sories also refer to a bug report in the Bugzilla database. We
use this information, to map vulnerabilities to components
through the fixes that remove the defect.

First we retrieve all advisories from the Web to collect the
defects, in case of Mozilla from the “Known Vulnerabilities
in Mozilla Products” page.1 We then search for references
to the Bugzilla database that typically take the form of links
to its web interface:

https://bugzilla.mozilla.org/show_bug.cgi?id=362213

The number at the end of this URL is the bug identifier of
the defect that caused the vulnerability. We collect all bug
identifiers and use them to identify the corresponding fixes
in the version archive. In version archives every change is
annotated with a message that describes the reason for that
change. In order to identify the fixes for a particular defect,
say 362213, we search these messages for bug identifiers such
as “362213”, “Bug #362213”, and “fix 362213” (see also Fig-

ure 3). This approach is described in detail by Śliwerski et
al. [30] and extends the approaches introduced by Fischer et
al. [10] and by Čubranić et al. [7].

Once we have identified the fixes of vulnerabilities, we can
easily map the names of the corrected files to components.
Note that a security advisory can contain several references
to defects, and a defect can be fixed in several files.

It is important to note that we do not analyze binary
patches to programs, but source code repository commits.
Binary patches usually address a number of bugs at once,
which are not necessarily vulnerabilities, or contain function-
ality enhancements. In contrast, commits are very specific,
fixing only one vulnerability at a time. This is why we can
determine the affected components with confidence.

3.3 Vulnerable Components in Mozilla
Mozilla as of 4 January 2007 contains 1,799 directories and

13,111 C/C++ files which are combined into 10,452 compo-
nents. There were 134 vulnerability advisories, pointing to
302 bug reports. Of all 10,452 components, only 424 or
4.05% were vulnerable.

Security vulnerabilities in Mozilla are announced through
Mozilla Foundation Security Advisories (MFSAs) since Jan-
uary 2005 and are available through the Mozilla Founda-
tion’s web site [33]. These advisories describe the vulner-
ability and give assorted information, such as Bugzilla bug
identification numbers. Of all 302 vulnerability-related bug
reports, 280 or 92.7% could be assigned to components using
the techniques described above.2

1http://www.mozilla.org/projects/security/known-
vulnerabilities.html
2Some bug reports in Bugzilla [32] are not accessible without
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Figure 3: Mapping Mozilla vulnerabilities to
changes. We extract bug identifiers from security
advisories, search for the fix in the version archive,
and from the corrected files, we infer the compo-
nent(s) affected by the vulnerability.
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Figure 4: Distribution of Mozilla Foundation Secu-
rity Advisories (MFSAs). The y axis is logarithmic.

If a component has a vulnerability-related bug report asso-
ciated with it, we call it vulnerable. In contrast to a vulnera-
ble component, a neutral component has had no vulnerability-
related bug reports associated with it so far.

The distribution of the number of MFSAs can be seen in
Figure 4. The most important result from this histogram is
that it directly contradicts an item of security folklore that
says that components that had vulnerabilities in the past
will likely have vulnerabilities in the future. If that were
truly the case, the histogram should show ascending num-
bers of components with ascending numbers of reports. In
fact, however, the opposite is true: there were twice as many
components with one MFSA (292) than all components with
two or more MFSAs combined (132).

One consequence of this empirical observation is that the
number of past vulnerability reports is not a good predic-
tor for future reports, because it would miss all the com-

an authenticated account. We suppose that these reports
concern vulnerabilities that have high impact but that are
not yet fixed, either in Mozilla itself or in other software that
uses the Mozilla codebase. In many cases, we were still able
to assign bug reports to files automatically because the CVS
log message contained the bug report number. By looking
at the diffs, it would therefore have been possible to derive
what the vulnerability was. Denying access to these bug
reports is thus largely ineffectual and might even serve to
alert blackhats to potential high-value targets.

Rank Component SAs BRs

# 1 dom/src/base/nsGlobalWindow 14 14
# 2 js/src/jsobj 13 24
# 3.5 js/src/jsfun 11 15
# 3.5 caps/src/nsScriptSecurityManager 11 15
# 5 js/src/jsscript 10 14
# 6 dom/src/base/nsDOMClassInfo 9 10
# 7 docshell/base/nsDocShell 9 9
# 8 js/src/jsinterp 8 14
# 9 content/base/src/nsGenericElement 7 10
# 10 layout/base/nsCSSFrameConstructor 6 17

Table 1: The top ten most vulnerable components
in Mozilla, sorted by associated Mozilla Foundation
Security Advisories (SAs) and bug reports (BRs).
Components with equal numbers of SAs get an av-
eraged rank.

ponents that have only one report. Indeed, when we take
the CVS from July 24, 2007—encompassing changes due to
MFSAs 2007-01 through 2007-25—we find that 149 compo-
nents were changed in response to MFSAs. Of these newly
fixed components, 81 were repeat offenders, having at least
one vulnerability-related fix before January 4. The remain-
ing 68 components had never had a security-related fix.

