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ABSTRACT
Modern test case generation techniques can automatically achieve
high code coverage. If they operate on the unit level, they run the
risk of generating nonsensical inputs, which, when causing failures,
are painful to identify and eliminate. Running a unit test generator
on five open source Java programs, we found that all of the 181 re-
ported failures were false failures—that is, indicating a problem
in the generated test case rather than the program. By generating
test cases at the GUI level, our EXSYST prototype can avoid such
false failures by construction. In our evaluation, it achieves higher
coverage than search-based test generators at the unit level; yet, ev-
ery failure can be shown to be caused by a real sequence of input
events. Whenever a system interface is available, we recommend
considering search-based system testing as an alternative to avoid
false failures.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

Keywords
Test case generation; system testing; GUI testing; test coverage

1. INTRODUCTION
In the past years, the field of test case generation has made

tremendous progress. Techniques such as random testing [33], dy-
namic symbolic execution [15], or search-based testing [24] are
now able to generate executions that easily achieve high coverage
at the unit test level. Still, test case generation tools have a number
of shortcomings that limit their widespread use. First and fore-
most is the oracle problem: Test case generators normally do not
generate test cases, but only executions; the oracle which assesses
the test result is missing. Unless the program has good run-time
checks, failures may thus go unnoticed; recent work addresses this
issue by suggesting oracles together with test cases [11, 13].
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Figure 1: The Addressbook application for which unit test gen-
erators create nonsensical failing tests.

The second problem is that generated test cases may be non-
sensical—that is, represent an execution that would never occur in
reality. As an example, consider the Addressbook program [26]
shown in Figure 1. It is a simple Java application which manages a
set of contacts that can be entered, searched, and grouped into cat-
egories. Let us assume we want to use test case generation to test
the main AddressBook class; for this purpose, we use the Ran-
doop random test case generator, a tool which randomly combines
method calls to cover large portions of code.

Figure 2 shows one of those tests generated by Randoop. It con-
sists of 88 individual calls, with the last one raising an exception—
that is, the test fails and must now be analyzed by the developer
to understand the failure cause. Using delta debugging and event
slicing [5], we can automatically reduce this test to five lines listed
in Figure 3. We now can see how the test fails: It creates two
AddressBook objects as well as a category in each; however, the
category for the second address book is based on the category from
the first address book. This mix-up of address books is not handled
by the code and raises an exception.

The reason why this test code is nonsensical is that the actual
application only has one address book, and consequently, only one
AddressBook object. The Randoop test case is nonsensical be-
cause it violates this implicit assumption—it is like creating a car



1 public class RandoopTest0 extends TestCase {
2 public void test8() throws Throwable {
3 AddressBook var0 = new AddressBook();
4 EventHandler var1 = var0.getEventHandler();
5 Category var2 = var0.getRootCategory();
6 Contact var3 = new Contact();
7 〈. . . 75 more calls. . . 〉
8 AddressBook var79 = new AddressBook();
9 EventHandler var80 = var79.getEventHandler();

10 Category var81 = var79.getRootCategory();
11 String var82 = var81.getName();
12 var77.categorySelected(var81);
13 Category var85 = var65.createCategory(var81,
14 "hi!");
15 String var86 = var85.toString();
16 Category var88 = var0.createCategory(var85, . . .);
17 // raises NameAlreadyInUseException
18 }
19 }

Figure 2: A failing test case for the AddressBook class

with two steering wheels and finding that this causes conflicts.
Given how these test cases are generated, the existence of non-

sensical tests is not much of a surprise. However, it turns out that
nonsensical failing tests are widespread. In an exploratory study
of five common study subjects, we found 100% of failing Randoop
tests to be false failures—one has to suffer through up to 112 non-
sensical failing test cases and not find a single true failure.1 Such
false positives effectively prohibit the widespread use of test gen-
eration tools.

There are ways to avoid nonsensical tests. For one, the program-
mer could make assumptions explicit—in our example, she could
make AddressBook a singleton class, for instance, or encode
preconditions that would be checked at runtime. However, it is un-
likely that programmers will protect their code against all possible
automatic misuse. In this paper, we explore whether one can lever-
age system interfaces such as GUIs as filters against nonsensical
input. As input at the system level is controlled by third parties, the
program must cope with every conceivable input. If the program
fails, it always is the program’s fault: At the system level, every
failing test is a true positive.

Test case generation at the system level and through GUIs has
been around for a long time. The issue of such approaches is the
large code distance between the system interface and the behavior
to be covered; intuitively, it appears much easier to call a method
directly rather than trying to achieve its coverage through, say, a
user interface; on top of that, interfaces may be governed by several
layers of complex third-party code for which not even source code
may be available.

We overcome these problems by applying a search-based ap-
proach; that is, we systematically generate user interface events
while learning which events correspond to which behavior in the
code. On five programs commonly used to evaluate GUI testing
approaches, our EXSYST prototype2 achieves the same high code
coverage as unit-based test generators and the same high GUI code
coverage as GUI testers. Yet, in our evaluation, it finds more bugs
than typical representatives of these approaches, and by construc-
tion, has no false alarms whatsoever.

1For the full numbers, see Table 2 in Section 2.
2EXSYST = EXplorative SYStem Testing

Table 1: Study Subjects
Name Source #Lines #Classes
Addressbook [26] 1,334 41
Calculator [26] 409 17
TerpPresent [27] 54,394 361
TerpSpreadSheet [27] 20,130 161
TerpWord [27] 10,149 58

1 public class RandoopTest0 extends TestCase {
2 public void test8() throws Throwable {
3 AddressBook a1 = new AddressBook();
4 AddressBook a2 = new AddressBook();

6 Category a1c = a1.createCategory(
7 a1.getRootCategory(), "a1c");
8 Category a2c = a2.createCategory(a1c, "a2c");
9 // raises NameAlreadyInUseException

10 }
11 }

Figure 3: Simplified AddressBook test case from Figure 2

This paper makes the following contributions:
1. We explore and quantify the problem of false failures caused

by nonsensical tests (Section 2);
2. We use a new testing tool, EXSYST, to demonstrate coverage-

driven generation of test suites through a GUI (Section 3);
3. We introduce the general concept behind EXSYST, namely

search-based system testing, which uses system test gener-
ation to maximize test quality based on coverage metrics,
while avoiding false failures by construction (Section 4); and

4. We show that our approach achieves better coverage than
state-of-the-art unit or GUI test generators, as evaluated on a
standard suite of five Java programs (Section 5). This is our
most important message, as it effectively establishes system
testing as a viable alternative to unit-level testing.

