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ABSTRACT
Consider the execution of a failing program as a series of pro-
gram states consisting of variables and their values. Each
state induces the following state, up to the failure. Which
part of a program state is relevant for the failure? We show
how the Delta Debugging algorithm isolates the relevant
variables and values by systematically narrowing the state
difference between a passing run and a failing run. Applying
Delta Debugging to multiple states of the program automat-
ically reveals the cause-effect chain of the failure: “Initially,
variable v1 was x1, thus variable v2 became x2, thus vari-
able v3 became x3 . . . and thus the program failed.”

In a case study, the HOWCOME prototype successfully
extracted the cause-effect chain for a failure of the GNU C
compiler—with a precision far higher than static analysis.
Although relying on several test runs to prove causality, the
isolation of cause-effect chains requires no manual interac-
tion and thus automates the most time-consuming part of
program debugging: finding out how the failure came to be.

1. CAUSES, EFFECTS, AND FAILURES
One other obvious way to conserve programmer time

is to teach machines how to do more
of the low-level work of programming.

—Eric S. Raymond, The Art of Unix Programming

1.1 The Problem
Finding out the cause for a program failure is still the most
time-consuming part of debugging. Why is this so? Con-
sider the execution of a failing program as a series of program
states. Each state consists of the program’s variables and
their values. Each program step takes the current program
state and creates a new state (for instance, by computing
and assigning new values); this continues until, finally, some
invalid state is reached—the program fails (Figure 1).

In this view, each state is induced by its predecessor. But
normally, only a fraction of a program state is relevant for
computing the following state. If a variable is never read,
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for instance, it does not influence any state. Likewise, only
a fraction of a program state is actually relevant for the
failure. These relevant fractions form a cause-effect chain.
The goal of debugging is to break this chain; to break it,
one must understand it.

Traditionally, research in program comprehension has fo-
cused on program analysis to separate possible relevance
from certain irrelevance—in an assignment x := y, for in-
stance, variable z cannot be relevant for the value of x (un-
less y is an alias of z). However, several possible relevances
still remain, and the number of possible relevances multi-
plies with the number of states. Consequently, the success
of debugging still depends on the programmer’s abilities.

1.2 The Solution
In this paper, we present a radically different approach to
determine what is relevant for a program failure and what
is not. Our approach relies on five novel building blocks:

Causality. In general, the cause of any event is a preced-
ing event without which the event in question would
not have occurred. Applied to our model of program
states, this reads as follows: A variable v at some state
in the failing program run r✘

1 is cause of a failure if we
can alter the value of v such that the failure no longer
occurs. As an example, consider a pointer v that has
an invalid value x✘ at some point within r✘. If (and
only if) we find an alternate value x✔ such that set-
ting v to x✔ and resuming execution makes the failure
no longer occur, then we have proven that v’s value x✘

is a cause for the failure.

Alternate Run. On its own, the idea of causality does not
help much. How should we know how to find the rele-
vant variable v, and how should we know the “correct”
value x✔? The solution is to consider an alternate run
r✔ where the failure does not occur. Any variable v
that has a different value in r✔ and r✘ is a candidate
for causing the failure.

Systematic Narrowing. Even with an alternate run, the
number of variables with differing values may still be
large. The task is to reduce the difference system-
atically, resulting in a smaller number of causal vari-
ables. In earlier work, we had already shown how to
narrow down external failure-inducing differences—for

1Throughout this paper, ✘ (read “fail”) denotes failure,
✔ (“pass”) stands for success, and (“unresolved”) stands
for unresolved outcomes.
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Figure 1: A cause-effect chain. In each state, out of m variables, only few are relevant for the failure.

instance, between two program versions [17] or two
program inputs [6], using an algorithm called Delta
Debugging. In this work, we apply Delta Debugging
to narrow down the difference between internal pro-
gram states—isolating automatically those differences
that are relevant for the occurrence of the failure.

Memory Graphs. Two program states may not only differ
by variable values, but also by data structures. We
capture program states into graphs and use common
subgraph algorithms to identify structural differences.

