
SPolly: Speculative Optimizations in the Polyhedral Model

Johannes Doerfert
Saarbrücken Graduate School

of Computer Science
Saarland University

Saarbrücken, Germany
doerfert@st.cs.uni-

saarland.de

Clemens Hammacher
Saarbrücken Graduate School

of Computer Science
Saarland University

Saarbrücken, Germany
hammacher@cs.uni-

saarland.de

Kevin Streit
Saarbrücken Graduate School

of Computer Science
Saarland University

Saarbrücken, Germany
streit@cs.uni-
saarland.de

Sebastian Hack
Computer Science

Department
Saarland University

Saarbrücken, Germany
hack@cs.uni-saarland.de

ABSTRACT
The polyhedral model is only applicable to code regions
that form static control parts (SCoPs) or slight extensions
thereof. To apply polyhedral techniques to a piece of code,
the compiler usually checks, by static analysis, whether all
SCoP conditions are fulfilled. However, in many codes, the
compiler fails to verify that this is the case. In this pa-
per we investigate the rejection causes as reported by Polly,
the polyhedral optimizer of a state-of-the-art compiler. We
show that many rejections follow from the conservative over-
approximation of the employed static analyses. In SPolly, a
speculative extension of Polly, we employ the knowledge of
runtime features to supersede this overapproximation. All
speculatively generated variants form valid SCoPs and are
optimizable by the facilities of Polly. Our evaluation shows
that SPolly is able to effectively widen the applicability of
polyhedral optimization. On the SPEC 2000 suite, the num-
ber of optimizable code regions is increased by 131 percent.
In 10 out of the 31 benchmarks of the PolyBench suite,
SPolly achieves speedups of up to 11-fold as compared to
plain Polly.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Compilers, Optimization, Retargetable compilers,
Run-time environments

General Terms
Performance

Keywords
Adaptive optimization, polyhedral loop optimization, just-
in-time compilation, speculative execution

1. INTRODUCTION
The polyhedral model uses polyhedra to abstract essen-

tial information of a static control program (SCoP, a re-
stricted form of nested DO loops). By abstracting loop
nests as polyhedra, many popular loop optimizations can

be elegantly formulated in terms of linear transformations.
However, a piece of code has to meet the SCoP criteria [5]
(or slight extensions thereof) to be tractable by polyhedral
techniques. Those conditions are usually met by many nu-
merical kernels from linear algebra, image processing, signal
processing, etc. However, in more general benchmarks such
as the SPEC 2000 benchmark suite, the SCoP conditions
are often violated. One simple reason is, for example, that
the compiler could not prove that all arrays used in the loop
nest do not overlap or alias. Further reasons we encountered
are: The implementation of functions called in the loop nest
was not available because they are extern to the transla-
tion unit in question. However, at runtime, the functions
turned out to be pure. Also, index expressions and/or loop
bounds could not be classified as affine. Often, some pa-
rameter, which does not change in the loop nest, makes an
expression non-affine. Hence, specializing the loop nest to
the concrete value at runtime makes polyhedral techniques
applicable.

In this paper, we want to advance the applicability of poly-
hedral optimizations by incorporating runtime information.
For example, parameters that lead to non-affine expressions
can be replaced by their concrete value. This way, using a
just-in-time compiler, the program can prepare specially op-
timized versions for different parameter sets. In summary,
this paper makes the following contributions:

• We investigate the applicability of Polly [8], a poly-
hedral framework for LLVM [10], on the SPEC 2000
benchmark suite and classify the causes that prevent
the application of Polly to a candidate code region1.
We conclude that up to 2.4 times more code regions
in SPEC 2000 could be considered by Polly if runtime
information is available.

• Based on those insights, we present SPolly, a prototyp-
ical extension of Polly to integrate runtime informa-
tion. At the moment, SPolly handles two cases: First,
it adds code to the program that checks whether all

1As code regions we consider all non-trivial regions accord-
ing to Grosser et al. [8], i.e. single entry, single exit regions
containing at least one loop.