In the remainder of the paper, Section 6 discusses the related
work in unit test generation and GUI testing. Section 7 closes with
conclusion and consequences, as well as an outlook on future work
and alternate applications.

2. FALSE FAILURES
In the introduction, we have discussed the problem of nonsensi-

cal tests—method sequences that violate some implicit assumption,
which, however, is never violated in the actual application context.
Is this a true problem, and how widespread is it? To this effect, we
have conducted an exploratory study on five small-to-medium Java
programs frequently used for GUI testing purposes (Table 1). Ad-
dressbook is the address book application discussed in Section 1.
Calculator is a simple application mimicking a pocket calculator
with basic arithmetic operations. TerpPresent, TerpSpreadSheet,
and TerpWord are simple, yet fully functional programs for presen-
tations, spreadsheet usage, and word processing previously used to
explore GUI testing [27]. All five programs are written in Java.

In our study, we applied the Randoop random test case generator
on all five programs. Randoop [33] applies feedback-directed ran-
dom test generation; it comes with basic contracts for a software’s
correct operation and then tries to find inputs that differ from these
contracts—that is, inputs which are likely to result in failures. Us-
ing Randoop’s default settings, we had it run for 15 minutes on each
of the five programs. We would then examine each reported failure,



Table 2: Randoop Results
Test Total JDK Unit App

Name Failures Issues Issues Issues Issues
Addressbook 112 1 0 1 0
Calculator 2 2 2 0 0
TerpPresent 32 11 2 9 0
TerpSpreadSheet 34 10 0 10 0
TerpWord 1 1 0 1 0
Total 181 25 4 20 0

isolate the issue that caused it (a single issue can cause several sim-
ilar failures), and classify each failure into one of three categories:
JDK issues are false failures coming from violating assumptions

of the Java runtime library—for instance, calling methods in
the wrong order, or passing insufficiently instantiated objects
as parameters.

Unit issues also are false failures, but this time coming from mis-
use of application classes. One such example is the failing
test case shown in Figure 2 and Figure 3.

App issues are true failures that could actually be achieved by us-
ing the application; in other words, there exists some user
input that would trigger the defect causing this failure.

Overall, Randoop reported 181 failures. For each failure, we
identified the failure-causing issue, which we classified into one of
the three categories. This task took us 3–4 minutes per failure, even
for an application like Addressbook, where we found all 112 fail-
ures to be caused by the same single issue described in Section 1.3

The results of our classification are summarized in Table 2. The
striking observation is the rightmost column: None of the issues
reported indicates a defect in the application. All failures reported
by Randoop are false failures—that is, failures that are impossible
to achieve through a real input.

In our study of generated unit test suites, all failing test cases are
false failures, indicating an error in the test case rather than in

the application under test.

Note that such false failures are not a feature of Randoop alone;
indeed, they would be produced by any approach that generates
tests at the method level, including CUTE [34], Pex [35], or EVO-
SUITE [11]—in fact, by any tool on any library or application as
long as the interfaces lack formal specifications on which interac-
tions are legal, and which ones are not. The explicit preconditions
in EIFFEL programs, however, identify false failures by design; and
consequently, the AUTOTEST random test case generator for EIF-
FEL [6] does not suffer from false failures. In programs without
contracts, the effects we saw for Randoop would show up for any
of these tools, especially as real defects are fixed while false fail-
ures remain.

3. SYSTEM TESTING WITH EXSYST
Is there a way we can get rid of false test failures without anno-

tating all our programs with invariants and contracts? The answer
is simple: Just test the program at the system level rather than at

3In practice, one would add an explicit assumption to the code
whenever encountering a false failure, instructing test case gener-
ators to avoid this issue in the future. Hence, the total time spent
on false failures would not be 3–4 minutes per failure, but maybe
5–10 minutes per issue, including the extra time it takes to identify
and specify the assumption. Note however that the test generation
tool must be rerun after adding such assumptions.

the unit level4. At the system level, input is not under the pro-
gram’s control; hence, it must properly check against illegal inputs.
These checks effectively form preconditions at the system level—
preconditions which make every remaining failure a true failure.

The big advantage of generating tests at the unit level is that it is
very easy to cover a specific method—all the test generator needs
to do is call it. When generating tests at the system level, it is much
harder to reach a specific place in the code, as one has to go through
layers and layers, and satisfy dozens of individual conditions along
the way—which is the more a challenge when source code is not
available, as is frequently the case for user interface code. The
challenge for system test generators is thus to achieve the same
high test coverage as unit test generators.

In this section, we present EXSYST, a system test generator for
interactive Java programs, first shown at the ICSE 2012 demonstra-
tion track [16].5 EXSYST operates the program under test through
its graphical user interface by synthesizing input actions. EXSYST
is special in that it aims to maximize coverage: via search-based
techniques, it tries to generate input sequences such that as much
code of the program under test as possible is covered.

Before we discuss the foundations of EXSYST in Section 4, let
us first demonstrate EXSYST from a user’s perspective. To use
EXSYST, all one has to do is to specify the name of the program
under test as well as the class of its main window. EXSYST then
autonomously generates input sequences in a virtual GUI, reporting
any application failures it encountered. Since every failure is tied
to a real sequence of input events, every failure is real—it is char-
acterized by a small number of user interactions that are easy to
understand and to reproduce. Applying EXSYST on the five study
subjects listed in Table 1, EXSYST detects a total of six errors6, out
of which four shall be presented in the remainder of this section.

