
EXSYST: Search-Based GUI Testing

Florian Gross
Saarland University

Saarbrücken, Germany
fgross@cs.uni-saarland.de

Gordon Fraser
Saarland University

Saarbrücken, Germany
fraser@cs.uni-saarland.de

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-saarland.de

Abstract—Test generation tools commonly aim to cover
structural artefacts of software, such as either the source
code or the user interface. However, focusing only on source
code can lead to unrealistic or irrelevant test cases, while
only exploring a user interface often misses much of the
underlying program behavior. Our EXSYST prototype takes
a new approach by exploring user interfaces while aiming
to maximize code coverage, thus combining the best of both
worlds. Experiments show that such an approach can achieve
high code coverage matching and exceeding the code coverage
of traditional unit-based test generators; yet, by construction
every test case is realistic and relevant, and every detected
failure can be shown to be caused by a real sequence of input
events.

Keywords-test case generation; system testing; GUI testing;
test coverage

I. INTRODUCTION

State of the art test generation tools can produce unit
tests that achieve high code coverage, for example by using
search [5] or constraint solvers [3]. However, such tools
have a number of shortcomings that limit their widespread
use. First, these tools produce executions and not test cases,
as they are missing the essential test oracles that decide,
whether an execution revealed a defect. The second problem
is that generated test cases may be nonsensical—that is,
represent executions that would never occur in real usage of
the application. The reason for this is that often assumptions
are not made explicit by the programmer. Even though this
could be amended, for example in terms of preconditions, it
is unlikely that programmers will protect their code against
all possible automatic misuse. Such nonsensical executions
not only add to the difficulty of the oracle problem, but may
reveal false failures that cannot happen in real usage. In a
recent study [4] on five applications, we found that all of
the 181 failing generated unit tests were false failures—that
is, failures which were created through violations of implicit
preconditions, but that never occur in the actual application.

To address the issue of false failures, our EXSYST pro-
totype leverages system interfaces such as GUIs as filters
against nonsensical input—interfaces at which the program
must cope with every conceivable input, and at which every
failure is a true failure. While GUI testing has been around
for a long time (typically with a focus of covering all GUI
elements and states), EXSYST specifically aims for achieving

Figure 1. Screenshot of EXSYST in action, showing the current state of
execution and the achieved branch coverage for the target application.

the same high code coverage as unit test generators. For this
purpose, it applies a search-based approach; that is, it sys-
tematically generates user interface events while observing
which events correspond to which behavior in the code.

II. SEARCH-BASED SYSTEM TESTING

EXSYST uses a genetic algorithm to evolve a population
of GUI test suites with the goal of achieving maximum
possible coverage. To achieve this, it combines the genetic
algorithms from our EVOSUITE test generation tool [2] with
a new problem representation for handling GUI interactions.

A genetic algorithm is a meta-heuristic search technique
which tries to imitate the natural process of evolution. A
population of candidate solutions is evolved using search
operators such as selection, crossover, and mutation, grad-
ually improving the fitness value of the individuals, until a
solution has been found or the search is stopped by other
means. In EXSYST, an individual of this search is a set of
GUI interaction sequences (test suites). Crossover creates
offspring test suites by exchanging sequences between the
two parent test suites. Mutation of test suites results in muta-
tion of individual sequences with a probability related to the
number of sequences in a test suite: Mutations of interaction
sequences add, remove, or change individual interactions.

The individuals of the initial population are generated from
targeted random walks on the GUI. The fitness of a test suite
is measured by branch coverage on the underlying code, and
is calculated as the sum of normalized branch distances [2],
where the branch distance is an estimate of how close the
predicate guarding a particular branch was to being fulfilled
and thus how close the branch was to being covered.

To guide the exploration and the search operators, a model
of the user interface is created and evolved alongside the
test cases. This UI model represents our knowledge of the
behavior of the application under test. The information is
modeled using a non-deterministic state machine that we
create from observing actual executions of the application
under test. By construction, this model only describes a
subset of possible application behavior, namely behavior we
have already observed.

The states of this model represent components and actions
available at a point of time in application interaction (i.e.,
windows that are visible, enabled, and not obscured by
modality), as well as all of their respective interactable
components (i.e., visible, enabled). Transitions are defined to
represent the execution of actions, such as entering text into
text fields, clicking buttons, opening menus, etc. An action
sequence is a sequence of such actions, corresponding to
a path through the automaton. If the action has not been
executed so far, its transition leads to the unknown state
s?. As we generate new test cases, the model is updated
with information from new observations of the application
behavior. If an action takes us to a new state, the new state
is added to the model, and a transition for the action, taking
us from the old state to the new state will be added. If there
previously was a transition to the unknown state, then it is
removed.

The UI model serves several purposes:

• When inserting new interactions into an interaction
sequence, we can give preference to unexplored parts
of the GUI.

• Mutating an interaction sequence might result in an
invalid sequence that cannot be executed. If this is the
case, then we use the UI model to repair the sequence.

New Contact ApplyNew Category

s0

s?