As for using other metrics such as lines of code and so on
to predict vulnerabilities, studies by Nagappan et al. have
shown that there is no single metric that correlates with
failures across all considered projects [21].

The top ten most vulnerable components in Mozilla are
listed in Table 1. The four most vulnerable components all
deal with scripting in its various forms:

1. nsGlobalWindow, with fixes for 14 MFSAs and 14 bug
reports, has, among others, a method to set the status
bar, which can be called from JavaScript and which
will forward the call to the browser chrome.

2. jsobj (13 MFSAs; 24 bug reports) contains support
for JavaScript objects.

3. jsfun (11 MFSAs; 15 bug reports) implements support
for JavaScript functions.

4. nsScriptSecurityManager (11 MFSAs; 15 bug reports)
implements access controls for JavaScript programs.

In the past, JavaScript programs have shown an uncanny
ability to break out of their jails, which manifests as a high
number of security-related changes to these components.

4. IMPORTS AND FUNCTIONS MATTER
As discussed in Section 3.3, we found that several compo-

nents related to scripting rank among the most vulnerable
components. How does a concept like scripting manifest it-
self in the components’ code?

Our central assumption in this work is that what a compo-
nent does is characterized by its imports and function calls.
A class that implements some form of content—anything
that can be in a document’s content model—will use func-
tions declared in nsIContent.h and will therefore need to
import it; a class that implements some part of the Docu-
ment Object Model (DOM) will likely use functions from—
and hence import—nsDOMError.h. And components associ-
ated with scripting are characterized by the functions from
and the import of nsIScriptGlobalObject.h.



In a strictly layered software system, a component that
is located at layer k would import only from components at
layer k+1; its imports would pinpoint the layer at which the
component resides. In more typical object-oriented systems,
components will not be organized in layers; still, its imports
will include those components whose services it uses and
those interfaces that it implements.

If an interface or component is specified in an insecure
way, or specified in a manner that is difficult to use securely,
then we would expect many components that use or im-
plement that interface or component to be vulnerable. In
other words, we assume that it is a component’s domain, as
given by the services it uses and implements, that determine
whether a component is likely to be vulnerable or not.

How do imports and function calls correlate with vulner-
abilities? For this, we first need a clear understanding of
what constitutes an import or a function call and what it
means for a set of imports or function calls to be correlated
with vulnerability.

In the following discussion, we use the term “feature” to
refer to both imports and function calls.

4.1 Imports
In C and C++, a component’s imports are those files

that it references through #include preprocessor directives.
These directives are handled by the preprocessor and come
in three flavors:

#include <name> This variant is used to import standard
system headers.

#include "name" This variant is used to import header files
within the current project.

#include NAME In this variant, NAME is treated as a prepro-
cessor symbol. When it is finally expanded, it must
resolve to one of the two forms mentioned above.

The exact computation of imports for C and C++ is dif-
ficult because the semantics of the first two variants are
implementation-dependent, usually influenced by compile-
time switches and macro values. That means that it is not
possible to determine exactly what is imported without a
working build environment. We therefore adopted the fol-
lowing heuristics:

• We treat every occurrence of #include as an import,
even though it may not be encountered in specific
compile-time configurations—for example because of
conditional compilation. The reason is that we want
to obtain all possible import relations, not just the
ones that are specific to a particular platform.

• We assume that identically-named includes refer to
the same file, even though preprocessor directives may
cause them to refer to different files. It turns out that
this does not happen in Mozilla.

• Implementing the computed include would require a
full preprocessor pass over the source file. This in turn
would require us to have a fully compilable (or at least
preprocessable) version of the project. Fortunately,
this use of the include directive is very rare (Mozilla
does not use it even once), so we chose to ignore it.

#ifdef XP_OS2
if (DosCreatePipe(&pipefd[0], &pipefd[1], 4096) != 0) {

#else
if (pipe(pipefd) == -1) {

#endif
fprintf(stderr, "cannot create pipe: %d\n", errno);
exit(1);

}

Figure 5: Extract from nsprpub/pr/tests/sigpipe.c,
lines 85ff. Parsing C and C++ is generally only pos-
sible after preprocessing: attempting to parse these
lines without preprocessing results in a syntax error.

4.2 Function Calls
In C and C++, a function call is an expression that could

cause the control flow to be transferred to a function when
it is executed.3 A function call is characterized by the name
of the function and a parenthesized list of arguments.