3.1 Addressbook
The Addressbook application’s user interface consists of three

parts (see Figure 1): It has a list of contacts at the top left, a list
of categories on the top right, and a panel for editing the currently
selected contact at the bottom. When no contact is selected, the
application disables all the input fields in the bottom pane, but does
not disable the “Apply” button. Pressing it results in an uncaught
NullPointerException.

Due to no contact being selected at the beginning this behavior
can be reproduced simply by pressing the enabled “Apply” button
right after application start.

3.2 Calculator
The Calculator application fails with NumberFormatExceptions

when applying any of its supported mathematical operations to an
intermediate result with more than three digits. This is because the
application uses the default NumberFormat of the English locale
for formatting numbers, which uses thousands separators. In read-
ing back the number from its display for subsequent operations, it
directly passes the formatted number string to the BigDecimal()
constructor, which does not support thousands separators.

One input sequence demonstrating this problem is “500 * 2 +
1 =”. Figure 4 shows the application state before the failure. The
application subsequently becomes unusable until it is returned to a
sane state by pressing the “Clear” button.

4Note that this is only suitable when we know what the whole pro-
gram will be.
5This four-page paper presents EXSYST from a user’s perspective,
briefly discussing its operation and failures found.
6GUITAR detected a total of three errors, all also found by EXSYST.
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Figure 4: The Calculator application outputs numbers with
thousands separators, but fails to parse such numbers.

3.3 TerpPresent: Failure 1
The TerpPresent application employs a multi-document inter-

face: There is a shared area with menus and toolbars at the top,
the blue area at the bottom contains floating windows, one per
open document. When closing a window by clicking the close but-
ton in its titlebar, the functionality of the shared area pertaining
to concrete documents gets disabled. When closing a window by
selecting “File/Close”, this functionality erroneously remains en-
abled (see Figure 5). Using any of this functionality without an
open document results in application failure, namely an uncaught
NullPointerException.

One input sequence demonstrating this problem is “File/Close,
Shape/Group” right after application start.

3.4 TerpPresent: Failure 2
A similar failure happens in object selection. Usually, function-

ality pertaining to shapes is disabled when no shape is selected. By
using “Select/Invert” twice when no shape was selected before, we
arrive in an inconsistent application state: When we now use “Ed-
it/Delete” the application thinks that we still have a shape selected
when no shape remains. “Edit/Copy” then leads to an uncaught
NullPointerException.

One input sequence demonstrating this problem is to create a
new shape of some kind right after application start, then proceed
with “Select/Invert, Select/Invert, Edit/Delete, Edit/Copy”.

Figure 5: The TerpPresent application in an inconsistent state:
No document windows are open, yet functionality to interact
with documents remains enabled.

Would a tool like Randoop be able to find these failures? The
answer is “yes”—if you give it enough time. Unfortunately, these
true failures will be buried in thousands of false failures.

4. SEARCH-BASED SYSTEM TESTING
After describing the user’s perspective on EXSYST, let us now

discuss its technical foundations. EXSYST employs a search-based
approach to system testing. In detail, it uses a genetic algorithm
to evolve a population of GUI test suites towards achieving highest
possible coverage. To achieve this, the EXSYST prototype extends
our EVOSUITE test generation tool [9] with a new problem repre-
sentation layer suitable to handle GUI interactions. In this section,
we describe the details of this approach.

4.1 Genetic Algorithms
A genetic algorithm is a meta-heuristic search technique which

tries to imitate natural evolution. A population of candidate solu-
tions is evolved using genetics-inspired operations such as selec-
tion, crossover, and mutation. Each individual is evaluated with
respect to its fitness, which is an estimate of how good the individ-
ual is with respect to the objective of the optimization. Individuals
with better fitness have a higher probability of being selected for
crossover, which exchanges genetic material between parent indi-
viduals, or for mutation, which introduces new information. At
each iteration of the algorithm individuals are selected and evolved
until the next generation has reached its desired size. The algorithm
stops if either a solution has been found, or if a given limit (e.g.,
number of generations, number of fitness evaluations) has been
reached. When applying a genetic algorithm to a particular prob-
lem instance, it is necessary to find a suitable representation for the
candidate solutions, define search operators on this representation,
and to encode a fitness function that evaluates the individuals.

4.2 Problem Representation
Our overall objective is to produce a set of test cases, such that

the set optimizes a code-based coverage criterion. In the past, a
common approach to test generation was to generate one individ-
ual at a time, and then to merge the resulting individuals to a test
suite in the end; however, it has been shown [9] that a granular-
ity of test suites as individuals can be more suitable. In particular,
this choice avoids problems that would otherwise arise when trying
to apply crossover to sequences of GUI actions. We thus follow
this approach, although in principle our techniques could also be
applied to a scenario where individual test cases are evolved.

In our context, a test case is a sequence of GUI interactions from
our model (see Section 4.5). A test suite is represented as a set T of
test cases ti. Given |T | = n, we have T = {t1, t2, . . . , tn}. The
length of a test suite is defined as the sum of the lengths of its test
cases, i.e., length(T ) =

P
t∈T length(t).

4.3 Initial Population
The initial population consists of randomly generated test suites.

For each test suite, we generate k test cases randomly, where k is
chosen randomly out of the interval [1, 10].

Test cases are generated via random walks on the real applica-
tion UI. Starting in the initial state of the application, we inspect the
available GUI elements and their actions, and randomly choose one
action, giving precedence to actions previously unexplored. In the
resulting state, we again randomly choose an action out of the avail-
able ones. This process is repeated until the test case has reached
the desired length. This length is randomly chosen from the in-
terval [1, L], where L is a fixed upper bound on the length of test
cases.



