
Mining Eclipse for Cross-Cutting Concerns

Silvia Breu
Saarland University

Dept. of Computer Science
Saarbrücken, Germany

silvia@ieee.org

Thomas Zimmermann
Saarland University

Dept. of Computer Science
Saarbrücken, Germany

tz@acm.org

Christian Lindig
Saarland University

Dept. of Computer Science
Saarbrücken, Germany

lindig@cs.uni-sb.de

ABSTRACT
Software may contain functionality that does not align with
its architecture. Such cross-cutting concerns do not exist
from the beginning but emerge over time. By analysing
where developers add code to a program, our history-based
mining identifies cross-cutting concerns in a two-step pro-
cess. First, we mine CVS archives for sets of methods where
a call to a specific single method was added. In a sec-
ond step, such simple cross-cutting concerns are combined
to complex cross-cutting concerns. To compute these effi-
ciently, we apply formal concept analysis—an algebraic the-
ory. History-based mining scales well: we are the first to
report aspects mined from an industrial-sized project like
Eclipse. For example, we identified a locking concern that
crosscuts 1284 methods.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—version control ; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment—restructuring, reverse engineering, and reengineering

General Terms
Languages, Documentation, Algorithms

1. INTRODUCTION
As object-oriented programs evolve over time, they may suf-
fer from “the tyranny of dominant decomposition” [15]: The
program can be modularised in only one way at a time. Con-
cerns that are added later and that no longer align with that
modularisation end up scattered across many modules and
tangled with one another. Aspect-oriented programming
(AOP) remedies this by factoring out aspects and weaving
them back in a separate processing step [7]. For existing
projects to benefit from AOP, these cross-cutting concerns
must be identified first. This task is called aspect mining.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

We solve this problem by taking a historical perspective:
Our analysis is based on the hypothesis that cross-cutting
concerns are added to a project over time. A code change
in the history of a program is likely to introduce such a
concern if the modification gets introduced to various loca-
tions within a single code change. This observation is our
conceptual contribution.

Our hypothesis is supported by the following example: On
November 10, 2004, Silenio Quarti committed code changes
“76595 (new lock)” to the Eclipse CVS repository. These
changes fixed the bug #76595 “Hang in gfk pixbuf new”
that reported a deadlock1 and required the implementation
of a new locking mechanism for several platforms. The ex-
tent of Silenio Quarti’s modification was immense: He mod-
ified 2 573 methods and inserted in 1 284 methods a call to
the lock method, as well as a call to an unlock method. Ob-
viously AOP could have been used to weave in this locking
mechanism.

For the locking mechanism of Eclipse, it turns out that
the locations where calls to lock were inserted are exactly
the same as the locations where calls to unlock were added.
This is why we combine the two simple aspect candidates
into a complex aspect candidate: lock, unlock were added in
1 284 different locations. However, in the presence of many
complex aspect candidates it is not obvious how to find them
efficiently. We propose to use formal concept analysis [4] for
automatically detecting complex aspect candidates, which is
our technical contribution and detailed in the next section.

2. MINING CROSS-CUTTING CONCERNS
Previous approaches to aspect mining considered only a sin-
gle version of a program using static and dynamic program
analysis techniques. We introduce an additional dimen-
sion: the history of a project. Technically, we mine version
archives for aspect candidates.

We model the history of a program as a sequence of trans-
actions. A transaction collects all code changes between two
versions, called snapshots, made by a programmer to com-
plete a single development task. Within each transaction we
are searching for added method calls which may identify an
aspect. We consider calls to a small set of (related) methods
that are added in many (unrelated) locations a cross-cutting
concern or aspect candidate.

We refer to a method where calls are added as location,
and to the method being called simply as method. An as-
pect candidate is thus characterised by two sets: a set of

1https://bugs.eclipse.org/

Methods

Lo
ca

tio
ns

complex aspect
candidate

simple aspect
candidate

Figure 1: Maximal blocks represent aspect candi-
dates in a transaction (left). Here, 14 candidates
form a lattice of super and sub aspects (right). A
sub aspect (dark) crosscuts fewer locations but calls
more methods than a super aspect (light).

locations and a set of methods. This definition represents a
trade-off: albeit it is not fully general, it still captures many
interesting cross-cutting concerns and enables us to identify
them efficiently.

Aspects are maximal Blocks. We can think of a trans-
action as a cross table with locations as rows and methods
as columns (Figure 1, left). The intersection of location l
and method m is marked with a cross when the transac-
tion inserts a call to m in location l. In this representation,
each column is a simple aspect candidate; however, to cut
out noise, we only consider columns with at least 7 crosses.
Formally, a candidate is a pair (L, M) of locations L and
methods M with |M | = 1 and |L| ≥ 7 for simple candi-
dates.