55



referenced arrays of a loop nest do not overlap. Sec-
ond, it uses profiling to record the values of parameters
that lead to non-affine index expressions and/or loop
bounds and generates specialized variants that can be
selected during runtime. We demonstrate the benefit
of these techniques on the PolyBench benchmark suite.

The rest of this paper is organized as follows: In Section 2
we present related work. Section 3 provides an evaluation of
the most frequent rejection causes of polyhedral transforma-
tions; Section 4 explains how SPolly alleviates some of those
causes. Finally Section 5 evaluates SPolly and Section 6
concludes.

2. RELATED WORK
The polyhedral literature is certainly too extensive to be

discussed in full detail here. Furthermore, this paper is con-
cerned with increasing the applicability of the polyhedral
model by speculation and runtime analysis and not with
inventing new polyhedral techniques. Therefore, we concen-
trate on the recent work which is directly related to ours.

In his thesis [7], Grosser describes a speedup of up to
8x for a matrix multiplication benchmark, achieved by his
polyhedral optimizer Polly [8]. He also produced similar re-
sults for other benchmarks of the PolyBench [11] benchmark
suite. Other publications [4, 1, 12] show similar results on
PolyBench. PolyBench is certainly well suited to compare
polyhedral techniques. However, it does not allow for as-
sessing their width of applicability as we do in this paper.

Baghdadi et al. [1] reveal a huge potential for speculative
loop optimizations as an extension to the formerly described
techniques. They state that aggressive loop nest optimiza-
tions (including parallel execution) are profitable and possi-
ble, even though overestimated data and flow dependences
would statically prevent them. Their manually crafted tests
also show the impact of different kinds of conflict manage-
ment. Overhead, and therefore speedup, differs from loop to
loop, as the applicability of such conflict management sys-
tems does, but a trend was observable. The best conflict
management system has to be determined per loop and per
input, but all can provide speedup, even if they are not that
well suited for the situation.

Bastoul et al. [2, 3] and Girbal et al. [6] also perform an
evaluation of the applicability of the polyhedral model in
several benchmarks. In contrast to this work however, he
is more concerned with the structure and size of the SCoPs
and not with the reasons of why other code regions could
not be classified as SCoPs.

Jimborean et al. [9] employ the polyhedral model in the
context of speculative parallelization. A static paralleliza-
tion pattern is generated assuming linearity of loop bounds
and memory accesses. Additionally, polyhedral transforma-
tions are proposed based on static dependence analysis. At
runtime, the linearity of memory accesses and the applica-
bility of the proposed candidates is assessed by collecting
profiling information. In case of success, the statically gen-
erated pattern is instantiated with the gathered informa-
tion and corresponding code is generated. As the performed
transformations are speculative and not validated before ex-
ecution of the loop, a speculation mechanism guards the
execution. In case of detected conflicts, rollbacks are per-
formed and execution switches to the safe, sequential ver-
sion. The approach has some drawbacks: First of all, it

relies on programmer annotations to identify parallelization
candidates. Second, polyhedral optimization is limited to
transformations that do not change the loop structure or re-
order statements. The use of synthetic benchmarks in their
evaluation does not allow judging in how far the approach
can profitably extend the applicability of polyhedral opti-
mization on widely used benchmarks such as the PolyBench
suite.

3. MOTIVATION
In order to analyze which of the SCoP restrictions limit

the applicability of the polyhedral model most, we con-
ducted an evaluation on nine programs from the SPEC 2000
benchmark suite2. To this end we instrumented Polly to out-
put all rejection causes that prevent a candidate code region
from being considered a polyhedron3. In case of multiple re-
jection causes for one region, we record all of them.

Figure 1 shows the results of this evaluation. For each
rejection cause in Polly, we report three numbers:

• The number of regions where the violation of condi-
tion i is a cause for not considering (Column A).

• The number of regions where the violation of condi-
tion i is the only rejection cause (Column B).

• The number of regions gained when ignoring all con-
ditions 0 to i (Column C).