Click Click

New Contact ApplyNew Category
s1

First Name

ClickClickClick Enter Text

Click

Figure 2. Example UI model: States represent active GUI elements, and
transitions represent interactions; interactions not observed so far lead to a
special unknown state s?.

III. SYSTEM TESTING WITH EXSYST

EXSYST is a system test generator for interactive Java
programs, that controls the program under test through its
graphical user interface. It does so by synthesizing input
actions, such as entering text or mouse clicks. The dis-
tinguishing feature of EXSYST is that it aims to maximize
coverage: via search-based techniques, it strives to generate
input sequences such that as much of the code of the
program under test as possible is covered.

All it takes to use EXSYST is a computer with CPU
cycles to burn. After invoking EXSYST with the program
under test, it autonomously generates input sequences in an
invisible virtual GUI, reporting any application failures as
encountered. (For diagnostic and demonstration purposes,
the GUI interaction can also be made visible.) Since every
failure is tied to a real sequence of input events, every
failure is real—it is characterized by a small number of user
interactions that are easy to understand and to reproduce.

While EXSYST is easy to use and straight-forward to
understand, it shares the same limitation as any other test
generator: While it strives to exercise as many program
aspects as possible, it cannot check the outcome of these
interactions—unless the program or the runtime system
detects an error itself (for instance, by raising an exception).
EXSYST users would thus be well advised to include asser-
tions in their code which check for the sanity of computing
results. In the long run, such a setting implies a dramatic
reduction in writing test cases: A tool like EXSYST generates
executions and strives for coverage, while the provided
assertions check for correctness of the results (and can be
reused again and again). With EXSYST, any failure reported
is (by construction) a true failure; the lack of false alarms
finally makes automated test generation an effective and
efficient alternative to manual test writing.

IV. SOME FAILURES

Let us briefly discuss some results obtained with EXSYST.
We ran EXSYST on five test subjects commonly used for GUI
testing, the details of which are listed in Table I. On each of
the five test subjects, we would run the respective tool for
15 minutes1. For these experiments, Table I lists:

1) the number of tests executed,
2) the number of failures encountered,
3) the instruction coverage achieved.
Applying EXSYST on the five study subjects listed in

Table I, EXSYST generated a total of 6,373 tests (Table II),
out of which 248 failed. These failures were caused by a
total of six errors, all of which are true failures and can be
recreated through a short sequence of user events:

1All times measured on a server machine with 8x 2.93 GHz Intel i7-870
Lynnfield CPU cores, and 16 GB RAM, running Linux kernel 2.6.38-11.
As all approaches are driven by random generators, results reported are
averages over three runs conducted.

7 8 9

4 5 6

1 2 3

0 .

C

-

*

+

/

=

Calculator

1,000

Figure 3. The Calculator application formats numbers with thousands
separators, but can not parse such numbers produced by itself.

Figure 4. The TerpPresent application in an inconsistent state: No
document windows are open, yet functionality to interact with documents
remains enabled.

1) Addressbook. When no contact is selected in the
address book, the application disables all the input
fields in the bottom pane. However, it does not dis-
able the “Apply” button. Pressing this button (for in-
stance, right after application start) caused an uncaught
NullPointerException.

2) Calculator. The Calculator application (Figure 3)
raises a NumberFormatExceptions when apply-
ing any of its numerical operations to an intermediate
result consisting of more than three digits. This is due

Table I
STUDY SUBJECTS

Name Source #Lines #Classes
Addressbook [6] 1,334 41
Calculator [6] 409 17
TerpPresent [7] 54,394 361
TerpSpreadSheet [7] 20,130 161
TerpWord [7] 10,149 58

Table II
TESTS GENERATED

Subject Tests Failures Coverage
Addressbook 2,682 127 87.7%
Calculator 2,852 42 92.0%
TerpPresent 117 9 25.3%
TerpSpreadSheet 273 29 48.5%
TerpWord 449 41 53.9%
Total 6,373 248 61.5%

to Calculator application using the NumberFormat
of the English locale for formatting numbers (which
uses thousands separators), and feeding these for-
matted strings into the BigDecimal() constructor,
which does not support thousands separators. One
input sequence leading to this problem is “500 * 2
+ 1 =”; Figure 3 shows the application state before
the failure. The application subsequently becomes
unusable until it is returned to a sane state by pressing
the “Clear” button.

3) TerpPresent. TerpPresent, a simple presentation pro-
gram (Figure 4), uses a multi-document interface with
a shared menu at the top. When the last presenta-
tion (in the blue area) is closed, menu entries per-
taining to the document erroneously remain enabled.
For instance, invoking Shape/Group without an open
document results in an application failure (Uncaught
NullPointerException).

4) TerpPresent again. A similar failure is related to ob-
ject selection. By using “Select/Invert” twice when no
shape was selected before, we arrive in an inconsistent
application state: When we now use “Edit/Delete”,
the application assumes there still is a shape selected
when no shape remains. “Edit/Copy” then leads to
an uncaught NullPointerException. One input
sequence demonstrating this problem is to create a new
shape of some kind and then invoke “Select/Invert,
Select/Invert, Edit/Delete, Edit/Copy”.