4.4 Search Operators
Individuals selected for reproduction are evolved using crossover

and mutation with certain probability.

4.4.1 Crossover
The crossover operator produces two offspring test suitesO1 and

O2 from two parent test suites P1 and P2. To avoid unproportional
growth of the number of test cases [9], we choose a random value
α from [0, 1]; then, the first offspring O1 contains the first α|P1|
test cases from the first parent, followed by the last (1−α)|P2| test
cases from the second parent. The second offspring O2 contains
the first α|P2| test cases from the second parent, followed by the
last (1 − α)|P1| test cases from the first parent. This way, no off-
spring will have more test cases than the largest of its parents. It is
important to note that crossover only changes test suites while leav-
ing test cases unaffected—crossover at the test cases level can be
significantly more complicated, requiring complex repair actions.

4.4.2 Mutation
The mutation operator is applied at both the test suite and the

test case level. A test suite can be mutated either by adding new
test cases, or by changing existing test cases. Insertion of a new
test case happens with probability σ = 0.1. If a new test case was
inserted, we insert another test case with probability σ2 and so on,
until no more test cases are inserted. There is no explicit deletion
operator at the level of test suites, but we delete a test case once its
length is 0.

In addition to the insertion, each test case of a test suite T is
mutated with probability 1/|T |. A mutation of a test case can result
in (up to) three mutation operators being applied to the interaction
sequence t, each with probability 1/3:
• Deletion operator: For each action in the sequence there is a

chance of it being removed with probability 1/length(t).
• Change operator: Each action in the sequence there is a

chance of its parameters being randomly changed with prob-
ability 1/length(t).
• Insert operator: With decreasing probability (1.0, 0.5, 0.25)

a new action is inserted into the sequence. Each insertion
happens at a random position of the interaction sequence.
A random unexplored action available in that state is chosen
and inserted into the interaction sequence just after that state,
if available, else we fallback to a random action.

The changes done to an interaction sequence by mutation can
result in an action sequence that is not possible on the actual appli-
cation. To overcome this problem we create a model of the GUI,
which we use to repair test cases.

4.5 UI Model
The UI model represents our knowledge of the possible appli-

cation behavior. This information is contained in a state machine
that we create from observing actual executions of the application
under test. Note that by definition the model only describes a sub-
set of the possible application behavior, namely behavior we have
already observed.

Our models are similar to EFG models [29] in spirit, but different
in how they are represented: The states of the model serve to tell
us which components and actions are available at a point of time
in application interaction. Transitions then represent the execution
of actions, such as pressing buttons, entering text into text fields,
selecting menu items, etc. An action sequence is a sequence of
such actions, and corresponds to a path through this automaton.

A state consists of a hierarchy of all windows which can be in-
teracted with in that state (i.e., windows that are visible, enabled,

and not obscured by modality), as well as all of their respective
interactable components (i.e., visible, enabled). Components are
identified by properties such as their type, label, or internal name.

For each action available in a state s, we have a transition leading
from s to the state the app. is in after executing the action. If we
have not executed an action so far, it leads to the unknown state s?.

Figure 6 shows how a sample model progresses as we continue
to discover more information about application behavior: Initially,
we start with a model containing only the initial state s0, corre-
sponding to the application’s status right after it has been launched,
as well as the unknown state s?. All possible actions in s0 lead to
s?. While generating new test cases we iteratively update the ap-
plication model: If an action leads to a new state then that state is
added to the model, and the transition for that action leads from the
old state to the new state. If there previously was a transition to the
unknown state, then that transition is removed.

It can happen that executing an action a in a specific state does
not always take us to the same resulting state: The behavior can
depend on variables not properly captured by the states of our UI
model, such as e.g. the operand stack of a calculator, the time of
day or other non-determinism. We handle this by adding multiple
outgoing transitions.

4.6 Use of the UI model
As we have previously seen, the insert mutation operator inserts

a new random action at some random point p of the target action
sequence. In order to find a new action to insert from the model,
we first need to find the state sp we would be in if we executed the
action sequence up to p: This is done by following the transitions
identified by the actions of the interaction sequence, starting from

New Contact ApplyNew Category

s0

s?

Click Click Click

New Contact ApplyNew Category

s0

s?

Click Click

New Contact ApplyNew Category
s1

First Name

(1)  After application start: All edges from s0 point to s?

(2)  After executing »New Contact« in s0: A new state s1 differing from s0 is found

   
ClickClickClick Enter Text

Click

New Contact ApplyNew Category

s0

s?

Click Click

New Contact ApplyNew Category
s1

First Name

(3)  After executing »Apply« in s0, we remain in the same state s0

   
ClickClickClick Enter Text

Click

Figure 6: Discovering new application behavior leads to the
addition of new states and transitions to the UI model.



s0. We then need to find the set of possible actions for sp. The state
sp may be the unknown state, in case the action sequence up to that
point contains an action that has not yet been executed.

We define the set of actions A(sp) available at sp as follows:
For a known state: All the actions available for all components

available in that state.
For the unknown state: Set of all actions available for the last

known state along the action sequence.
As explained in Section 4.4.2 the application of a mutation oper-

ator can result in an interaction sequence that is not possible in the
actual application.

We define the feasibility of an action in state sp as follows:
For a known state: If the action is contained in A(sp).
For the unknown state: We assume the action to always be po-

tentially feasible.
If we know any action of the interaction sequence to certainly

be infeasible, we consider the whole sequence to be infeasible.
Our model allows us to repair a subset of such infeasible action
sequences before their actual execution.

We repair an infeasible action sequence by deleting all actions
known to certainly be infeasible from it. Afterwards only poten-
tially feasible actions remain. Note that during this repair we do
not need to execute the test at all — as the execution of interaction
sequences against a GUI is quite costly, we can save significant ex-
ecution time by repairing infeasible action sequences beforehand.