Multiple States. We can apply Delta Debugging on sev-
eral states within a program run. For each state, this
results in the set of variables and values that are rel-
evant for the failure. The set of all relevant variables
and values forms the cause-effect chain that leads to
the failure: “Initially, variable v1 was x1, thus vari-
able v2 became x2, thus variable v3 became x3 . . . and
thus the program failed.”

To our knowledge, this is the first approach that automat-
ically explains the causes of concrete program failures—
requiring several test runs to establish causality, but with
a precision far higher than static analysis.

1.3 This Paper
This paper is organized as follows. Section 2 discusses how
our HOWCOME2 prototype accesses, compares, and alters
basic program states, using a sorting program as example.
In Section 3, we show how to capture and compare mem-
ory graphs; Section 4 shows how HOWCOME successfully
extracts a cause-effect chain from the GNU C compiler. Sec-
tion 5 discusses related work; Section 6 closes with conclu-
sions and consequences.

2. ISOLATING RELEVANT STATES
Something impossible occurred,

and the only solid information is that it really did occur.
So we must think backwards from the result

to discover the reasons.

—Brian W. Kernighan and Rob Pike,
The Practice of Programming

As a first example, consider the sample sorting program
in Figure 3.3 Normally, sample should sort its arguments
2Among others, HOWCOME stands for “HOWCOME outlines
weird causes of mysterious errors”.
3A HOWCOME demonstrator that isolates the cause-effect
chain as shown here is available for LINUX PCs [20]

numerically and print the sorted list, as in this run (r✔):

$ gcc -g -o sample sample.c

$ ./sample 9 8 7

Output: 7 8 9

$

With certain arguments, though, sample fails (run r✘):

$ ./sample 11 14

Output: 0 11

$

Although the output is properly sorted, one of the argu-
ments has been replaced by another number—in run r✘, the
argument 14 has been replaced by 0.

We shall now show how HOWCOME extracts the cause-
effect chain that leads to this failure.

2.1 Capturing State
As sketched in Section 1, we need to capture states from
both runs r✔ and r✘. To do so, HOWCOME uses an ordinary
command-line debugger—the GNU debugger (GDB). After
interrupting the program at a specific breakpoint, HOW-

COME queries GDB for the debuggee’s variables and their
values (Figure 2).

We capture the state of sample when execution reaches
line 9—that is, immediately at the beginning of shell sort .
For the two runs r✔ and r✘, we obtain the variables and
values listed in Table 1. (a and i occur in shell sort and in
main; the shell sort instances are denoted as a′ and i′.)

Debuggee

Debugger (GDB)

State Extraction and Comparison

Isolation of Relevant States (Delta Debugging)

Extraction of Cause-Effect Chains

Relevant Deltas

State Deltas

State

Test
Results

Deltas

Event
Selection

Control State

Figure 2: HOWCOME components



1 /* sample.c − Sample C program to be debugged */

#include <stdio.h>
#include <stdlib.h>

5

static void shell sort(int a[ ], int size)
{

int i, j;
int h = 1;

10 do {
h = h ∗ 3 + 1;

} while (h ≤ size);
do {

h /= 3;
15 for (i = h; i < size; i++)

{
int v = a[i];
for (j = i; j ≥ h ∧ a[j − h] > v; j −= h)

a[j] = a[j − h];
20 if (i 6= j)

a[j] = v;
}

} while (h 6= 1);
}

25

int main(int argc, char *argv[ ])
{

int *a;
int i;

30

a = (int *)malloc
(
(argc − 1) ∗ sizeof(int)

)
;

for (i = 0; i < argc − 1; i++)
a[i] = atoi

(
argv [i + 1]

)
;

35 shell sort(a, argc);

printf("Output: ");
for (i = 0; i < argc − 1; i++)

printf
(
"%d ", a[i]

)
;

40 printf("\n");

free(a);

return 0;
45 }

Figure 3: This sorting program does not sort.