Over the nine tested programs, 1862 candidate regions are
tested, out of which 1587 are rejected by Polly. The remain-
ing 275 regions (14.8%) are considered legal SCoPs.

i Rejection cause A B C

0 Non-affine expressions 1230 84 84
1 Aliasing 1093 207 510
2 Non-affine loop bounds 840 6 660
3 Function call 532 72 928
4 Non-canonical indvars 384 0 1174
5 Complex CFG 253 31 1387
6 Unsigned comparison 199 0 1586
7 Others 1 0 1587

Figure 1: SCoP rejection causes on the SPEC 2000 bench-
mark suite

The rejection causes are ordered by the number of re-
gions that they affect (column A). In the following, we will
examine the conditions constituting the rejection causes in
further detail and discuss if and how SPolly can alleviate
their impact.

Non-affine expressions As explained in more detail in
Section 4.2, all expressions used for memory accesses
or predicates of conditional branches have to be affine
expressions with respect to parameters and induction
variables. If this is not the case, the code cannot
be represented as polyhedron, thus preventing corre-
sponding optimizations. This happens for example

2As SPolly’s runtime environment is based on the Sam-
bamba framework [13] we selected the programs that were
contained in the Sambamba test suite: ammp, art, bzip2,
crafty, equake, gzip, mcf, mesa, and twolf
3All programs were compiled with
-sink -indvars -mem2reg -polly-prepare

56



when a programmer chose to represent a 2-dimensional
array by a 1-dimensional, flattened, one, translating
the index (i, j) to i ∗ N + j. In case i and j are iter-
ation variables, and N is a parameter, this expression
is not affine but quadratic. If however N can be de-
tected as quasi-constant via profiling, it can specula-
tively be replaced by that constant to circumvent the
non-affinity.

Aliasing Possible aliasing causes a region to be rejected
whenever the base address of two memory accesses
cannot be proven to be disjoint. In particular, this
is the case when pointers originate in parameter val-
ues instead of global variables or stack-allocated mem-
ory, since the default alias analysis used by Polly only
works intra-procedural. In most cases however, two
arrays passed as parameters are disjoint; speculatively
assuming non-aliasing may thus be profitable.

Non-affine loop bounds This constraint requires all loop
bounds to be affine expressions with respect to the
parameters and surrounding iteration variables. In
our experiments we frequently observed that although
bounds have not been affine at compile-time, they of-
ten turn out to remain constant, and thus affine, dur-
ing all executions. This is for example the case if a
loop iterates N2 times, where N is a parameter. It is
obvious that in these cases a specialized variant can be
generated where the loop bounds are considered con-
stant. This not only makes the loop representable as
a polyhedron, but also enables better optimizations in
the isl.

Function call Another major reason for rejecting a code
region is contained function calls. In general, com-
puting memory dependences through calls is a hard
task; for external functions or indirect calls it is often
impossible. Additionally, external functions may not
terminate or have observable effects like text output
or aborting the application. Polly rejects each region
containing at least one call to a function that cannot
be proven to be pure. In practice though, paralleliza-
tion prohibiting side-effects—for example exceptions,
or error reporting—might manifest only infrequently.
In such case, speculatively ignoring the calls and spe-
cializing a region accordingly can make it amenable
to polyhedral optimizations. To preserve the original
semantics, the specialized code needs protection by a
runtime speculation mechanism, e.g. in the form of
transactional memory.

Non-canonical induction variables This constraint re-
quires the induction variables to be in a canonical form,
starting at zero and being incremented by one in each
iteration. If LLVM’s and Polly’s preparation passes
are unable to canonicalize all such variables, the code
region is discarded.

Complex CFG This error is reported if complex termina-
tors like switch instructions or are found, or the control
flow has a “complex form” not representable via while
and if constructs only.

Unsigned comparison During polyhedral optimizations,
Polly may have to modify comparison operators or

their operands, for example to alter the iteration space
of a loop. Special care has to be taken to handle pos-
sible overflows correctly. To this end, this is only im-
plemented for signed operations. Consequently, Polly
rejects all code regions containing unsigned compari-
son.

