
Augmented Dynamic Symbolic Execution

Konrad Jamrozik
Saarland University –

Computer Science
Saarbrücken, Germany

jamrozik@cs.uni-saarland.de

Gordon Fraser
University of Sheffield

Sheffield, UK
gordon.fraser@sheffield.ac.uk

Nikolai Tillmann and
Jonathan de Halleux

Microsoft Research
Redmond, USA

{nikolait,jhalleux}@microsoft.com

ABSTRACT
Dynamic symbolic execution (DSE) can efficiently explore
all simple paths through a program, reliably determining
whether there are any program crashes or violations of as-
sertions or code contracts. However, if such automated ora-
cles do not exist, the traditional approach is to present the
developer a small and representative set of tests in order to
let him/her determine their correctness. Customer feedback
on Microsoft’s Pex tool revealed that users expect different
values and also more values than those produced by Pex,
which threatens the applicability of DSE in a scenario with-
out automated oracles. Indeed, even though all paths might
be covered by DSE, the resulting tests are usually not sen-
sitive enough to make a good regression test suite. In this
paper, we present augmented dynamic symbolic execution,
which aims to produce representative test sets by augment-
ing path conditions with additional conditions that enforce
target criteria such as boundary or mutation adequacy, or
logical coverage criteria.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

Keywords
Test generation, dynamic symbolic execution, boundary val-
ues, mutation testing

1. INTRODUCTION
Dynamic symbolic execution (DSE) is a successful test

generation technique, recently made popular with the advent
of powerful constraint solving tools. There are many success-
ful applications ranging from parametrized unit testing [12]
to white-box fuzzing [7]. In principle, DSE approaches are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

1 void test(int x) {
2 if(x <= 100)
3 // target
4 }
5 }

1 void test(int x) {
2 if(x < 100)
3 // target
4 }
5 }

Figure 1: Pex trivially covers the target branch,
e.g., with input 0. But what if there is no speci-
fication against which to check the result automati-
cally? What if a fault is not present in the current
but future versions of the program? There is no
guarantee a test suite generated with DSE would
detect the regression error on the right.

only limited by the scalability of the underlying constraint
solvers. However, all these successful applications make the
common assumption that there is an automated way to de-
termine for any given input to a program whether an error
has occurred – in other words, there needs to be an auto-
mated test oracle.

Automated oracles can be easily defined for some essen-
tial properties; for example, in general programs should not
crash and there should be no buffer overflows. However, ora-
cles for functional correctness need to be specified in terms of
assertions, contracts, or other specification means. In prac-
tice, such oracles often do not exist, or are of insufficient
quality. In this case, a traditional assumption in automated
test generation is that the test set without oracles is handed
to a developer, who will then check correctness or add oracles
to the tests. Indeed, a common application of Microsoft’s
Pex [12] tool is to select a target function to “Pex explore”
and to check what the function does. However, feedback
has revealed that the values Pex returns are not necessar-
ily those that developers would expect. For example, Pex
always first tries to use 0 or null, and then uses values ob-
tained from an SMT solver. In practice, developers would
prefer to see values that they can relate to the code – for
example, values that are at the boundaries of comparisons,
and often they also want to see more than one value for a
particular branching condition.

In fact, this is not simply an issue of convenience: The re-
sult of a DSE run is a test suite that can be used to perform
regression testing. After changing a program a new DSE
exploration would just exercise the current behavior with
respect to automated oracles, yet to find regression faults
we need to execute the tests produced from an earlier ver-
sion. However, the nature of DSE is that for each program

Figure 2: Augmented Dynamic Symbolic Execution
is based on exploration of a program (a) through
path conditions (b). Yet, before test data is gener-
ated, the conditions are augmented with additional
conditions (c), deriving multiple test data for the
same path condition (d).

path there is at most one input value that exercises it. Con-
sider the simple example in Figure 1: Even though Pex can
trivially cover the branch in both program versions, only the
input value 100 would be able to detect the regression that
was introduced from the left version to the right version.

To overcome these issues, in this paper we present aug-
mented dynamic symbolic execution (ADSE, Figure 2): This
approach takes the path conditions generated from a pro-
gram (a) during regular DSE (b) augments them (c) with
additional conditions to make sure that the constraint solver
returns interesting values, resulting in a test suite (d) sat-
isfying a criterion underlying the augmentation. The aug-
mentation can be based on many different criteria commonly
found in software testing. For example, it is straight forward
to define augmentation rules for boundary value testing, mu-
tation testing, logical coverage criteria, or error conditions.