Statically extracting function calls from unpreprocessed
C or C++ source code is difficult. Dynamic parsing with
type information would require compilable source code and
even a full static parsing is blighted by syntax errors caused
by some preprocessor statements; see Figure 5. As a con-
sequence, we simply treat all occurrences of identifier(. . . )
and identifier<. . . >(. . . ) as function calls.

Keywords are excluded so that if or while statements are
not erroneously classified as function calls. Also, to match
only function calls and not function definitions, these pat-
terns must not be followed by an opening curly bracket. But
even with these restrictions, there are many other constructs
which match these patterns, such as constructors, macros,
forward declarations, member function declarations, initial-
ization lists, and C++ functional-style type casts.

Some of these, like constructors and macros, are very simi-
lar to function calls and hence are actually desired. The false
classifications of forward declarations, member function dec-
larations, initialization lists, and type casts do not seem to
affect our results.

In contrast to these undesirable positive classifications,
there are also function calls that are not caught by our
heuristic, such as function calls using function pointers or
overloaded operators. A simple parser without preprocess-
ing will generally not be able to do type checking, and will
therefore not be able to correctly classify such calls. How-
ever, we believe that this is a rather uncommon practice in
C++, especially in bigger projects such as Mozilla because
such dynamic calls are more effectively employed through
virtual functions. Hence, we ignore this category of call.

4.3 Mapping Vulnerabilities to Features
In order to find out which feature combinations are most

correlated with vulnerabilities, we use frequent pattern min-
ing [1, 18]. The result of frequent pattern mining is a list of
feature sequences that frequently occur in vulnerable com-
ponents. To judge whether these features are significant, we
apply the following criteria:

Minimum Support. For imports, the pattern must ap-
pear in at least 3% of all vulnerable components. (In
other words, it needs a minimum support count of 3%

3This cautious phrasing is necessary because of the possibil-
ity of inlining.



P (V |I) V ∧ I !V ∧ I Includes

1.00 13 0 nsIContent.h · nsIInterfaceRequestorUtils
· nsContentUtils.h

1.00 14 0 nsIScriptGlobalObject.h · nsDOMCID.h
1.00 19 0 nsIEventListenerManager.h · nsIPresShell.h
1.00 13 0 nsISupportsPrimitives.h · nsContentUtils.h
1.00 19 0 nsReadableUtils.h · nsIPrivateDOMEvent.h
1.00 15 0 nsIScriptGlobalObject.h · nsDOMError.h
0.97 34 1 nsCOMPtr · nsEventDispatcher.h
0.97 29 1 nsReadableUtils.h · nsGUIEvent.h
0.96 22 1 nsIScriptSecurityManager.h · nsIContent.h

· nsContentUtils.h
0.95 18 1 nsWidgetsCID.h · nsContentUtils.h

Table 2: Include patterns most associated with vul-
nerability. The column labeled “Includes” contains
the include pattern; the column labeled P (V |I) con-
tains the conditional probability that a component
is vulnerable (V ) if it includes the pattern (I). The
columns labeled V ∧ I and !V ∧ I give the absolute
numbers of components that are vulnerable and in-
clude the set, and of components that are not vul-
nerable, but still include the set.

of 424, or 13). For function calls, this threshold is
raised to 10%, or 42.

Significance. We only want to include patterns that are
more meaningful than their sub-patterns. For this,
we test whether the entire pattern is more specific for
vulnerabilities than its sub-patterns. Let I be a set
of features that has passed the minimum-support test.
Then for each proper subset J ⊂ I, we look at all
files that feature I and at all files that feature I − J .
We then classify those files into vulnerable and neu-
tral files and then use the resulting contingency table
to compute whether additionally featuring J signifi-
cantly increases the chance of vulnerability. We reject
all patterns where we cannot reject the corresponding
hypothesis at the 1% level. (In other words, it must
be highly unlikely that featuring J in addition to I−J
is independent from vulnerability.)4

For patterns that survive these tests, the probability of
it occurring in a vulnerable component is much higher than
for its subsets. This is the case even though the conditional
probability of having a vulnerability when including these
particular includes may be small.

4.4 Features in Mozilla
Again, we applied the above techniques to the Mozilla

base. In Mozilla, Vulture found 79,494 import relations of
the form “component x imports import y”, and 9,481 dis-
tinct imports. Finding imports is very fast: a simple Perl
script goes through the 13,111 C/C++ files in about thirty
seconds. We also found 324,822 function call relations of
the form “component x calls function y”, and 93,265 dis-
tinct function names. Finding function calls is not as fast
as finding imports: the script needs about 8 minutes to go
through the entire Mozilla codebase.

4For this, we use χ2 tests if the entries in the corresponding
contingency table are all at least 5, and Fischer exact tests
if at least one entry is 4 or less.