2.2 Narrowing Differences
We now compare the two states to find out what is different.
The state differences, highlighted in Table 1, reflect exactly
the differences in the program arguments. Denoting a dif-
ferent value of variable v in r✔ and r✘ by ∆v, we obtain the
set of differences

C = {∆argc , ∆argv [1], ∆argv [2], ∆argv [3], ∆size ,

∆i, ∆a[0], ∆a[1], ∆a[2], ∆a′[0], ∆a′[1], ∆a′[2]}

Of all the differences ∆v in C, only some may be relevant
for the failure. This is an application of Delta Debugging.
The exact details of the Delta Debugging algorithm dd are
summarized in Figure 4; here are the basics:

Delta Debugging takes two sets of differences—c✔ and c✘—
and a testing function test . The testing function test applies
a set of differences that lies between c✔ and c✘ and checks
whether the failure occurs (✘) or not (✔) or whether the
outcome is unresolved ( ). Depending on the test outcome,
Delta Debugging systematically narrows the difference be-
tween c✔ and c✘. Eventually, only a small set remains where
every single difference is relevant.

In our setting, to apply a ∆v means to set v in r✔ to
the value of v in r✘. Applying ∆argv [1], for instance, would
change argv [1] from "9" (its value in r✔) to "11" (its value
in r✘). In practice, HOWCOME does this by issuing the GDB

command set variable argv[1] = "9".

Variable Value
in r✔ in r✘

argc 4 5
argv [0] "./sample" "./sample"
argv [1] "9" "11"
argv [2] "8" "14"
argv [3] "7" 0x0 (NIL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r✔ in r✘

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

Table 1: State differences between r✔ and r✘ in line 9

Our testing function test applies a set of differences and
resumes execution to check the outcome. The “checking”
part of test is typically part of an automated test suite—
namely, the test that fails; in our case, test fails if the output
begins with the number 0 and test passes if the output is
7 8 9. In all other cases, the outcome is unresolved.

As an example, consider testing the set {∆argv [1]}: test
would set argv [1] to "11" in line 9 and resume execution
of r✔. As argv [1] is no longer accessed after the change, the
output is still 7 8 9 and thus, test

(
{∆argv [1]}

)
= ✔ holds.

With this test run, we have proven that argv [1] is irrelevant
for the failure.

To apply Delta Debugging in our setting, we define the
initial sets of differences c✔ = ∅ and c✘ = C—that is, apply-
ing c✔ to r✔ results in r✔ (hence test(c✔) = ✔), and applying
c✘ to r✔ results in r✘ (hence test(c✘) = ✘). dd will now
narrow the difference between c✔ and c✘.

For reasons of efficiency, dd does not check differences one
by one, but starts with large subsets instead. The actual run
is shown in Table 2: A black square stands for a difference
that has been applied. The first two steps simply verify that
test(c✔) = ✔ ∧ test(c✘) = ✘ hold. In Step 3, dd applies half
of the differences. The failure persists: We have narrowed
down the difference from 12 to 6 variables.

dd repeats the tests until the minimal difference {∆a′[2]} is
finally isolated: As demonstrated in Steps 1 and 8, changing
the variable a′[2] from 7 to 0 induces the failure. All other
differences are irrelevant.

2.3 Isolating the Cause-Effect Chain
With our previous Delta Debugging run, we have only iden-
tified one element of the cause-effect chain. To obtain fur-
ther elements, we must capture and compare more states
during the program execution.

In this case study, we have set up HOWCOME to capture
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Output Test
1 2 2 2 2 2 2 2 2 2 2 2 2 7 8 9 ✔
2 � � � � � � � � � � � � 0 11 ✘
3 � � � � � � 2 2 2 2 2 2 0 11 14 ✘
4 � � � 2 2 2 2 2 2 2 2 2 7 11 14

5 2 2 2 � � � 2 2 2 2 2 2 0 9 14 ✘
6 2 2 2 � 2 2 2 2 2 2 2 2 7 9 14

7 2 2 2 2 � � 2 2 2 2 2 2 0 8 9 ✘
8 2 2 2 2 � 2 2 2 2 2 2 2 0 8 9 ✘

Result �

Table 2: Isolating a failure-inducing state difference



Let C be the set of all possible circumstances (i.e. state deltas). Let test : 2C → {✘, ✔, } be a testing function that
determines for a test case c ⊆ C whether some given failure occurs (✘) or not (✔) or whether the test is unresolved ( ).