Our preliminary experiments using boundary values anal-
ysis and mutation testing with our Apex prototype confirm
that ADSE can lead to a considerable increase in the muta-
tion score for both types of augmentations.

2. BACKGROUND
Symbolic execution is a technique that maps a program

path to a set of conditions on the program inputs. Branching
conditions (e.g., if, while) represent the individual condi-
tions in these sets, and the conditions are based on expres-
sions on the input variables. Any input satisfying the con-
ditions will follow this path through the control flow graph.

Symbolic execution has several limitations, such as in-
ability to reason about interactions with the environment
because of its static nature and scalability issues due to
exponential number of possible execution paths. Dynamic
symbolic execution (DSE) overcomes these limitations by in-
terleaving program execution with symbolic execution, sys-
tematically exploring uncovered code branches. There are
various tools that implement this approach [3]; we built our
Apex prototype on top of the Pex [12] tool, a DSE engine
for the .NET platform. Pex utilizes parameterized unit tests
for the exploration with DSE, and produces unit test suites
achieving high branch coverage, as well as tests demonstrat-
ing exceptions thrown by the tested code or specification
violations.

Many systematic test generation approaches are focused
on branch conditions. DSE explicitly considers branch con-
ditions, and search-based testing [8] is usually guided by
heuristics that estimate how close individual branches are
to evaluating to true or to false. To apply the existing tech-

niques to different target criteria, a common approach is
to transform these other criteria to branch coverage prob-
lems. This has for example been done for division by zero
errors [2], null pointer exceptions [10], mutation testing [14],
or boundary value analysis and logical coverage criteria [9].
Here, additional test objectives are explicitly included in the
program code in terms of new branch instructions, such that
existing tools that are already good at achieving branch cov-
erage can be reused. There are several drawbacks to such
an approach:

• It requires a suitable infrastructure to handle the tar-
geted source code or byte code representation.

• Applying transformations to code is cumbersome, as
it adds the technical overhead of adhering to the un-
derlying language grammar.

• Source code transformations have to be tailored to
DSE engine exploration strategies. For example, Pex
by default emits a new test case whenever it increases
branch coverage, so transformations that do not add
any branches will be ignored by Pex’s DSE exploration
altogether.

• Source code transformation based techniques might
be counteracted by summarization approaches in DSE
tools, which collapse artificially introduced trivial mul-
tiple execution paths into disjunctive constraints. This
would reduce the number of values produced by the
DSE tool, such that the criterion underlying the trans-
formation is not satisfied.

These are severe drawbacks threatening the practical ap-
plicability of source-transformation based approaches in the
context of DSE. In contrast, ADSE performs all transforma-
tions directly on the path conditions, avoiding these issues.

3. AUGMENTED DYNAMIC SYMBOLIC
EXECUTION

3.1 Generating Test Suites with DSE
DSE executes a program using concrete values, and dur-

ing this execution it keeps track of the symbolic state deter-
mined by expressions and conditions (i.e., branches) on the
input values. This results in a path condition, which repre-
sents the conditions seen while executing the program. DSE
then systematically modifies the path conditions according
to the code exploration strategy and solves them using a
constraint solver, thus generating test inputs that cover new
branches and reveal errors.

For example, to reach block_A in code given in Figure 3,
DSE will build and solve the following path condition: (x ≥
3 ∧ x ≤ 7) ∧ (y − x ≤ 0 ∨ y ≥ 4), which may for example
result in concrete values for (x, y) of (4, 5) returned by the
constraint solver.

Assuming that there are no assertions violated and no
exceptions triggered, the result of DSE in this case is a set
of test cases – one for each path condition that increased
branch coverage.

3.2 Augmenting Path Conditions
In ADSE, each time a path condition is selected for test

generation, instead of solving the path condition itself we

1 void methodUnderTest(int x, int y)
2 {
3 if (x >= 3 && x <= 7) {
4 if (y - x <= 0 || y >= 4) {
5 // block_A
6 }
7 else {
8 // block_B
9 };

10 };
11 }

Figure 3: Code example to illustrate DSE.

augment it using given augmentation criterion, obtaining
a set of augmented path conditions; tests are generated by
solving these conditions, and each solution to such a con-
dition is added to the resulting test suite. As a simple ex-
ample, using the identity function as augmentation criterion
would produce the original branch coverage test suite. In-
puts provided by the constraint solver as a solution to one
augmented path condition will sometimes also solve other
augmented path conditions (i.e., collateral coverage). We
can exploit this to minimize the number of generated tests
while fully adhering to the used augmentation criterion.

3.3 Instantiations of ADSE
We now instantiate the transformation criterion for differ-

ent common testing objectives.