Frequent pattern mining, followed by weeding out insignif-
icant patterns yields 576 include patterns and 2,470 function
call patterns. The top ten include patterns are shown in Ta-
ble 2. Going through all 576 include patterns additionally
reveals that some includes occur often in patterns, but not
alone. For example, nsIDocument.h appears in 45 patterns,
but never appears alone. Components that often appear
together with nsIDocument.h come from directories lay-

out/base or content/base/public, just like nsIDocument

itself. Similar observations hold for function call patterns.
Table 2 reveals that implementing or using nsIContent.h

together with nsIInterfaceRequestorUtils and nsContent-

Utils.h correlated with vulnerability in the past. Typ-
ical components that imports these are nsJSEnvironment

or nsHTMLContentSink. The first is again concerned with
JavaScript, which we already know to be risky. The second
has had a problems with a crash involving DHTML that ap-
parently caused memory corruption that could have led to
arbitrary code execution (MFSA 2006-64).

Looking at Table 2, we see that of the 35 components im-
porting nsIScriptSecurityManager.h, nsIContent.h, and
nsContentUtils.h, 34 are vulnerable, while only one is not.
This may mean one of two things: either the component
is invulnerable or the vulnerability just has not been found
yet. At the present time, we are unable to tell which is true.
However, the component in question is nsObjectLoading-

Content. It is a base class that implements a content loading
interface and that can be used by content nodes that provide
functionality for loading content such as images or applets.
It certainly cannot be ruled out that the component has an
unknown vulnerability.

5. PREDICTING VULNERABILITIES
FROM FEATURES

In order to predict vulnerabilities from features, we need a
data structure that captures all of the important information
about components and features (such as which component
has which features) and vulnerabilities (such as which com-
ponent has how many vulnerabilities), but abstracts away
information that we consider unimportant (such as the com-
ponent’s name). In Figure 6, we describe our choice: if there
are m components and n features, we write each component
as a n-vector of features: xk = (xk1, . . . , xkn), where for
1 ≤ k ≤ m and 1 ≤ j ≤ n,

xkj =

(
1 if component i features feature j,

0 otherwise.

We combine all components into X = (x1, . . . ,xm)t, the
project’s feature matrix. Entities that cannot contain in-
cludes or function calls, such as makefiles, are ignored.

In addition to the feature matrix, we also have the vul-
nerability vector v = (v1, . . . , vm), where vj is the number
of vulnerability reports associated with component j.

Now assume that we get a new component, xm+1. Our
question, “How vulnerable is component m + 1?” is now
equivalent to asking for the rank of vm+1 among the values
of v, given xm+1; and “Is component m + 1 vulnerable?” is
now equivalent to asking whether vm+1 > 0.

As we have seen in the preceding sections, features are
correlated with vulnerabilities. How can we use this infor-
mation to answer the above questions? Both questions can
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Import matrix X

Vulnerability vector v

Row vector x3

Figure 6: The feature matrix X and the vulnerabil-
ity vector v for imports. The rows of X contain the
imports of a certain component as a binary vector:
xik is 1 if component i imports import k. The vulner-
ability vector contains the number of vulnerability-
related bug reports for that component.

be posed as machine-learning problems. In machine learn-
ing, a parameterized function f , called a model, is trained
using training data X and y, so that we predict ŷ = f(X).
The parameters of f are usually chosen such that some mea-
sure of difference between y and ŷ is minimized. The ques-
tion, “Is this component vulnerable?” is called classifica-
tion, and “Is this component more or less vulnerable than
another component?” can be answered with regression: by
predicting the number of vulnerabilities and then ranking
the components accordingly.

In our case, X would be the project’s feature matrix, and
y would be the vulnerability vector v. We now train a model
and use it to predict for a new component x′. If it classifies
x′ as vulnerable, this means that x′ has features that were
associated with vulnerabilities in other components.

For our model f , we chose support vector machines [36]
(SVMs) over other models such as k-nearest-neighbors [13,
Chapter 13] because they have a number of advantages. For
example, when used for classification, SVMs cope well with
data that is not linearly separable. They are also much less
prone to overfitting than other machine-learning methods.5

5.1 Validation Setup
To test how good our particular set of features work as

predictors for vulnerabilities, we simply split our feature ma-
trix to train and to assess the model. For this purpose, we
randomly select a number of rows from X and the corre-
sponding elements from v—collectively called the training
set—and use this data to train f . Then we use the left-over
rows from X and elements from y—the validation set—to
predict whether the corresponding components are vulner-
able and to compare the computed prediction with what
we already know from the bug database. It is usually rec-
ommended that the training set be twice as large as the
validation set, and we are following that recommendation.
We are not using a dedicated test set because we will not

5Two sets of n-dimensional points are said to be linearly
separable if there exists an n − 1-dimensional hyperplane
that separates the two sets. Overfitting occurs when the
estimation error in the training data goes down, but the
estimation error in the validation data goes up.