Now, let c✔ and c✘ be test cases with c✔ ⊆ c✘ ⊆ C such that test(c✔) = ✔ ∧ test(c✘) = ✘. c✔ is the “passing” test case
(typically, c✔ = ∅ holds) and c✘ is the “failing” test case.

The Delta Debugging algorithm dd(c✔, c✘) isolates the failure-inducing difference between c✔ and c✘. It returns a pair
(c′✔, c′✘) = dd(c✔, c✘) such that c✔ ⊆ c′✔ ⊆ c′✘ ⊆ c✘, test(c′✔) = ✔, and test(c′✘) = ✘ hold and c′✘ − c′✔ is 1-minimal—that is, no
single circumstance of c′✘ can be removed from c′✘ to make the failure disappear or added to c′✔ to make the failure occur.

The dd algorithm is defined as dd(c✔, c✘) = dd2(c✔, c✘, 2) with

dd2(c
′
✔, c′✘, n) =



dd2(c
′
✔, c′✔ ∪∆i, 2) if ∃i ∈ {1, . . . , n} · test(c′✔ ∪∆i) = ✘

dd2(c
′
✘ −∆i, c

′
✘, 2) else if ∃i ∈ {1, . . . , n} · test(c′✘ −∆i) = ✔

dd2

(
c′✔ ∪∆i, c

′
✘, max(n− 1, 2)

)
else if ∃i ∈ {1, . . . , n} · test(c′✔ ∪∆i) = ✔

dd2

(
c′✔, c′✘ −∆i, max(n− 1, 2)

)
else if ∃i ∈ {1, . . . , n} · test(c′✘ −∆i) = ✘

dd2

(
c′✔, c′✘, min(2n, |∆|)

)
else if n < |∆|

(c′✔, c′✘) otherwise

where ∆ = c′✘ − c′✔ = ∆1 ∪∆2 ∪ · · · ∪∆n with all ∆i pairwise disjoint, and ∀∆i · |∆i| ≈ (|∆| /n) holds.
The recursion invariant for dd2 is test(c′✔) = ✔ ∧ test(c′✘) = ✘ ∧ n ≤ |∆|.

Figure 4: The Delta Debugging algorithm in a nutshell. The function dd isolates the failure-inducing difference
between two test cases c✔ and c✘. For full description of the algorithm and its properties, see [18].

the state at each function invocation and at each function
return—that is, immediately after main in line 31 and af-
ter completion of shell sort in line 37. Repeating the Delta
Debugging runs for these states isolates the following differ-
ences:

• In line 31, the change of argc from 4 to 3 is relevant
for the failure. The actual arguments are irrelevant.

• In line 37, the change of a[0] from 7 to 0 is relevant for
the failure.

We end up in the following cause-effect chain, as reported
by HOWCOME. The values reported are the failure-inducing
values of r✘; the “instead of” values in parentheses are the
alternative values of r✔.

Cause-effect chain for ’./sample’
Arguments are 11 14 (instead of 9 8 7)
therefore at main, argc = 3 (instead of 4)
therefore at shell sort, a[2] = 0 (instead of 7)
therefore at sample.c:37, a[0] = 0 (instead of 7)
therefore the run fails.

The whole run required 32 tests, or 3.9 seconds.4 We could
easily plug this into an automated testing environment, and
whenever a test fails, our method could automatically ex-
plain the causes for the failure.

2.4 Fixing the Error
Didn’t we forget something? We still need to actually debug
the program. To fix the error, the programmer must break
the cause-effect chain. To do so, she must

1. compare the failure-inducing with the intended values

2. fix the program such that the failure-inducing values
no longer occur—but in a most general way, such that
other similar failures are excluded as well.