3.3.1 Boundary Value Testing
To satisfy the branch coverage criterion, each branch

needs to be covered by at least one test case. However,
in practice it is often desired to cover boundary cases of
branch conditions of the tested code [9,13]. For example, to
test the boundaries of the condition in Line 3 in Figure 3,
the target function should be tested with input x equal to
2, 3, 4, 6, 7 and 8. To augment path conditions for bound-
ary cases a simple strategy is to transform each comparison
according to a set of rules. For example, A ≤ B would be
transformed to A = B (boundary value) and A < B (rep-
resentative value). The boundary case where the condition
does not hold is automatically handled as by construction
ADSE will also consider the negation of the condition, i.e.,
A > B, for which a boundary case might be A = B + 1.

3.3.2 Mutation Testing
Mutation testing [5] is a technique where simple syntactic

changes (mutations) are applied to the code in order to sim-
ulate faults, which was proven to be effective in evaluating
testing techniques [1].

Different types of mutations can be defined in terms of
mutation operators, where each mutation operator typically
can be applied to several different locations in a program,
each time resulting in a new mutant; usually, only mutants
that differ by a single change from the original program are
considered. For example, in Line 3 in Figure 3 the condition
x <= 7 could be mutated to the following conditions: x <

7, x == 7, x != 7, x >= 7, x > 7.
In general, given a set of mutation operators M(C) for a

condition C the augmentation should ensure that there is a
value for each of the mutants C′ ∈M(C) that distinguishes
between C and C′, i.e., C is true and C′ is false (the in-

verse case is covered when ¬C is explored). Therefore, the
augmentation function for condition C simply is:

T (C) = {C ∧ ¬C′ | ∀C′ ∈M(C)} (1)

3.3.3 Logical Coverage
In presence of complex predicates in the source code a

branch coverage test suite might simply be too weak. For
example, safety standards such as DO-178b [11] require that
test suites satisfy the MCDC coverage criterion [4].

As an example, masking MCDC requires that for each
clause in a logical condition there exists a state such that the
clause determines the value of the condition, and the clause
has to evaluate to true and to false. For example, the branch
in Line 4 in Figure 3 consists of two clauses, y − x ≤ 0 and
y ≥ 4. Each of the two clauses determine either the true or
false outcome of the condition only if the other one evaluates
to false. In general, a clause p determines a condition C if
the following xor-expression is true, where Cp,x denotes C
with p replaced with x: Cp,True ⊕ Cp,False. Consequently,
the transformation of a condition C requires that for every
clause p ∈ C we add a condition such that C is true and p
determines the outcome of C:

T (C) = {C ∧ (Cp,True ⊕ Cp,False) | p ∈ C} (2)

As the DSE exploration will lead to application of the trans-
formation to both C and ¬C, this means that the above
transformation will ensure that p evaluates both to true and
to false.

3.3.4 Error Conditions
The fourth instance of ADSE we consider in this paper is

that of error conditions: the augmented path conditions are
to cause the tested code to throw exceptions like arithmetic
overflow or array index out of bounds. There have been
attempts to make such implicit error conditions explicit to
allow test generation tools to cover these cases (e.g., [2,
10]), Pex also makes these branches explicit [12], and SAGE
includes such conditions in the properties it checks for [6]. If
the test generation tool does not already have treatment of
error conditions hard coded, these can easily be represented
as path condition augmentation rules. For example,

T (C) =

 {C} if there are no divisions in C
{C ∧ x = 0 | ∀x : divisors in C} ∪
{C ∧ x 6= 0 | ∀x : divisors in C} otherwise.

(3)

4. INITIAL RESULTS
Our Apex prototype implements the described approach

as an extension to the Pex tool, and we applied it to a set
of example functions to evaluate the effects of the condition
augmentation on the resulting test suite size as well as fault
detection ability. Pex operates on .NET byte-code (CIL),
and all complex predicates in the source code are translated
to atomic conditions in the byte-code. Furthermore, the
symbolic execution engine in Pex already makes error con-
ditions explicit as branches. Consequently, our evaluation
focuses on boundary value analysis and mutation testing.

Table 1 shows the initial results achieved with our Apex
prototype on a set of nine different examples taken from the
literature. The column labelled DSE denotes the standard
Pex behaviour, whereas ADSE/B and ADSE/M denote the

Table 1: Averaged values for initial Apex experi-
ments, using nine example programs

Result DSE ADSE/B ADSE/M

Conditions 14.22 595.11 2,225.33
Tests 14.22 109.33 123.56
Mutation Score 48.44% 80.66% 86.16%

results achieved with Apex and augmentation for bound-
ary values and mutation testing, respectively. These results
indicate the following:

• ADSE leads to an increased fault detection ability.
The mutation scores achieved by both the test sets
optimized for boundary value testing and for mutation
testing are significantly higher than those for branch
coverage test sets.