True Positive (TP)

False Negative (FN)

Actually has
vulnerability reports

yes no

yes

no

Predicted to have
vulnerability reports
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Recall

True Negative (TN)

False Positive (FP)

Figure 7: Precision and recall explained. Precision
is TP/(TP + FP); recall is TP/(TP + FN ).

be selecting a single model, but will instead be looking at
the statistical properties of many models and will thus not
tend to underestimate the test error of any single model [13,
Chapter 7].

One caveat is that the training and validation sets might
not contain vulnerable and neutral components in the right
proportions. This can happen when there are so few vul-
nerable components that pure random splitting would pro-
duce a great variance in the number of vulnerable compo-
nents in different splits. We solved this problem by stratified
sampling, which samples vulnerable and neutral components
separately to ensure the proper proportions.

5.2 Evaluating Classification
For classification, we can now compare the predicted val-

ues v̂ with the actual values v and count how many times
our prediction was correct. This gives rise to the measures
of precision and recall, as shown in Figure 7:

• The precision measures how many of the components
predicted as vulnerable actually have shown to be vul-
nerable. A high precision means a low number of false
positives; for our purposes, the predictor is efficient.

• The recall measures how many of the vulnerable com-
ponents are actually predicted as such. A high recall
means a low number of false negatives; for our pur-
poses, the predictor is effective.

In order to assess the quality of our predictions, consider a
simple cost model.6 Assume that we have a“testing budget”
of T units. Each component out of m total components is
either vulnerable or not vulnerable, but up front we do not
know which is which. Let us say there are V vulnerabilities
distributed arbitrarily among the m components and that
if we spend 1 unit on a component, we determine for sure
whether the component is vulnerable or not. In a typical
software project, both V and T would be much less than m.

If we fix T , m, and V , and if we have no other informa-
tion about the components, the optimal strategy for assign-
ing units to components is simply to choose components at
random. In this case, the expected return on investment
would be TV/m: we test T components at random, and the
fraction of vulnerable components is V/m.

Now assume that we have a predictive method with pre-
cision p and that we spend our T units only on components
that have been flagged as vulnerable by the method. In this
case, the expected return on investment is Tp because the

6This was suggested to us by the anonymous reviewers.



fraction of vulnerable components among the flagged com-
ponents is p. If p > V/m, the predictive method does better
than random assignment. In practice, we estimate V by the
number of components already known to have vulnerabili-
ties, V ′, so we will want p to be much larger then V ′/m.

5.3 Evaluating Ranking
When we use a regression model, we predict the number of

vulnerabilities in a component. One standard action based
on this prediction would be allocating quality assurance ef-
forts: As a manager, we would spend most resources (such
as testing, reviewing, etc.) on those components which are
the most likely to be vulnerable. With a prediction method
that estimates the number of vulnerabilities in a component,
we would examine components of v̂ in decreasing order of
predicted vulnerabilities.

Usually, the quality of such rankings is evaluated using
Spearman’s rank correlation coefficient. This is a number
between −1 and 1 which says how well the orderings in two
vectors agree. Values near 1 mean high correlation (if the
values in one vector go up, then so do the values in the other
vector), values near 0 mean no correlation, and values near
−1 mean negative correlation (if the values in one vector go
up, the values in the other vector go down).

However, this measure is inappropriate within the simple
cost model from above. Suppose that we can spend T units
on testing. In the best possible case, our ranking predicts
the actual top T most vulnerable components in the top T
slots. The relative order of these components doesn’t matter
because we will eventually fix all top T components: while
high correlation coefficients mean good rankings, and while
bad rankings will produce correlation coefficients near 0, the
converse is not true.

Instead, we extend our simple cost model as follows. Let
p = (p1, . . . , pm) be a permutation of 1, . . . , m such that
v̂p = (v̂p1 , . . . , v̂pm) is sorted in descending order (that is,
v̂pj ≥ v̂pk for 1 ≤ j < k ≤ m), and let q and vq be defined
accordingly. When we fix component pj , we fix vpj vulner-
abilities. Therefore, when we fix the top T predicted com-
ponents, we fix F =

P
1≤j≤T vpj vulnerabilities, but with

optimal ordering, we could have fixed Fopt =
P

1≤j≤T vqj

vulnerabilities instead. Therefore, we will take the quotient
Q = F/Fopt as a quality measure for our ranking. This is
the fraction of vulnerabilities that we have caught when we
used p instead of the optimal ordering q. It will always be
between 0 and 1, and higher values are better.

In a typical situation, where we have V � m and T small,
a random ranking will almost always have Q = 0, so our
method will be better than a random strategy if Q is always
greater than zero. In order to be useful in practice, we will
want Q to be significantly greater than zero, say, greater
than 1/2.