4All times were measured on a LINUX PC with a 500 MHz
Pentium III processor. The time given is real running time
of our HOWCOME prototype.

3. verify that the fix was successful, i.e. the failure no
longer occurs.

In our case,

1. a change in a[2] triggers the failure, which means that
a[2] is actually accessed by the program. However,
only the two elements a[0] and a[1] have been allocated
and set.

2. To fix the error in the most general way, shell sort in
line 35 must be invoked with the correct number of
elements in a—that is, argc − 1 instead of argc.

3. After the fix, repeating the test shows that the failure
no longer occurs. Success!

Steps 1 and 2 indicate why debugging will always contain
manual activities—fixing an error means writing programs.5

However, fixing the error is mostly trivial once one has un-
derstood how and why the failure occurs. And this is where
automatic isolation of cause-effect chains can be helpful.

3. COMPARING DATA STRUCTURES
When a fatal error occurs, the immediate cause may be that

a pointer has been trashed due to a previous fandango on core.
However, this fandango may have been due

to an earlier fandango, so no amount of analysis will reveal
(directly) how the damage occurred.

— The Jargon File 4.1.0 “Secondary Damage”

Here comes bad news. Extracting cause-effect chains as
demonstrated so far works only for a small fraction of real-
life programs. The reason has a name: pointers. A simple

5 This also indicates why there can be no automated process
that says “Fix the error at line n”: No automated process
can determine which element of the cause-effect chain is dif-
ferent from the intended value—or determine the most gen-
eral way to fix an error. At best, such processes can be based
on heuristics such that “v has a bad value; the statement
where v was last set is most likely to be erroneous”.
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Figure 5: A memory graph showing the state of sample in line 9. Compare the view to r✔ in Table 1.

(name, value) table as in Section 2 is not accurate for cap-
turing large data structures with pointers, aliases, and refer-
ences. For instance, let a pointer p have a value of 0x814abba
in r✔ and 0x814beef in r✘. We may easily identify this dif-
ference, but we cannot set p in r✔ to the value found in r✘

and expect anything reasonable to happen. Rather than
comparing pointer values, we must take into account the
objects pointed to and the resulting data structures.

3.1 Capturing State as Memory Graphs
To solve the problem, we capture the state of a program
as a so-called memory graph. A memory graph contains
all values and all variables of a program, but represents op-
erations like variable access, pointer dereferencing, struct
member access, or array element access by edges.

As an example, consider the memory graph obtained from
the sample program in run r✔, shown in Figure 5. The imme-
diate descendants of the 〈Root〉 vertex are the base variables
of the program. By dereferencing a (following the edge la-
beled ()[0..3])6, we find the array pointed to by a, and its
elements a[0], . . . , a[3]. (Note that the memory graph prop-
erly reflects that a and a′ point to the same array, a property
that is not visible from a (name, value) table like Table 1.)
Likewise, argv points to an array of 5 pointers, each pointing
to a character string holding a program argument.

How does one obtain such a memory graph? The basic
idea is to query the base variables of a program and to sys-
tematically unfold all data structures encountered; if two
values share the same type and address, they are merged to
a single vertex. The C language brings caveats, though:

Uninitialized pointers may point to garbage. The
state extractor of HOWCOME handles this by checking
whether a pointer points to a valid memory area such
as the stack, the heap, or static memory.

Array sizes may be unknown. This typically happens if
the array was allocated dynamically on the heap (such

6In a memory graph, each variable name is constructed from
the incoming edge, where the placeholder () stands for the
name of the parent.

as a or a′ in Figure 5). One technique to handle these
problems is to query the internal malloc structures to
check the number of elements in the area pointed to.

Types may have different interpretation. In the pro-
gramming language C, pointers can be freely casted
to integers, other pointer types, generic pointer types,
and vice versa. The state extractor optimistically as-
sumes that the declared types, as reported by the de-
bugger, hold. However, in the case of unions (i.e. vari-
ant records without explicit tag field), the state extrac-
tor must rely on heuristics or on external specifications
to follow the most likely interpretation.