Others This is a collection of minor technical limitations,
for example rarely used LLVM instructions, which are
not handled properly yet. The only occurrence in our
tests is a cast from an integer to a pointer in the mcf
program.

SPolly concentrates on the first three rejection causes. In
our benchmarks, they make up for 42% of all SCoP rejec-
tions. Thus, assuming we could speculatively eliminate them
in all cases, we could expect 660 new SCoPs to be detected,
which is exactly 2.4 times the original number of SCoPs.
The fourth cause, function calls, could be solved using run-
time techniques as described, but in our experiments the
introduced overhead of transactional execution did not pay
off. Therefore we skipped that for now, and consider it fu-
ture work to improve the performance of the transactional
memory system. All other reported causes are either con-
ceptual obstacles (induction variables, complex CFGs) that
SPolly cannot remove or technicalities that will disappear
when LLVM and Polly will mature further.

4. SPOLLY
SPolly extends the applicability of the loop nest optimizer

and parallelizer Polly by deploying runtime information and
speculatively specializing functions. It targets restrictions
on loop nests arising as a consequence of overestimations in
static analyses. By inferring common values for parameters,
and providing additional conditions for memory accesses, it
makes polyhedral optimizations applicable to more code lo-
cations, and allows for better optimization and code genera-
tion. Those specialized versions will coexist with the original
sequential version and will be executed whenever the actual
runtime values permit this. This section describes in detail
how SPolly achieves this.

4.1 Possible Aliasing
Possible aliasing is the main rejection cause of Polly on the

considered benchmarks of the SPEC 2000 suite and particu-
larly well suited for speculation. An example for a loop with
possibly aliasing accesses is given in Figure 2a. It shows two
arrays accessed via pointers A and B. In case they point to
addresses less than N * sizeof(int) bytes apart, parallel
execution and other loop transformations possibly alter the
semantics. Most alias analyses are conservative and assume
aliasing if A and B could potentially point to the same allo-
cated memory block. Using the latter definition, Polly would
not optimize the presented loop without further information
on A and B.

Polly offers the possibility to override conservative as-
sumptions concerning possible aliasing. This can be done by
either ignoring all aliasing, or by annotating individual code
regions. Both these approaches require manual intervention
and profound knowledge of the application to optimize. In
contrast, SPolly is able to deal with possible aliases with-
out any programmer-provided information. It does so by
introducing alias checks preceding the subject loop nests to

57



void a(int *A, int *B) {

int i;

for (i=1; i<N; i++)

A[i] = 3 * B[i];

}

(a) Loop with possible aliasing pointers

void b(int *A, int N) {

int i, j;

for (i = 1; i<N; i++)

for (j = 0; j<N; j++)

A[j*N+i] += A[j*N+i-1];

}

(b) Loop nest using non-affine expressions
Figure 2: Example loops rejected by Polly for different speculatively resolvable reasons

ensure the absence of conflicts between accesses to loop in-
variant base pointers. For the shown loop, those introduced
checks are conclusive as the accessed range, relative to the
base address, is known before entering the loop, thus non-
aliasing of all accesses to the arrays can be checked a priori.
This approach allows to optimize loops even if the used base
pointers might point into the same allocated block, for ex-
ample different parts of the same array. If the checks fail,
the original, unmodified version is executed, otherwise the
optimized version is chosen. An example that would not
benefit from this approach because of possibly aliasing loop
variant pointers is dynamic multidimensional arrays (arrays
of pointers to arrays). Iterating over those will change the
base pointer of the inner dimension for each execution of
the outer loop, and checking that none of them alias is too
expensive to be performed prior to execution of the loop.

4.2 Non-affine Parameters
Consider Figure 2b. C does not provide support for n-

dimensional arrays of which the dimensions are not known
statically. Hence, a common pattern is to implement n-
dimensional arrays using a 1D array and performing the in-
dex arithmetic “manually”. This pattern creates non-affine
array subscripts on the 1D array. Using static analysis, one
could infer that the 1D access is actually a 2D access; at least
in this example. However, such an analysis is currently not
implemented in Polly. Additionally, it is imaginable that the
code is more complicated making the static analysis unsuc-
cessful.