6. CASE STUDY: MOZILLA
To evaluate Vulture’s predictive power, we applied it to

the code base of Mozilla [34]. Mozilla is a large open-source
project that has existed since 1998. It is easily the sec-
ond most commonly used Internet suite (web browser, email
reader, and so on) after Internet Explorer and Outlook.

6.1 Data Collection
We examined Mozilla as of January 4, 2007. Vulture

mapped vulnerabilities to components, and then created the

Phase Time

Downloading and analyzing MFSAs 5 m
Mapping vulnerabilities to components 1 m
Finding includes 0.5 m
Finding function calls 8 m
Creation of SVM, w/classification and regression 0.5 m

Table 3: Approximate running times for Vulture’s
different phases.

feature matrices and the vulnerability vector as described in
Sections 3.3 and 4.4.

Table 3 reports approximate running times for Vulture’s
different phases when applied to Mozilla with imports as
the features under consideration. Vulture is so fast that we
could envision it as part of an IDE giving feedback in real
time (see Figure 10 at the end of the paper).

The 10,452 × 9,481 import matrix would take up some
280 MB of disk space if it were written out in full. The
sparse representation that we used [15] required only 230 KB
of disk space, however. The 10,452 × 93,265 function call
matrix took up 2.6 MB of disk space.

For each feature matrix and the vulnerability vectors, we
created 40 random splits using stratified sampling. This
ensures that vulnerable and neutral components are present
in the training and validation sets in the same proportions.
The training set had 6,968 entries and was twice as large
as the validation set with 3,484 entries; this is the standard
proportion for empirical evaluations of this kind. Finally,
we assessed these SVMs with the 40 validation sets.

For the statistical calculations, we used the R system [24]
and the SVM implementation available for it [9]. It is very
easy to make such calculations with R; the size of all R
scripts used in Vulture is just about 200 lines. The cal-
culations were done on standard hardware without special
memory sizes or processing powers.

6.2 Classification
The SVM used the linear kernel with standard parame-

ters. Figure 8 reports the precision and recall values for the
40 random splits, both for imports and for function calls.
For imports, the recall has an average of 0.45 and standard
deviation of 0.04, which means that about half of all vulner-
able components are correctly classified:

Of all vulnerable components,
Vulture flags 45% as vulnerable.

For function calls, the precision has a mean of 0.70 and a
standard deviation of 0.05.

Of all components flagged as vulnerable,
70% actually are vulnerable.

Vulture is much better than random selection.

6.3 Ranking
The SVM used the linear kernel with standard parame-

ters. The coefficient Q that was introduced in Section 5.3
was computed for imports and function calls, for T = 30. It
is shown in Figure 9, plotted against Fopt. For imports, its
mean is 0.78 (standard deviation is 0.04), for function calls,
it is 0.82 (standard deviation 0.08).
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Figure 8: Scatterplot of precision/recall values for
the 40 experiments. Figure (a) shows the results for
imports, figure (b) shows the results for function
calls. The apparent lack of data points is due to
overplotting of close-by precision/recall pairs.
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Figure 9: Scatterplot of Q versus Fopt for the 40
experiments where T = 30. Figure (a) shows the
results for imports, figure (b) shows the results for
function calls. Higher values are better.

Among the top 30 predicted components,
Vulture finds 82% of all vulnerabilities.

Let us illustrate the quality of the ranking by an actual
example where T = 10. Table 4 shows such a prediction
as produced in one of the random splits. Within the vali-
dation set, these would be the components to spend extra
effort on. Your effort would be well spent, because all of
the top ten components actually turn out to be vulnera-
ble. (SgridRowLayout and NsHttpTransaction are outliers,
but still vulnerable.) Furthermore, in your choice of ten,
you would recall the top four most vulnerable components,
two more would still be in the top ten (at predicted ranks
3 and 6), and two more would be in the top twenty (at pre-
dicted ranks 7 and 9).

6.4 Discussion
In the simple cost model introduced in Section 5.2, we

have m = 10, 452 and V ′ = 424, giving V ′/m = 0.04. With
p = 0.65, we see that Vulture does more than fifteen times
better than random assignment.

For ranking, all Q values are higher than 0.6; the average
values are way above that. This more than satisfies our
criterion from Section 5.3.