Given a specific simple aspect candidate (L, M), we can
arrange the table such that all rows from L are adjacent to
each other. Now a simple aspect candidate manifests itself
as a maximal block in the table of width |M | = 1 and height
|L|. In Figure 1 such a block is marked by the grey-shaded
rectangle of size 1 × 7. A complex aspect candidate (L, M)
is a maximal block with |M | > 1: At each location l ∈ L all
methods m ∈ M are called. An example is the second dark-
grey-shaded rectangle of size 3 × 3 in Figure 1. However,
to obtain such a block for a complex aspect candidate in
general, we have to re-order not just rows but also columns.
It is therefore not obvious how to compute all blocks present
in a transaction.

Identifying maximal blocks in a cross table (or transac-
tion) T ⊆ L×M is provided by the algebraic theory of for-
mal concepts [4]. A maximal block is a pair (L, M) where
the following holds:

L = {l ∈ L | (m, l) for all m ∈ M}
M = {m ∈M | (m, l) for all l ∈ L}

Each block (L, M) is maximal in the following sense: we
can’t add another method m to M without shrinking L to
ensure that all locations in L call m. Likewise, we can’t add
another location l to L without shrinking M . The definition
allows for blocks of any size. However, we only consider
blocks with |L| ≥ 7 as aspect candidates. To identify the
most interesting ones, we additionally take the area |L|×|M |
of a block as a measure.

113

2 5

11 12

14

15 17 18

19

3 4 7 16 20 2122 6 8

9

10

23

24 25

26

0

27

Figure 2: The lattice of aspect candidates from a
commit to Eclipse CVS on 2004-03-01 by developer
ptff. Candidate 6 contains 14 additions of calls to
unsupportedIn2().

In the worst case, a transaction may contain exponen-
tially many blocks. This makes concept analysis potentially
expensive–even in the presence of efficient algorithms [9].
This is not a concern here since we compute the blocks for
each transaction individually. Computing all blocks for the
43 270 transactions of Eclipse took about 43 seconds, that
is, about one millisecond per transaction.

The aspect candidates of a transaction form a lattice given
the following partial order: (L, M) ≤ (L′, M ′) iff L ⊆ L′. A
sub aspect cross-cuts fewer locations than its super aspect
but calls more methods (c.f. Figure 1, right). In our expe-
rience, aspects in one transaction are rarely in a super/sub
order but typically unordered.

3. EXAMPLES
Figure 2 shows the lattice of all aspect candidates from
an Eclipse CVS commit transaction on 2004-03-01. In the
lattice two aspects are connected if they are in a direct
super/sub-concept relation. Nodes are given the shape of
the corresponding block which gives prominence to large as-
pect candidates: For example, candidate 6 contains 14 lo-
cation where calls to unsupportedIn2() were added. This
method throws an exception if the operation called is not
supported at API level 2.0.

public void setName(SimpleName name) {
if (name == null) {

throw new IllegalArgumentException();
}
ASTNode oldChild = this.methodName;
preReplaceChild(oldChild, name, NAME_PROPERTY);
this.methodName = name;
postReplaceChild(oldChild, name, NAME_PROPERTY);

}

An even larger example for a cross-cutting concerns is
the following: Eclipse represents nodes of abstract syn-
tax trees by the abstract class ASTNode and several sub-
classes. These subclasses fall into the following simplified
categories: expressions (subclass Expression), statements
(subclass Statement), and types (subclass Type). Addi-
tionally, each subclass of ASTNode has properties that cross-
cut the class hierarchy. An example for a property is the
name of a node: There are named (QualifiedType) and
unnamed types (PrimitiveType), as well as named expres-
sions (FieldAccess). Additional properties include the type,

48

0

1

3

4

19

5
6

24

9

10

11

12

13

14

15
16 1718

21
22 23

27 30

36

7

28 29 3231

37

25

26 33

39 41

4734

35

38

40

46

4243

44

45

8

2

20

Figure 3: The lattice of aspect candidates from a
commit to Eclipse CVS on 2004-02-25 by developer
ptff. Candidate 10, e.g., contains 104 additions of
calls to preReplaceChild(3), postReplaceChild(3).

expression, operator, or body that are associated with a node
in an abstract syntax tree.
This is a typical example for a role super-imposition con-
cern [12]. As a result of this cross-cut, every named subclass
of ASTNode implements the method setName which results in
duplicated code that is difficult to maintain. With aspect-
oriented programming the concern could be realised with
the method introduction mechanism.

Our mining approach revealed this cross-cutting concern
with several aspect candidates. The lattice for the corre-
sponding commit transaction is shown in Figure 3.