To run an interaction sequence we execute its actions against the
concrete application. If we discover a potentially feasible inter-
action sequence to be infeasible at execution time, we suspend its
execution and update our model. In order to execute actions and
gather component information for state abstraction, we employ the
open source UISpec4J Java/Swing GUI testing framework [26]. Its
window interception mechanism allows us to transparently perform
GUI testing in the background.

4.7 Fitness Function
As we aim at maximizing code coverage with our test suites, we

base the fitness function on our previous work on whole test suite
generation [9]. Rather than optimizing test cases for each branch at
a time, the objective is to optimize an entire test suite with respect
to all branches.

For a given execution, each branch can be mapped to a branch
distance [24], which estimates how close the predicate guarding it
was to evaluating to this particular branch.

For a given test suite T the fitness value is calculated by deter-
mining the minimum branch distance dmin(b, T ) for every target
branch b. The fitness function estimates how close a test suite is
to covering all branches of a program, and therefore requires that
each predicate has to be executed at least twice so that each branch
can be taken. Consequently, the branch distance d(b, T ) for branch
b on test suite T is defined as follows [9]:

d(b, T ) =

8>><>>:
0 if the branch is covered,
ν(dmin(b, T )) if the predicate has been

executed at least twice,

1 otherwise.

To avoid individual branches dominating the search, each branch
is normalized in the range [0, 1] using a normalization function ν.

This results in the following fitness function [9], for a given set
of branches B:

fitness(T ) = |M | − |MT |+
X

bk∈B

d(bk, T ) (1)

Here,M is the set of methods, andMT is the set of methods that
are executed by test suite T ; this information is included as there
can be methods that contain no branching predicates.

The primary objective of our search is code coverage, but we
have the secondary objective of producing small test suites. In ac-
cordance with our previous experiments [10] we do not include the
test length explicitly in the fitness function, but implicitly in terms
of the selection function (when ranking individuals, two test suites
with identical fitness are sorted according to their length).

5. EVALUATION

5.1 Study Setup
To compare the effectiveness of search-based system testing with

state-of-the-practice techniques, we compared EXSYST against three
tools:

Randoop 1.3.2 as a representative of random unit test genera-
tors. We chose Randoop (described earlier in this paper) over
arguably more sophisticated tools for the very pragmatic rea-
son that it ran out of the box. Tools requiring symbolic ex-
ecution such as CUTE [34] would falter in the presence of
classes heavily tied to the system and require specific adap-
tation (which we wanted to avoid lest our adaptation would
influence the result). Pex [35], which would also run out of
the box, unfortunately is restricted to .NET programs.

EVOSUITE [11] as a representative of search-based test gener-
ators at the API level. As EXSYST is based on EVOSUITE,
programs that can be tested with EXSYST can also be tested
with EVOSUITE. Comparing EXSYST against EVOSUITE illus-
trates the effects of applying the same search strategy at the
API level and at the system level.

GUITAR 1.0 [1] as a representative of test generators at the GUI
level. The choice of GUITAR was purely pragmatic: It was
readily available, ran out of the box, had excellent support
by its developers, and worked very well on four of our five
programs (some of which were already used to test GUITAR
itself).7

On each of our five test subjects (Table 1), we would run the
respective tool for 15 minutes8 and determined

1. the number of tests executed,
2. the number of failures encountered,
3. the instruction coverage achieved.

The more instructions a test covers, the more it exercises aspects
of internal program behavior. We wanted to see whether EXSYST
would be able to exceed the code coverage of Randoop as well as
the coverage of GUITAR using the same amount of time. To account
7The GUITAR tool works a little different than the other tools, in
that it includes an offline phase, where it tries to dynamically ex-
tract a complete EFG model [29] from the application, by invoking
all actions it sees as available upfront. The EFG model contains de-
scriptions of all encountered actions. Test case generation then just
chains together actions from the model. In our evaluation, we let
GUITAR extract the EFG model and let it generate all combinations
of actions up to a reasonable depth (usually 3) to obtain a large pool
of test cases. For each run iteration, we then kept selecting previ-
ously unexecuted random test cases from the pool until the time
limit was reached. We did not include the time needed for creating
the EFG model and test pool as it was usually larger than 15 min-
utes and due to how GUITAR works out of the box it could actually
generate a larger pool than is strictly necessary.
8All times measured on a server machine with 8x 2.93 GHz Intel
Core i7-870 Lynnfield CPU cores, and 16 GB RAM, running Linux
kernel 2.6.38-11.



Table 3: Tests Generated (avg. of 5 runs)

Subject Randoop EVOSUITE GUITAR EXSYST
Addressbook 3,984 74,940 237 2,682
Calculator 11,310 91,487 254 2,852
TerpPresent n/a8 12,637 n/a8 117
TerpSpreadSheet 5,384 26,110 225 273
TerpWord 1,759 26,729 107 449
Total 22,437 231,903 823 6,373

for the randomness of the approaches, we repeated each of the ex-
periments five times with different random seeds, and statistically
analyzed the results with respect to coverage.

5.2 Failing Tests
Table 3 lists the number of tests generated by each tool, i.e., for

EVOSUITE and EXSYST these are the tests executed during the evo-
lution and not only the tests in the final test suite. It is clear to see
that while EXSYST produces 7.7 times more test cases than GUI-
TAR, both are dominated by unit test generators. However, each
tool uses different maximum lengths (e.g., EVOSUITE uses a vari-
able size of up to 40 statements per test, Randoop was configured
to use 100 statements per test, while EXSYST was configured with
a limit of 50 user interactions and GUITAR uses a limit of three
interactions plus any required prefix sequences), so a comparison
between the tools is not possible. However, the numbers suggest
that unit level testing tools have higher performance due to calling
methods directly rather than simulating input events.