Therefore, our case study shows three things. First of
all, allocating quality assurance efforts based on a Vulture
prediction achieves a reasonable balance between effective-

Prediction Validation set

Rank Component BRs Actual rank

# 1 NsDOMClassInfo 10 # 3.5
# 2 SgridRowLayout 1 # 95
# 3 xpcprivate 7 # 6
# 4 Jsxml 11 # 2
# 5 nsGenericHTMLElement 6 # 8
# 6 Jsgc 10 # 3.5
# 7 NsJSEnvironment 4 # 12
# 8 Jsfun 15 # 1
# 9 NsHTMLLabelElement 3 # 18
# 10 NsHttpTransaction 2 # 35

Table 4: The top ten most vulnerable compo-
nents from a validation set, as predicted by Vul-
ture. The column labeled “BRs” shows the number
of vulnerability-related bug reports for that compo-
nent. Eight of the predicted top ten are actually
very vulnerable.

ness and efficiency. Second, it is effective because half of all
vulnerable components are actually flagged. And third, Vul-
ture is efficient because directing quality assurance efforts
on flagged components yields a return of 70%—more than
two out of three components are hits. Focusing on the top
ranked components will give even better results.

Furthermore, these numbers show that there is empiri-
cally an undeniable correlation between imports and func-
tion calls on one hand, and vulnerabilities on the other. This
correlation can be profitably exploited by tools like Vulture
to make predictions that are correct often enough so as to
make a difference when allocating testing effort. Vulture has
also identified features that very often lead to vulnerabilities
when used together and can so point out areas that should
perhaps be redesigned in a more secure way.

Best of all, Vulture has done all this automatically, quickly,
and without the need to resort to intuition or human exper-
tise. This gives programmers and managers much-needed
objective data when it comes to identify (a) where past
vulnerabilities were located, (b) other components that are
likely to be vulnerable, and (c) effectively allocating quality
assurance effort.

7. RELATED WORK
Previous work in this area reduced the number of vulner-

abilities or their impact by one of the following methods:

Looking at components’ histories. The Vulture tool
was inspired by the pilot study by Schröter et al. [29], who
first observed that imports correlate with failures. While
Schröter et al. examined general defects, the present work
focuses specifically on vulnerabilities. To our knowledge, this
is the first work that specifically mines and leverages vulner-
ability databases to make predictions. Also, our correlation,
precision and recall values are higher than theirs, which is
why we believe that focusing on vulnerabilities instead of on
bugs in general is worthwhile.

Evolution of defect numbers. Both Ozment et al. [23]
as well as Li et al. [17] have studied how the numbers of
defects and security issues evolve over time. Ozment et al.
report a decrease in the rate at which new vulnerabilities



are reported, while Li et al. report an increase. Neither
of the two approaches allow mapping of vulnerabilities to
components or prediction.

Estimating the number of vulnerabilities. Alhazmi et
al. use the rate at which vulnerabilities are discovered to
build models to predict the number of as yet undiscovered
vulnerabilities [2]. They use their approach on entire sys-
tems, however, and not on source files. Also, in contrast to
Vulture, their predictions depend on a model of how vulner-
abilities are discovered.

Miller et al. build formulas that estimate the number of
defects in software, even when testing reveals no flaws [20].
Their formulas incorporate random testing results, informa-
tion about the input distribution, and prior assumptions
about the probability of failure of the software. However,
they do not take into account the software’s history—their
estimates do not change, no matter how large the history is.

Tofts et al. build simple dynamic models of security flaws
by regarding security as a stochastic process [35], but they
do not make specific predictions about vulnerable software
components. Yin et al. [39] highlight the need for a frame-
work for estimating the security risks in large software sys-
tems, but give neither an implementation nor an evaluation.

Testing the binary. By this we mean subjecting the bi-
nary executable—not the source code—of the program in
question to various forms of testing and analysis (and then
reporting any security leaks to the vendor). This is often
done with techniques like fuzz testing [19] and fault injec-
tion; see the book by Voas and McGraw [38].

Eric Rescorla argues that finding and patching security
holes does not lead to an improvement in software qual-
ity [25]. But he is talking about finding security holes by
third-party outsiders in the finished product and not about
finding them by in-house personnel during the development
cycle. Therefore, his conclusions do not contradict our belief
that Vulture is a useful tool.

(Statically) examining the source. This is usually done
with an eye towards specific vulnerabilities, such as buffer
overflows. Approaches include linear programming [12], data-
flow analysis [14], locating functions near a program’s in-
put [8]7, axiomatizing correct pointer usage and then check-
ing against that axiomatization [11], exploiting semantic
comments [16], checking path conditions [31], symbolic poin-
ter checking [28], or symbolic bounds checking [26].

Rather than describing the differences between these tools
and ours in every case, we we briefly discuss ITS4, developed
by Viega et al. [37], and representative of the many other
static code scanners. Viega et al.’s requirement was to have
a tool that is fast enough to be used as real-time feedback
during the development process, and precise enough so that
programmers would not ignore it. Since their approach is
essentially pattern-based, it will have to be manually ex-
tended as new patterns emerge. The person extending it
will have to have a concept of the vulnerability before it
can be condensed into a pattern. Vulture will probably not
flag components that contain vulnerabilities that were un-
known at training time, but it will flag components that

7The hypothesis of DeCast et al. that vulnerabilities occur
more in functions that are close to a program’s input is not
supported by the present study. Many of Mozilla’s vulner-
able components, such as nsGlobalWindow, lie in the heart
of the application.

contain vulnerabilities that have been fixed before but have
no name.