Thus, SPolly utilizes runtime information gained with a
profiling version of the loop nest to identify reoccurring pa-
rameter values. For those values specialized loop versions
are created with constant values plugged in for the prob-
lematic parameters. Dispatching code is inserted before the
corresponding loop to decide at runtime whether a special-
ized version exists for the actual parameter values. If none
is found, the original, less optimized version is used. In our
example, by specialization the multiplications would become
affine and therefore representable in the polyhedral model,
and thus amenable for all polyhedral optimizations imple-
mented in Polly.

Finally, we observed (see the next section) that replacing
parameters with constants often leads to superior code be-
cause it enables more aggressive optimizations. Thus, even
if a static analysis would analyze pseudo-1D array accesses
and restate them into multidimensional accesses, executing
specialized versions often leads to better performance.

5. EVALUATION
In order to evaluate the success of incorporating runtime

information to speculatively optimize code regions, we will

Figure 3: Quantitative analysis of the applicability of SPolly
compared to Polly. Overall, SPolly provides 635 sSCoPs
while Polly find 275 SCoPs.

investigate two hypotheses:

1. SPolly is able to handle substantially more regions
than Polly. In other words, the number of specula-
tive SCoPs (sSCoPs) is substantially larger than the
number of SCoPs.

2. The extended applicability of the polyhedral model re-
sults in improved runtime performance.

Hypothesis 1 is motivated from Section 3, where we showed
that the constraints that SPolly tackles are the main reasons
for rejecting a SCoP. Hypothesis 2 follows from the primary
goal of polyhedral optimizations, which is reducing the pro-
gram runtime.

5.1 Extended Applicability
In order to evaluate the successful elimination of SCoP

rejection causes, we executed SPolly on the SPEC 2000 tests
that we already used in Section 3. We then compared the
number of sSCoPs detected by SPolly against the number
of SCoPs detected by Polly. A graphical representation of
this comparison is shown in Figure 3.

You can see that for all test cases except of “mcf”, our
speculative extensions provided an increased number of code
regions amenable to polyhedral optimizations. The over-
all number of sSCoPs is 635, as compared to the 275 de-
tected SCoPs by Polly. This is an increase of 131 percent
(360 additional SCoPs).

Compared to the expectations in Section 3, where we iden-
tified an upper bound of 660 additional SCoPs, we reached
a success rate of 55 percent. The remaining sSCoP can-
didates contain code where our heuristics decided that spec-
ulation is not profitable or impossible. This is the case if,

58



Figure 4: Speedups in execution time of SPolly-enabled programs on the PolyBench suite, normalized to the standard Clang-
compiled version with all optimizations enabled

for example, an external function call is executed uncondi-
tionally, or indirect pointer loads are detected where aliasing
cannot be checked a priori.

Overall, we conclude that SPolly in fact widens the appli-
cability of polyhedral optimizations substantially.

5.2 Performance
After confirming that the number of SCoPs detected in

SPEC 2000 is indeed increased, we investigated to which
extent this actually improves the runtime of the programs.
We observed that even though the additional SCoPs were
valid and some of them were executed, the most interesting
code regions were not optimized due to additional obstacles
we could not eliminate. These are mainly external function
calls and indirect memory accesses in the hot loops. So on
these tests, we are unable to achieve significant speedups.

Thus we resort to the PolyBench suite [11], which has
also been used by Grosser et al. [8, 7] before to evaluate the
performance of Polly. We are using the current version 3.2,
and the provided “large” data sets.

In order to compare the speedup in program execution
achievable by applying polyhedral optimizations on stati-
cally validated SCoPs alone against that of speculatively
created and optimized polyhedra, we run all tests

• on the standard toolchain of Clang and LLVM with all
optimizations enabled

• using Polly after applying the standard preparation
passes (see Section 3)

• using SPolly without any prior knowledge about the
program

• using SPolly a second time, such that profiling infor-
mation from the previous run is already available

All tests are conducted on an eight-core Intel Xeon machine
running at 2.93 GHz with 24 GB of main memory.