The methods preReplaceChild and postReplaceChild

are called in the aforementioned setName method and many
other methods. Node 10 contains 104 locations where calls
to both methods are added. The methods preLazyInit and
postLazyInit guarantee the safe initialisation of properties
and calls to them are added in 78 locations; node 11 is the
corresponding node in the lattice in Figure 3. The meth-
ods preValueChange and postValueChange are called when
a new operator is set for a node; calls to them have been
added in 26 locations, represented by node 12 in the lattice.

4. DATA COLLECTION
Our mining approach can be applied to any version con-
trol system, however, we based our implementation on CVS

since most open-source projects are using it. One of the
major drawbacks of CVS is that commits are split into indi-
vidual check-ins and have to be reconstructed. For this we
use a sliding time window approach [20] with a 200 seconds
window. A reconstructed commit consists of a set of revi-

sions R where each revision r ∈ R is the results of a single
check-in.

Additionally, we need to compute method calls that have
been inserted within a commit operation R. For this, we
build abstract syntax trees (ASTs) for every revision r ∈ R
and its predecessor and compute the set of all calls C1 in r
and C0 for the preprocessor by traversing the ASTs. Then
Cr = C1 \ C0 is the set of inserted calls within r; the union
of all Cr for r ∈ R forms a transaction T =

S
r∈R Cr which

serves as input for our aspect mining.
Unlike Williams and Hollingsworth [18, 19], our approach

does not build (compile, link) snapshots of a system to com-
pute inserted method calls. As they point out, such inter-
actions with the build environment (compilers, make files)
are extremely difficult to handle and result in high com-
putational costs. Instead, we analyse only the differences
between single revisions. As a result, our preprocessing is
cheap, as well as platform- and compiler-independent; the
drawback is that types cannot be resolved because only one
file is investigated. In particular, we miss the signature of
called methods. In order to reduce name collision, we use
the number of arguments in addition to method names to
identify methods calls. We believe this is good enough be-
cause we are analysing one transaction at a time.

5. RELATED WORK
While this work is not the first that applies formal concept
analysis as static analysis to mine cross-cutting functional-
ity, it is the first that leverages software repositories to do
so. Furthermore, our approach is the first that scales to
industrial-sized projects such as Eclipse.

Static Aspect Mining. The Aspect Browser [5] iden-
tifies cross-cutting concerns with textual-pattern matching
(much like “grep”) and highlights them. The Aspect Min-
ing Tool (AMT) [6] combines text- and type-based analysis
of source code to reduce false positives. Ophir [14] uses a
control-based comparison, applying code clone detection on
program dependence graphs. Tourwé and Mens [17] intro-
duce an identifier analysis, that is based on formal concept
analysis for mining aspectual views such as structurally re-
lated classes and methods. Krinke and Breu [8] propose an
automatic static aspect mining based on control flow. The
control flow graph of a program is mined for recurring exe-
cution patterns of methods. The fan-in analysis by Marin,
van Deursen, and Moonen [13] determines methods that are
called from many different places—thus having a high fan-in.
Our approach presented here is similar to the fan-in analy-
sis. However, with access to serveral versions of a program
we can rule out certain such functions as non cross-cutting
and therefore are more precise.

Dynamic Aspect Mining. DynAMiT (Dynamic Aspect
Mining Tool) [1, 3] is a dynamic approach that analyses
program traces reflecting the run-time behaviour of a sys-
tem in search for recurring execution patterns of method
relations. Tonella and Ceccato [16] suggest a technique that
applies concept analysis to the relationship between execu-
tion traces and executed computational units (methods).

Hybrid Techniques. Loughran and Rashid [11] investi-
gated possible representations of aspects found in a legacy
system in order to provide best tool support for aspect min-
ing. Breu also reports on a hybrid approach [2] where the

dynamic information of the previous DynAMiT approach is
complemented with static type information such as static
object types.

Mining Co-change. One of the most frequently used
techniques for mining version archives is co-change. The
basic idea is simple: Two items that are changed together
in the same transaction, are related to each other. Our ap-
proach is also based on co-change. However, we use a differ-
ent, more specific notion of co-change. Methods are part of
a (simple) aspect candidate when they are changed together
in the same transaction and additionally the changes are the
same, i.e., a call to the same method is inserted.

Mining Co-addition of Method Calls. Recently, re-
search extended the idea of co-change to additions and ap-
plied this concept to method calls: Two method calls that
are inserted together in the same transaction, are related to
each other. Williams and Hollingsworth used this obser-
vation to mine pairs of functions that form usage patterns
from version archives [19]. Livshits and Zimmermann used
data mining to locate patterns of arbitrary size and applied
dynamic analysis to validate their patterns and identify vi-
olations [10]. Our work also investigates the addition of
method calls. However, within a transaction, we do not
focus on calls that are inserted together, but on locations
where the same call is inserted. This allows us to identify
cross-cutting concerns rather than usage patterns.