More details of capturing and visualizing memory graphs,
as well as the formal construction are available [19].

3.2 Comparing Memory Graphs
Assume we have two memory graphs G✔ and G✘, represent-
ing a state from a passing run r✔ and a failing run r✘, respec-
tively. In Section 2.2, we simply compared variable values to
detect differences. This no longer works for memory graphs:

• G✔ may contain variables that do not exist in G✘, or
vice versa (i.e. the set of vertices differs)

• Pointers in G✔ may point to other variables as in G✘

(i.e. the set of edges differs)

As an example, consider the two memory graphs in Figure 6.
What has changed?

G✔

G✘

()->next ()->nextlist

14 18 20
()->next

22

()->next ()->nextlist

14 18 22
()->next

15

Figure 6: Graph differences

As a human, you can quickly see that the element 15 has
been inserted into the list and the element 20 has been
deleted. To detect this automatically for arbitrary data



structures, though, requires some graph operations. The so-
lution is to compute a maximum common subgraph (MCS)
of G✔ and G✘: Every vertex that is not in both G✔ and G✘

has either been inserted or deleted.
Figure 7 shows the MCS for G✔ and G✘ as introduced

above—drawn as a matching between G✔ and G✘.
7 It is

plain to see that the element 15 in G✘ has no match in G✔;
likewise, the element 20 in G✔ has no match in G✘.

G✔

G✘
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

Figure 7: Subgraph matching

To compute the MCS efficiently, we use the algorithms of
Barrow and Burstall [2], creating a correspondence graph
between G✔ and G✘; the maximum clique of the correspon-
dence graph then corresponds to the MCS [3]. As a domain-
specific optimization, we first determine an initial match-
ing by traversing both graphs in parallel, starting with the
〈Root〉 vertex. (Details can be found in [19]).

3.3 Applying Graph Differences
We not only need a means to detect differences in data struc-
tures, we also need a means to apply these differences. We
shall first concentrate on applying all differences between
r✔ and r✘ to r✔—that is, we compute debugger commands
that change the state of r✔ such that, eventually, its memory
graph is identical to G✘.

For this purpose, we require three graph traversals. Dur-
ing these steps, G✔ is transformed to become equivalent to
G✘; each graph operation is translated into debugger com-
mands which perform the equivalent operation on r✔. Again,
we use the example graphs from Figure 6.

1. (Set and create variables) For each vertex v✘ in G✘

without a matching vertex in G✔, create a new ver-
tex v✔ as a copy of v✘; v✘ is matched to v✔. After this
step, each vertex v✘ has a matching vertex v✔.

Figure 8 shows our example graphs after this step.

()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

Figure 8: Creating new variables

To generate debugger commands, for each addition of
a vertex v✔, we identify the appropriate variable v in r✘

and generate a command that

• creates v in r✔, if it does not exist yet;

7An edge is part of the matching (= the common subgraph)
if its vertices match; this is not the case in this example.

• sets v to the value found in r✘.

In our example, we would obtain the GDB commands

set variable $m1 = (List *)malloc(sizeof(List))
set variable $m1->value = 15
set variable $m1->next = list->next

2. (Adjust pointers) For each pointer vertex p✘ in G✘,
determine the matching vertex p✔ in G✔. Let *p✘ and
*p✔ be the vertices that p✘ and p✔ point to, respectively
(reached via the outgoing edge). If *p✔ does not exist,
or if *p✔ and *p✘ do not match, adjust p✔ such that it
points to the matching vertex of *p✘.

In our example, the next pointers from 14 to 18 and
from 18 to 20 must be adjusted; the resulting graphs
are shown in Figure 9.

()->next ()->nextlist

14 18 22
()->next

15

()->next

()->nextlist

14 18 22

15

()->next

()->next

20

Figure 9: Adjusting pointers

Again, any adjustment translates into appropriate de-
bugger commands.

3. (Delete variables) Each remaining vertex v✔ in G✔ that
is not matched in G✘ must be deleted, including all in-
coming and outgoing edges. After this last step, G✔ is
equal to G✘.