• ADSE leads to significantly more conditions that need
to be solved.

• Because one test case usually covers more than one
test target, the number of test cases that results from
the large set of conditions is significantly smaller than
the number of conditions.

These results are in line with expectations: Choosing a rig-
orous coverage criterion will lead to larger test suites and
larger effort in generating them. The higher mutation score
reflects that this higher effort is worthwhile when the fault
detection ability needs to be maximized, for example in a
regression testing scenario. The higher number of condi-
tions and test cases also suggests that we can accommodate
for the desire for more test cases per branching statement
expressed by Pex users.

5. CONCLUSIONS
Dynamic symbolic execution can efficiently generate in-

puts to cover all (simple) paths in a program. Yet, the use of
DSE to produce test suites with high coverage of established
test criteria has not been explored in depth. In this paper
we describe a technique that transforms the path conditions
that DSE handles, such that DSE produces test suites satis-
fying any chosen coverage criterion. We have identified four
possible augmentations of DSE and conducted preliminary
experiments for two of them: mutation testing and bound-
ary cases coverage, with promising early results.

There are several immediate applications: ADSE can pro-
vide the programmer with more interesting tests such as
boundary cases, which were requested by Pex users. This
is also particularly useful in a scenario where no automated
oracle is available, where we can augment DSE to produce
tests satisfying a given criterion, e.g., a logical coverage cri-
terion. A further important application is regression testing:
When software evolves, one needs a regression test suite to
check for regression faults. The stronger the test suite, the
more sensitive it is against regression faults, and thus ADSE
can lead to improved regression test suites.

Finally, ADSE also has the potential to extend DSE in
many ways not immediately targeted by the augmentations
we described in this paper, e.g., to enforce values out of
known sets to increase tests readability or to trigger non-
functional bugs, for example in performance testing.

6. REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is

mutation an appropriate tool for testing experiments?
In ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, pages 402–411,
New York, NY, USA, 2005. ACM.

[2] N. Bhattacharya, A. Sakti, G. Antoniol, Y.-G.
Guéhéneuc, and G. Pesant. Divide-by-zero exception
raising via branch coverage. In Proceedings of the
Third international conference on Search based
software engineering, SSBSE’11, pages 204–218,
Berlin, Heidelberg, 2011. Springer-Verlag.

[3] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu,
K. Sen, N. Tillmann, and W. Visser. Symbolic
execution for software testing in practice: preliminary
assessment. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages
1066–1071, New York, NY, USA, 2011. ACM.

[4] J. J. Chilenski and S. P. Miller. Applicability of
modified condition/decision coverage to software
testing. Software Engineering Journal, pages 193–200,
September 1994.

[5] R. A. DeMillo, R. J. Lipton, and F. Sayward. Hints on
test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, 1978.

[6] P. Godefroid, M. Y. Levin, and D. A. Molnar. Active
property checking. In Proceedings of the 8th ACM
international conference on Embedded software,
EMSOFT ’08, pages 207–216. ACM, 2008.

[7] P. Godefroid, M. Y. Levin, and D. A. Molnar. Sage:
Whitebox fuzzing for security testing. ACM Queue,
10(1):20, 2012.

[8] P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14(2):105–156, 2004.

[9] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux.
Guided test generation for coverage criteria. In
Proceedings of the IEEE International Conference on
Software Maintenance, ICSM ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society.

[10] D. Romano, M. Di Penta, and G. Antoniol. An
approach for search based testing of null pointer
exceptions. In Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing,
Verification and Validation, ICST ’11, pages 160–169,
Washington, DC, USA, 2011. IEEE Computer Society.

[11] RTCA Inc. DO-178b: Software Considerations in
Airborne Systems and Equipment Certification.
Requirements and Technical Concepts for Aviation,
Washington, DC, December 1992.

[12] N. Tillmann and N. J. de Halleux. Pex — white box
test generation for .NET. In International Conference
on Tests And Proofs (TAP), pages 134–253, 2008.

[13] L. J. White and E. I. Cohen. A domain strategy for
computer program testing. IEEE Trans. Softw. Eng.,
6:247–257, May 1980.

[14] L. Zhang, T. Xie, L. Zhang, N. Tillmann,
J. de Halleux, and H. Mei. Test generation via
dynamic symbolic execution for mutation testing. In
Proceedings of the IEEE International Conference on
Software Maintenance, ICSM ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society.