Unit test generators seem to be more productive, but are they also
more effective? Table 4 lists the failures found by each of the tools.
As EVOSUITE does not report failures out of the box, we counted
all undeclared exceptions (except NullPointerExceptions
or IllegalArgumentExceptions). We did not look into the
24,322 failures found by EVOSUITE, but we examined a handful of
the 1,638 failures encountered by Randoop. The failures we inves-
tigated all turned out to be false failures from our exploratory study
(Section 2), and again, we did not encounter any App issue.

The failures found through GUI testing via GUITAR and EXSYST
are all true, though. In Addressbook, both tools found that pressing
the Apply button without any contacts caused a crash (Section 3); in
TerpSpreadSheet, both detected that pressing the Paste button with
an empty clipboard would raise a NullPointerException.
EXSYST also was able to detect issues related to opening and saving
files with unspecified format and/or extension—issues that were
not found by GUITAR.

Issues detected at the GUI level are real.

5.3 Code Coverage
In terms of bug detection, GUITAR and EXSYST have been supe-

rior to Randoop. But how do these four tools compare in terms of
coverage? For each of the five programs, we identified non-dead
classes—that is, classes with at least one reference from within the
application—and computed the instruction coverage achieved for
each of the tools. Table 5 lists the results per project, and Figure 7
shows in detail how the different tools perform at covering different
types of code.

8On TerpPresent, GUITAR crashed in an endless recursion while
extracting a GUI model, and Randoop repeatedly crashed the X-
Server.

Table 4: Failing Tests (avg. of 5 runs)

Subject Randoop EVOSUITE GUITAR EXSYST
Addressbook 146 15 95 127
Calculator 28 20,578 40 42
TerpPresent n/a8 1,173 n/a8 9
TerpSpreadSheet 196 2,043 214 29
TerpWord 28 513 106 41
Total 398 24,322 455 248

Coverage. The results are clear: In four out of five programs (Ta-
ble 5), EXSYST achieves the highest coverage. The only
exception is TerpPresent, where EXSYST is (yet) unable to
synthesize some of the complex input sequences required to
reach specific functionality.9

In four out of five subjects,
EXSYST achieves the highest code coverage.

Influence of system level testing. Interestingly, this result is not
achieved via search-based testing alone: EVOSUITE, which
applies search-based testing at the unit level, also achieves
very high coverage, but is still dominated by EXSYST in all
the above cases.

Testing at the system level can achieve higher coverage
than testing at the unit level.

Influence of search-based testing. The good EXSYST results, on
the other hand, cannot be achieved by testing through the
system level alone, as shown in the comparison with GUI-
TAR. Indeed, EXSYST dominates GUITAR in all four code
categories, as shown in Figure 7, just as EVOSUITE dominates
Randoop except for GUI-code.

The highest code coverage is achieved
by testing techniques optimized towards this goal.

Code categories. Across all code categories, EXSYST achieves the
highest coverage; the only exception being non-GUI code,
where EVOSUITE fares slightly better.

Only in non-GUI code does testing at the unit level
excel over EXSYST.

Dead code. EVOSUITE fares better in non-GUI code because it can
directly invoke methods. On the other hand, this also allows
EVOSUITE and Randoop to exercise dead code—code other-
wise unreachable from the application. On average, Ran-
doop exercised 52.6% of the instructions in dead classes,
and EVOSUITE 47.3% of the instructions,10 while GUITAR
and EXSYST by construction never reach dead code. For
an application, reporting a failure in unreachable code, as
Randoop and EVOSUITE can do, is unlikely to gain attention
by programmers. On the other hand, tools like GUITAR and
EXSYST could be helpful in identifying such code.

Unit test case generators may report failures
in unreachable code.

9To place an object, TerpPresent requires that the user first selects
the type of object to be placed, and then a rectangular target area.

10If we omit TerpPresent, as for Randoop, the EVOSUITE average
becomes 42.3%. The difference is due to Randoop achieving a
much higher coverage on TerpWord than EVOSUITE, which can also
be seen in Table 6.



Table 5: Instruction coverage for non-dead classes (avg. of 5 runs)
Subject Randoop EVOSUITE GUITAR EXSYST
Addressbook 80.7% 86.7% 79.6% 90.7%
Calculator 65.8% 88.7% 88.7% 92.0%
TerpPresent n/a 49.8% n/a 25.8%
TerpSpreadSheet 13.5% 33.9% 28.2% 39.0%
TerpWord 43.1% 48.4% 27.0% 53.7%
Average 50.8% 61.5% 55.9% 60.2%

Statistical significance. To evaluate the significance of the statis-
tical differences among the different tools, we followed the
guidelines in [2]. In particular, we evaluated the statistical
difference with a two-tailed Mann-Whitney U-test, whereas
the magnitude of improvement is quantified with the Vargha-
Delaney standardized effect size Â12. Table 6 lists the aver-
age Â12 values for the relevant comparisons. In our context,
the Â12 is an estimation of the probability that, if we run
tool 1, we will obtain better coverage than running tool 2.
When two randomized algorithms are equivalent, then Â12 =
0.5. A high value Â12 = 1 means that, in all of the five runs
of the first tool in the comparison, we obtained coverage val-
ues higher than the ones obtained in all of the five runs of the
second tool. All our findings above are significant at the 0.05
level for non-dead code, except for the advantage of EXSYST
over GUITAR in TerpWord.

5.4 Long-Running Tests
In addition to our 15-minute runs, we also conducted a setup with

two-hour runs, investigating if and how coverage would improve
over time. Unfortunately, Randoop crashed for all five programs
after ∼20 minutes, so we cannot compare it against GUITAR and
EXSYST, whose coverage improved by 1–2 base points on each
program (with the exception of TerpWord, where GUITAR would
now achieve a coverage of 39.8% on non-dead classes). No addi-
tional issues were found.