5) and 6) More failures. EXSYST also was able to detect
two issues related to opening and saving files with
unspecified format and/or extension.

All these six issues are real failures which need to be
fixed in the application code. In principle, all of them could
also be discovered by a unit-testing tool like Randoop—but
as we showed in our evaluation, they would likely get lost
between hundreds of false alarms [4].

While testing through the GUI gets rid of false failures,
would a search-based approach as in EXSYST still be able
to achieve high coverage? The rightmost column of Table II
lists the coverage achieved—on average, 61.5%, a signif-
icantly higher coverage than the 40.9% of Randoop [4].
Using EXSYST, one can thus expect to obtain the same
high coverage as unit-based tests; yet, every failure is a true
failure characterized by a short sequence of input events.

V. RELATED WORK

Recent code-based techniques such as random testing [9],
dynamic symbolic execution [3], or search-based testing [5]
can achieve high code coverage, yet suffer from problems of
nonsensical tests and false failures. EXSYST overcomes this
problem by testing through the user interface, rather than
at the API level. This, of course, requires the availability
of a suitable user interface. Usually, automated techniques
to derive test cases for graphical user interfaces (GUIs) first
derive graph models that approximate the possible sequences
of events of the GUI [8], and then use such models to
derive representative test sets [10]. Mostly, these GUI test
generation approaches consider only the GUI, thus allowing
no direct conclusions about the relation of GUI tests and
the tested program code. A notable exception is the work
of Bauersfeld et al. [1], who attempt to link GUI tests with
the code by optimizing individual test cases to achieve a
maximum size of the call tree. In contrast, EXSYST explicitly
tries to maximize the code coverage, while at the same time
it aims to produce small test suites to reduce the oracle
problem.

VI. CONCLUSIONS

Automated testing has made spectacular progress in the
past decade—progress that makes its remaining shortcom-
ings all the more painful. By testing through the user inter-
face, EXSYST avoids false failures as they could be provoked
by generated unit tests; at the same time, it achieves the
same high coverage as these tools. EXSYST requires nothing
but spare computer cycles and is straight-forward to use;
Failures are reported in terms of user interaction and thus
easy to understand. We recommend search-based system
testing as a strong complement to generated unit tests.

We are currently integrating EXSYST into the EVOSUITE

test generation framework. Live demos of EXSYST and
EVOSUITE as well as additional data on the experiments
described in this paper will be made available at

http://www.exsyst.org/

and

http://www.evosuite.org/

ACKNOWLEDGMENTS

The work presented in this presentedaper was performed
in the context of the Software-Cluster project EMERGENT
(www.software-cluster.org). It was funded by the German

Federal Ministry of Education and Research (BMBF) under
grant no. “01IC10S01” and by an ERC Advanced Grant
“Specification Mining and Testing”. EXSYST is additionally
funded by the Google Focused Research Award “Test Ampli-
fication”. The authors assume responsibility for the content.

REFERENCES

[1] S. Bauersfeld, S. Wappler, and J. Wegener. A metaheuristic
approach to test sequence generation for applications with a
GUI. In M. Cohen and M. O Cinneide, editors, Search Based
Software Engineering, volume 6956 of Lecture Notes in Com-
puter Science, pages 173–187. Springer Berlin / Heidelberg,
2011.

[2] G. Fraser and A. Arcuri. Evolutionary generation of whole
test suites. In International Conference On Quality Software
(QSIC), pages 31–40, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 213–223, New York, NY,
USA, 2005. ACM.

[4] F. Gross, G. Fraser, and A. Zeller. Exploring realistic
program behavior. Technical report, Saarland University,
2012. Submitted for publication.

[5] P. McMinn. Search-based software test data generation:
a survey: Research articles. Software Testing Verification
Reliability, 14(2):105–156, 2004.

[6] R. Medina and P. Pratmarty. UISpec4J — Java/Swing GUI
testing library. http://www.uispec4j.org/.

[7] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan. Dart:
A framework for regression testing ”nightly/daily builds”
of gui applications. In Proceedings of the International
Conference on Software Maintenance, ICSM ’03, pages 410–,
Washington, DC, USA, 2003. IEEE Computer Society.

[8] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing.
In Proceedings of The 10th Working Conference on Reverse
Engineering, Nov. 2003.

[9] C. Pacheco and M. D. Ernst. Randoop: feedback-directed ran-
dom testing for Java. In OOPSLA ’07: Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming
systems and applications companion, pages 815–816, New
York, NY, USA, 2007. ACM.

[10] X. Yuan and A. M. Memon. Using GUI run-time state
as feedback to generate test cases. In Proceedings of the
29th international conference on Software Engineering, ICSE
’07, pages 396–405, Washington, DC, USA, 2007. IEEE
Computer Society.

http://www.exsyst.org/
http://www.evosuite.org/
www.software-cluster.org

	I Introduction
	II Search-based System Testing
	III System Testing with Exsyst
	IV Some Failures
	V Related Work
	VI Conclusions
	References