6. CONCLUSIONS
We are the first who leverage version history to mine aspect
candidates. Previous approaches considered a program only
at a particular time, using traditional static and dynamic
program analysis techniques. One fundamental problem is
their scalability. In contrast, our history-based aspect min-
ing approach scales well to industrial-sized projects such as
Eclipse with million lines of codes.

Formal concept analysis provides a framework to mine and
understand aspect candidates: A transaction is a relation
over locations and methods where aspect candidates are the
maximal blocks of this relation. These form a lattice of super
and sub concepts and can be computed efficiently.

Besides general issues such as performance or ease of use,
our future work will concentrate on the following topics:

Measure precision We plan to evaluate our technique by
manually investigating the top-ranked aspect candi-
dates to check whether they are actual cross-cutting
concerns. The resulting precision will measure the ef-
fectiveness of our approach.

Combine several transactions Cross-cutting concerns
are frequently introduced within one transaction and
extended to new locations in later transactions. Al-
though such concerns are recognised by our technique
as several aspect candidates, these candidates may be
missed. To locate such aspect candidates, we will use
localities. For instance, two transactions are related if
they changed the same locations or were created by
the same developer.

For future and related work regarding history-based aspect
mining, see:

http://www.st.cs.uni-sb.de/softevo/

7. REFERENCES
[1] S. Breu. Aspect Mining Using Event Traces. Master’s

thesis, University of Passau, Germany, Mar. 2004.

[2] S. Breu. Extending Dynamic Aspect Mining with Static
Information. In Proceedings of 5th International Workshop
on Source Code Analysis and Manipulation (SCAM), pages
57–65. IEEE Computer Society, Sept./Oct. 2005.

[3] S. Breu and J. Krinke. Aspect Mining Using Event Traces.
In Proceedings of 19th International Conference on
Automated Software Engineering (ASE), pages 310–315.
IEEE Press, Sept. 2004.

[4] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer, Berlin, 1999.

[5] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect Browser:
Tool Support for Managing Dispersed Aspects. Technical
Report CS99-0640, UC, San Diego, 1999.

[6] J. Hannemann and G. Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. In Workshop on Advanced
Separation of Concerns, 2001.

[7] G. Kiczales et. al. Aspect-Oriented Programming. In
Proceedings of 11th European Conf. on Object-Oriented
Programming (ECOOP), 1997.

[8] J. Krinke and S. Breu. Control-Flow-Graph-Based Aspect
Mining. In 1. Workshop on Aspect Reverse Engineering
(WARE) at Working Conference on Reverse Engineering
(WCRE), Nov. 2004.

[9] C. Lindig. Fast concept analysis. In G. Stumme, editor,
Working with Conceptual Structures – Contributions to
ICCS 2000, pages 152–161, Germany, 2000. Shaker Verlag.

[10] B. Livshits and T. Zimmermann. DynaMine: finding
common error patterns by mining software revision
histories. In Proc. of European Software Engineering
Conference/International Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 296–305, New
York, NY, USA, 2005. ACM Press.

[11] N. Loughran and A. Rashid. Mining Aspects. In Workshop
on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design (AOSD), 2002.

[12] M. Marin, L. Moonen, and A. van Deursen. A classification
of crosscutting concerns. In ICSM, pages 673–676. IEEE
Computer Society, 2005.

[13] M. Marin, A. van Deursen, and L. Moonen. Identifying
aspects using fan-in analysis. In 11th Working Conference
on Reverse Engineering (WCRE), pages 132–141. IEEE
Computer Society, Nov. 2004.

[14] D. Shepherd and L. Pollock. Ophir: A Framework for
Automatic Mining and Refactoring of Aspects. Technical
Report 2004-03, U Delaware, 2003.

[15] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. In ICSE-21, pages 107–119, 1999.

[16] P. Tonella and M. Ceccato. Aspect mining through the
formal concept analysis of execution traces. In 11th
Working Conference on Reverse Engineering (WCRE),
pages 112–121. IEEE Computer Society, Nov. 2004.

[17] T. Tourwé and K. Mens. Mining aspectual views using
formal concept analysis. In Proc. of Workshop on Source
Code Analysis and Manipulation (SCAM), pages 97–106.
IEEE Computer Society, 2004.

[18] C. C. Williams and J. K. Hollingsworth. Automatic mining
of source code repositories to improve bug finding
techniques. IEEE Transactions on Software Engineering,
31(6):466–480, June 2005.

[19] C. C. Williams and J. K. Hollingsworth. Recovering system
specific rules from software repositories. In Proc. of the
International Workshop on Mining Software Repositories,
pages 7–11, May 2005.

[20] T. Zimmermann and P. Weißgerber. Preprocessing CVS
data for fine-grained analysis. In Proc. Intl. Workshop on
Mining Software Repositories (MSR), Edinburgh, Scotland,
May 2004.