Surprisingly, we are unable to reproduce earlier results of
Polly on the PolyBench suite. Investigating the reasons why
Polly rejects the SCoPs for the compute-intensive kernels of
all of the benchmarks revealed, that in all cases this is due to
aliasing problems. Since PolyBench 3.0, released in October
2011, the tests are using heap-allocated arrays, passed to
the kernel via pointer arguments plus array sizes. Polly is
unable to prove non-aliasing of those pointers, thus rejecting
all possibly affected SCoP candidates. This is why we did
not find any program for which Polly was able to improve
the performance over a standard Clang-compiled program.

Figure 4 shows the speedups of the SPolly-enabled pro-
gram runs, normalized to the runtime of the corresponding
Clang-compiled program. Missing values in this bar chart in-
dicate failures during optimization, which were mainly orig-
inating from the CLooG code generator, but also from cre-
ating the polytope in Polly. Nevertheless, for most of the
programs we are able to report runtime results. It is not
surprising that there are many programs where SPolly is
not able to bring the kernel to a form amenable for polyhe-
dral optimizations. Thus for these programs no speedup is
achieved.

However, there are also different programs where SPolly
indeed provides enormous speedups. For the first run, SPolly
can make no use of any profiling data, so only those spec-
ulative transformations can be applied for which conclusive
runtime checks can be synthesized. For these runs, the high-
est achieved speedup is 5.1-fold on the mvt program. In

59



the second run however, specialized versions can be created
based on the profiles gathered in previous runs. This allows
to replace loop bounds and parametric values by constant
expressions, which not only makes those code regions rep-
resentable as polyhedra, but also helps other transforma-
tions and the CLooG backend to create better code, e.g. by
choosing the best tile size for loop tiling. Thus, the speedups
achieved in the second runs are significantly higher in almost
all cases, ranging to a maximum of 11-fold for the “gemm”
program. In two cases (mvt and gemver), the speedup in the
second run is slightly lower than in the first run. This is not
due to overhead we introduce for checking whether a special-
ized code version can be chosen (this overhead was negligible
for all our tests), but because the specialized variant actu-
ally executed slower than the original one. The problem of
anticipating whether a code transformation, especially par-
allelization, will pay of at runtime is a well-known problem
for which no general solution exists. Apart from that, it’s
not in the scope of this paper.

6. CONCLUSION
In this paper, we analyzed the most prominent causes

that prohibit polyhedral optimizations for individual code
regions. We observed that often promising regions are re-
jected by the polyhedral framework Polly because of over-
approximation in the static analyses, and because of miss-
ing parameter values. Driven by this observation, we came
up with runtime checks to dynamically switch to special-
ized variants of a code region, where the obstructive fea-
ture is removed. This approach is implemented in SPolly,
a speculative extension to Polly. It enables the application
of polyhedral optimizations to many more code locations,
providing better runtime performance in those cases where
the specialized variant could be used.

7. REFERENCES
[1] R. Baghdadi, A. Cohen, C. Bastoul, L.-N. Pouchet,

and L. Rauchwerger. The potential of synergistic
static, dynamic and speculative loop nest
optimizations for automatic parallelization. In
Workshop on Parallel Execution of Sequential
Programs on Multi-core Architectures (PESPMA’10),
June 2010.

[2] C. Bastoul. Improving Data Locality in Static Control
Programs. PhD thesis, University Paris 6, Pierre et
Marie Curie, France, 2004.

[3] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and
O. Temam. Putting polyhedral loop transformations
to work. In Workshop on Languages and Compilers
for Parallel Computing (LCPC’03), LNCS, pages
23–30. Springer-Verlag, Oct. 2003.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of
the 2008 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’08, pages
101–113, 2008.

[5] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[6] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic

composition of loop transformations for deep
parallelism and memory hierarchies. International
Journal of Parallel Programming, 34(3):261–317, 2006.