5.5 Threats to Validity
Like any empirical study, our evaluation faces threats to valid-

ity. The most serious threat concerns external validity—the abil-
ity to generalize from our results. We only looked at five small-
to-medium-sized programs with low GUI complexity; full-fledged
office applications or 3-D games would impose a far higher chal-
lenge for any test generator. Likewise, the good coverage obtained
for GUIs does not necessarily generalize to other system interfaces.
Also, unit-level testing tools bear no special support for testing ap-
plications with graphical user interfaces, which may adversely af-
fect their efficiency.

There is no fundamental reason why our approach would not
scale, though; all it takes is sufficient time to sufficiently explore
and exercise the user interface. The fact that our approach pro-
duces no false alarms means that the cost of additional testing is
limited to burning excess cycles. Regarding the testing tools used
in our study, it is likely that search-based or constraint-based unit
test generators would achieve higher coverage than Randoop—a
comparison which we could not undertake due to issues of getting
these programs to work (Section 5.1). Our point that search-based
system testing can achieve a coverage that is as high as unit test
generators remains unchallenged, though; and even with more so-
phisticated unit test generators, the fundamental problem of false
failures remains.

Threats to internal validity concern our ability to draw conclu-
sions about the connections between our independent and depen-

Table 6: Statistical significance. The table lists the Â12 mea-
sures from the coverage comparisons, indicating the effect size:
Â12 < 0.5 means tool 1 resulted in lower, Â12 = 0.5 equal, and
Â12 > 0.5 higher coverage than tool 2. Statistical significance
at 0.05 level is highlighted with bold fonts.

Tool 1 EXSYST EXSYST EXSYST EVOSUITE
vs. vs. vs. vs. vs.

Tool 2 EVOSUITE GUITAR Randoop Randoop
Addressbook

Non-Dead 1.00 1.00 1.00 1.00
Total 0.00 1.00 0.88 1.00
GUI 1.00 1.00 1.00 1.00
Non-GUI 0.00 1.00 0.00 1.00
Dead 0.00 0.50 0.00 1.00

Calculator
Non-Dead 1.00 1.00 1.00 1.00
Total 1.00 1.00 1.00 1.00
GUI 1.00 0.50 0.00 0.00
Non-GUI 0.00 1.00 1.00 1.00
Dead 0.50 0.50 0.50 0.50

TerpWord
Non-Dead 1.00 1.00 1.00 1.00
Total 1.00 1.00 1.00 0.28
GUI 1.00 1.00 1.00 1.00
Non-GUI 0.00 1.00 0.20 1.00
Dead 0.00 0.50 0.00 0.00

TerpSpreadSheet
Non-Dead 1.00 1.00 1.00 1.00
Total 0.00 1.00 1.00 1.00
GUI 1.00 1.00 1.00 1.00
Non-GUI 0.00 1.00 1.00 1.00
Dead 0.00 0.50 0.00 0.56

TerpPresent
Non-Dead 0.00 — — —
Total 0.00 — — —
GUI 0.00 — — —
Non-GUI 0.00 — — —
Dead 0.00 — — —

dent variables. To counter such threats, we generally kept human
influence to a minimum. All tools were used “out of the box” with
their default settings. In our classification of Randoop issues (Sec-
tion 2), we did our best to identify issues in the applications (but
failed). To counter such threats, all programs and data used for this
study are made publicly available (Section 7).

Threats to construct validity concern the adequacy of our mea-
sures for capturing dependent variables. Using coverage to assess
the quality of test suites is common; yet, one may also wish to as-
sess test suites by their ability to find defects. Again, we make our
programs and data available to enable the exploration of additional
measures and comparisons.

6. RELATED WORK
Software testing is a commonly applied technique to detect de-

fects in software. When no specification to test against is available,
testing usually focuses on exploring the program behavior as thor-
oughly as possible. A simple yet effective technique to do so is
random testing. Although tools such as Randoop [33] can generate
large numbers of test cases in short time, there are two important
drawbacks: First, some program states are difficult to reach and re-
quire particular values or sequences of actions which are unlikely
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Figure 7: Branch coverage achieved on the four case study applications where all tools succeeded for different types of code.

to occur during random testing. The second problem is that random
testing tools commonly assume the availability of an automated test
oracle that can detect failures—such oracles are available only for a
very limited set of defects (e.g., program crashes), while for exam-
ple normal functional errors can only be detected by verifying that
the program behavior matches the expected behavior. This leads
to the oracle problem, which requires the tester to understand a
generated test case in order to come up with a test verdict for its
execution. It is unrealistic to assume that the tester will manually
generate oracles for large sets of randomly generated test cases.

6.1 Structural Test Generation
The problem of generating test cases for difficult to reach ex-

ecution paths has been addressed by several techniques, of which
constraint-based and search-based approaches have lead to the most
prominent solutions recently. As both constraint-based testing as
well as search-based testing have specific drawbacks, a promising
avenue seems to be the combination of evolutionary methods with
dynamic symbolic execution (e.g., [23, 21]). Constraint-based test-
ing interprets program paths as constraint systems using dynamic
symbolic execution, and applies constraint solvers to derive new
program inputs, and has been successfully implemented in tools
like DART [15] and Microsoft’s parameterized unit testing tool
PEX [35]. Although EXSYST uses a search-based approach, in
principle also approaches based on dynamic symbolic execution
can be used for GUI testing [14].

Search-based testing [24] aims to produce test inputs using meta-
heuristic search algorithms. Local search techniques consider the
immediate neighborhood of candidate solutions, and have been suc-
cessfully applied for generating test data at the method level; there
is evidence that local search algorithms can perform more effi-
ciently than global search algorithms like Genetic Algorithms; yet
they are less effective [18]. As the search spaces differ considerably
between EXSYST (GUI interactions) and traditional work on testing
procedural code (e.g., [18], it is not clear how local search would be
applied to the individuals, and whether the results on local versus
global search in procedural code would carry over to EXSYST.