Also, since ITS4 checks local properties, it will be very
difficult for it to find security-related defects that arise from
the interaction between far-away components, that is, com-
ponents that are connected through long chains of def-use
relations. Additionally, ITS4, as it exists now, will be un-
able to adapt to programs that for some reason contain a
number of pattern-violating but safe practices, because it
completely ignores a component’s history.

Another approach is to use model checking [3, 4]. In this
approach, specific classes of vulnerabilities are formalized
and the program model-checked for violations of these for-
malized properties. The advantage over other formal meth-
ods is that if a failure is detected, the model checker comes
up with a concrete counter-example that can be used as a
regression test case. This too is a useful tool, but like ITS4,
it will have to be extended as new formalizations emerge.
Some vulnerability types might not even be formalizable.

Vulture also contains static scanners—it detects features
by parsing the source code in a very simple manner. How-
ever, Vulture’s aim is not to declare that certain lines in a
program might contain a buffer overflow, but rather to direct
testing effort where it is most needed by giving a probabilistic
assessment of the code’s vulnerability.

Hardening the source or runtime environment. This
encompasses all measures that are taken to mitigate a pro-
gram’s ability to do damage Hardening a program or the
runtime environment is useful when software is already de-
ployed. StackGuard is a method that is representative of the
many tools that exist to lower a vulnerability’s impact [6].
Others include mandatory access controls as found in App-
Armor [5] or SELinux [22]. However, Vulture works on the
other side of the deployment divide and tries to direct pro-
grammers and managers to pieces of code requiring their
attention, in the hope that StackGuard and similar systems
will not be needed.

8. CONCLUSIONS AND FUTURE WORK
We have presented empirical evidence that features corre-

late with vulnerabilities. Based on this empirical evidence,
we have introduced Vulture, a new tool that predicts vul-
nerable components by looking at their features. It is fast
and reasonably accurate: it analyzes a project as complex as
Mozilla in about half an hour, and correctly identifies half
of the vulnerable components. Two thirds of its predictions
are correct.

The contributions of the present paper are as follows:

1. A technique for mapping past vulnerabilities by min-
ing and combining vulnerability databases with version
archives.

2. Empirical evidence that contradicts popular wisdom
saying that vulnerable components will generally have
more vulnerabilities in the future.

3. Evidence that features correlate with vulnerabilities.

4. A tool that learns from the locations of past vulnera-
bilities to predict future ones with reasonable accuracy.

5. An approach for identifying vulnerabilities that auto-
matically adapts to specific projects and products.
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Figure 10: Sketch of a Vulture integration into Eclipse. Vulture annotates methods predicted as vulnerable
with red bars. The view “Predictions” lists the methods predicted as most vulnerable. With the view
“Dangerous Imports”, a developer can explore import combinations that lead to past vulnerabilities.

6. A predictor for vulnerabilities that only needs a set of
suitable features, and thus can be applied before the
component is fully implemented.

Despite these contributions, we feel that our work has just
scratched the surface of what is possible, and of what is
needed. Our future work will concentrate on these topics:

Characterizing domains. We have seen that empirically,
features are good predictors for vulnerabilities. We believe
that this is so because features characterize a component’s
domain, that is, the type of service that it uses or imple-
ments, and it is really the domain that determines a com-
ponent’s vulnerability. We plan to test this hypothesis by
studies across multiple systems in similar domains.

Fine-grained approaches. Rather than just examining
features at the component level, one may go for more fine-
grained approaches, such as caller-callee relationships. Such
fine-grained relationships may also allow vulnerability pre-
dictions for classes or even methods or functions.

Evolved components. This work primarily applies to pre-
dicting vulnerabilities of new components. However, com-
ponents that already are used in production code come with
their own vulnerability history. We expect this history to
rank among the best predictors for future vulnerabilities.

Usability. Right now, Vulture is essentially a batch pro-
gram producing a textual output that can be processed by
spreadsheet programs or statistical packages. We plan to
integrate Vulture into current development environments,
allowing programmers to query for vulnerable components.

Such environments could also visualize vulnerabilities by
placing indicators next to the entities (Figure 10).

In a recent blog, Bruce Schneier wrote, “If the IT products
we purchased were secure out of the box, we wouldn’t have to
spend billions every year making them secure.” [27] One first
step to improve security is to learn where and why current
software had flaws in the past. Our approach provides es-
sential ground data for this purpose, and allows for effective
predictions where software should be secured in the future.
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