[7] T. Grosser. Enabling Polyhedral Optimizations in
LLVM. Diploma thesis, University of Passau, Apr.
2011.

[8] T. Grosser, H. Zheng, R. Aloor, A. Simbürger,
A. Grösslinger, and L.-N. Pouchet. Polly - Polyhedral
Optimization in LLVM. In First International
Workshop on Polyhedral Compilation Techniques
(IMPACT’11), Apr. 2011.

[9] A. Jimborean, L. Mastrangelo, V. Loechner, and
P. Clauss. VMAD: an Advanced Dynamic Program
Analysis & Instrumentation Framework. In CC - 21st
International Conference on Compiler Construction,
pages 220–237, Mar. 2012.

[10] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Mar 2004.

[11] L.-N. Pouchet. Polybench, the Polyhedral Benchmark
suite. http://www.cse.ohio-state.edu/~pouchet/
software/polybench/, 2010.

[12] B. Pradelle, A. Ketterlin, and P. Clauss. Polyhedral
parallelization of binary code. ACM Transactions on
Architexture and Code Optimization, 8(4):39:1–39:21,
Jan. 2012.

[13] K. Streit, C. Hammacher, A. Zeller, and S. Hack.
Sambamba: A runtime system for online adaptive
parallelization. In Proc. 21st International Conference
on Compiler Construction (CC), pages 240–243, Mar.
2012.

60



APPENDIX

clang
clang
-O2

clang
-O3

SPolly
1st run

SPolly
2nd run

Speedup
1st run

Speedup
2nd run

bicg 0.66 0.22 0.22 0.32 0.23 0.72 0.99
syrk 49.03 12.16 12.16 5.48 5.50 2.21 2.21

jacobi-1d-imper 0.95 0.23 0.23 0.25 0.25 0.93 0.93
trmm 24.87 6.44 6.44 8.08 8.09 0.80 0.80
symm 129.49 119.75 119.75
syr2k 86.57 25.76 25.76 10.03 7.56 2.57 3.40

cholesky 6.71 1.68 1.68
fdtd-apml 12.42 10.69 10.69 10.84 10.86 0.98 0.98

3mm 294.77 233.01 233.01 72.96 29.30 3.19 7.95
lu 19.18 4.53 4.53 4.58 4.59 0.99 0.99

doitgen 45.07 10.95 10.95 14.95 2.00 0.73 5.46
seidel-2d 1.30 1.12 1.12 1.12 1.12 1.00 1.00

gemm 107.93 77.48 77.48 24.49 7.05 3.16 10.98
adi 12.56 9.31 9.31 16.10 7.88 0.57 1.18

gesummv 0.64 0.24 0.24
floyd-warshall 72.31 13.70 13.70 14.05 14.05 0.98 0.98

ludcmp 31.62 20.94 20.94 22.31 22.26 0.94 0.94
covariance 71.80 64.70 64.70 64.78 64.88 1.00 1.00

jacobi-2d-imper 1.23 0.48 0.48 0.49 0.49 0.97 0.97
atax 0.81 0.19 0.19 0.12 1.57

fdtd-2d 5.26 2.07 2.07 3.63 2.43 0.57 0.85
trisolv 0.20 0.05 0.05

2mm 206.63 155.09 155.09 48.75 39.92 3.18 3.88
mvt 1.69 1.18 1.18 0.23 0.29 5.13 4.06

gemver 2.33 1.30 1.30 0.55 0.57 2.36 2.28
reg detect 0.43 0.06 0.06 0.80 0.72 0.08 0.09
correlation 71.81 64.73 64.73 64.80 64.75 1.00 1.00

gramschmidt 159.34 164.49 164.49
dynprog 167.63 65.87 65.87 69.83 65.07 0.94 1.01

durbin 2.23 2.07 2.07 1.96 1.06

Figure 5: Runtime results on the PolyBench suite, comparing clang with different optimization levels
and SPolly. Empty cells represent runs which could not be completed due to technical issues with
the used frameworks.

61