However, GUI test cases are very similar in principle to the se-
quences of method calls that are used in object-oriented unit testing.
In this context, Genetic Algorithms (GA) have been successfully
used [36, 9], and so EXSYST follows the search based approach ap-
plied in EVOSUITE and also uses a GA. EXSYST extends our EVO-
SUITE tool [9] which performs search at the API level; EXSYST
shares the fitness function with EVOSUITE, but uses its own repre-
sentation and search operators.

Most systematic test generation techniques try to maximize code
coverage by targeting one coverage goal at a time. However, op-
timizing a test case for one specific branch may be very difficult,

while at the same time many other branches are accidentally cov-
ered during the search. This insight has lead to techniques that try
to include all branches in the search, even when targeting one spe-
cific branch (e.g., [32]). EXSYST follows the whole test suite gen-
eration approach introduced by EVOSUITE [9]: The search aims to
optimize a test suite with respect to all code branches, thus exploit-
ing the effects of collateral coverage and avoiding the necessity to
decide on the order in which to address individual testing goals.

Traditionally, search-based test generation with respect to code
coverage uses a test driver (which can be automatically generated)
for a particular function, and then the search optimizes the input
values to this function [24]. A kind of system testing may be per-
formed at the API level when this function is the main function.
For example, Jia and Harman [17] determined that the problem of
test generation becomes significantly more difficult when testing
the entire program, rather than individual functions, which under-
lines the challenges that EXSYST faces. Although structural test
data generation has been the primary focus of search-based testing,
it has also been directly applied for testing at the system level, for
example to real-time [4] or embedded [20] systems, or Simulink
models [40]. In contrast to previous work, EXSYST does not gen-
erate traditional test data but GUI event sequences.

6.2 GUI Testing
Usually, automated techniques (including GUITAR) to derive test

cases for graphical user interfaces (GUIs) first derive graph models
that approximate the possible sequences of events of the GUI [37],
and then use these models to derive representative test sets [30, 38],
for example guided by coverage criteria defined on the GUI [31].
As this does not correctly account for interdependencies and in-
teractions between different actions (an action could only become
available after successfully performing another action) the models
are only approximations of real application behaviour. In general,
the longer a test case is the more likely it is to be infeasible, and
so effort has been put into repairing infeasible GUI test cases [28,
19]. Alternatively, the GUI model itself can be updated during the
testing process [39]. Mostly, these GUI test generation approaches
consider only the GUI, thus allowing no direct conclusions about
the relation of GUI tests and the tested program code. A notable
exception is the work of Bauersfeld et al. [3], who link GUI tests to
the code by optimizing individual test cases to achieve a maximum
size of the call tree. In contrast, EXSYST continually refines its
models from run-time feedback attained via evolution, makes use
of newly discovered application behaviour in subsequent iterations
of the evolution, explicitly tries to maximize the code coverage of
the whole application, and uses guidance based on the branch dis-
tance measurement, while at the same time aiming to produce small
test suites to counteract the oracle problem.



6.3 Understanding Tests
To ease the task of oracle generation, a common step is to aim

to produce as few as possible test cases, which nevertheless ex-
ercise the system under test as thoroughly as possible. Usually,
this is guided by coverage criteria. When test cases are sequences
(e.g., when testing object-oriented software), it is helpful to mini-
mize these sequences [22]. Such minimization could in principle
also be applied to the GUI sequences produced by EXSYST. Other
work considers the task of producing human readable test cases,
for example by including results from web queries [25]. In previ-
ous work, we addressed the problem implicit preconditions in the
code by learning from user code and trying to have imitate it, thus
increasing readability and reducing the probability of uninteresting
faults [12]. However, exploration of new behavior might still lead
to detection of false failures. In contrast, when testing at the system
level by definition there is no non-sensical or uninteresting behav-
ior: Everything that can be done with the system as a whole must
be valid behavior, as the system cannot restrict the environment in
which it is used.

7. CONCLUSION AND CONSEQUENCES
Test case generation is a promising approach in theory, but with

a number of limitations in practice. One such limitation is false
failures: Failures of nonsensical tests which point to errors in the
tests rather than in the code. As we demonstrate in this paper, it can
happen that all failures reported in a program are false failures.

The problem of false failures can be easily addressed by test-
ing through a system interface. As we show in this paper, well-
designed system test case generators can be just as effective as unit
test case generators, yet ensure by construction that every failure
reported is a true failure. This allows developers to reduce infor-
mation overload—and focus on the problems that are real, and on
problems that matter. As it comes to test case generation, it is time
to reconsider system layers as low-risk, high-benefit alternative to
method and unit layers.

Besides focusing on general issues such as generality and pack-
aging for end users, our future work will focus on the following:
Test carving [8] is a technique to record and extract unit tests from

system tests. Applying test carving to the executions gener-
ated by EXSYST would allow to combine the efficiency of
unit testing while still retaining true failures only.

Alternate GUIs and platforms may prove a far more valuable ap-
plication ground than Java/Swing. Mobile phone and touch-
screen devices provide a far richer input vocabulary, yet have
very well-defined input capabilities.

Alternate system layers besides GUIs may provide alternate han-
dles for providing system inputs. Structured data inputs, net-
work communication—anything that is under control by a
third party could serve as a vector for generating realistic ex-
ecutions. The question is whether search-based techniques
could again discover the relations between input features and
code features.

Dynamic specification mining infers program models from exe-
cutions. The more executions observed, the more accurate
the mined models become; nonsensical executions, on the
other hand, spoil the resulting models. Techniques that lever-
age test case generation for specification mining [7] thus can
greatly benefit from realistic executions.

Feature location attempts to locate features in code that serve a
given concern. With generated realistic executions, one could
use dynamic techniques to accurately locate code fragments
tied to a particular concept in the user interface or otherwise
structured input.

We are currently integrating EXSYST into the EVOSUITE test gen-
eration framework, which will be released as open source in Sum-
mer of 2012. Live demos of EVOSUITE as well as additional data
on the experiments described in this paper are available at

http://www.evosuite.org/
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