In our example, the vertex 20 must be deleted; the
resulting graphs are shown in Figure 10.

()->next ()->nextlist

14 18 22
()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

Figure 10: Deleting variables

Such a deletion of a vertex v translates into debugger
commands that set all pointers that point to v to NIL,
such that v becomes unreachable. Additionally, one
might want to free the associated dynamic memory.

After these three steps, we have successfully transferred the
changes in a data structure from a run r✘ to a run r✔.

3.4 Applying Partial State Changes
For the purpose of Delta Debugging, transferring all changes
is not sufficient: We need to apply partial state changes as
well. For this purpose, we associate a delta ∆v with each
vertex v in G✔ or G✘ that is not contained in the match-
ing. If v is in G✔ only, applying ∆v is supposed to delete it
from G✔; if v is in G✘ only, applying ∆v must add it to G✔.



Let c✘ be the set of all deltas so obtained; as always, c✔ =
∅ holds. In Figure 7, for instance, we would obtain two
deltas c✘ = {∆15, ∆20}. The idea is that ∆15 is supposed to
add vertex 15 to G✔; ∆20 should delete vertex 20 from G✔.
Applying both ∆15 and ∆20 should change G✔ to G✘.

To apply a subset c ⊆ c✘ only, we run the state transfer
method of Section 3.3, but with the following differences:

• In Step 1 and Step 3, we generate or delete a vertex v
only if ∆v is in c.

• In Step 2, we adjust a pointer p✔ with a matching p✘

only if ∆*p✘
is in c or ∆*p✔

is in c.

As an example, let us apply c = {∆15} only. Step 1 gener-
ates the new vertex; Step 2 adjusts the pointer from 14 such
that it points to 15. However, the pointer from 18 to 20 is
not changed, because ∆20 is not in c. We obtain a graph
(and appropriate GDB commands) where only element 15
has been inserted (Figure 11).

c = {∆15} c = {∆20}

()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

()->next ()->nextlist

14 18 22
()->next

15

()->nextlist

14 18 22

()->next

20

Figure 11: Applying partial state changes

Likewise, if we apply c = {∆20} only, Step 1 does not
generate a new vertex; however, Step 2 adjusts the pointer
from 18 such that it points to 22, and Step 3 properly deletes
element 20 from the graph.

4. CASE STUDY: GCC EATS THE STACK
If you never know failure, how can you know success?

— The Matrix

We have now all building blocks in place to apply our method
to a real-life program with a real-life bug. The GNU com-
piler collection is anything else but trivial; the C compiler
alone (GNU CC) has more than 100,000 lines of code.8

The C program bug.c in Figure 12 causes GNU CC to
crash—at least, when using the LINUX version 2.95.2 with
optimization enabled.9

t(double z[],int n){int i,j;for(;;){i = i + j + 1;z[i] =
z[i] ∗ (z[0] + 0);}return z[n];}

Figure 12: Compiling bug.c crashes GNU CC

Before crashing, GNU CC grabs all available memory for
the function call stack, such that other processes may run
out of resources and die. The latter can be prevented by
limiting the stack memory available to GNU CC, but the
effect remains—the cc1 component crashes:

$ (ulimit -H -s 256; gcc -O bug.c)

gcc: Internal compiler error:

program cc1 got fatal signal 11

$ _

8The GNU CC C sources contain 104,176 semicolons.
9The error is fixed in GNU CC 2.95.4 and later.

In previous work [6], we had already shown how to simplify
failure-inducing input like bug.c. Actually, bug.c was ob-
tained by simplifying a larger program automatically; every
single character in bug.c is relevant for the failure. While
this tells us about the external root cause of the problem,
we cannot see its internal effects within cc1. Therefore, we
shall now attempt to isolate the cause-effect chain within
cc1 that leads to the failure.

4.1 Setting up GNU CC
To isolate the cause-effect chain within cc1, we need:

An alternate run. Our run r✘ has already been set. We
now need a run r✔ that passes the test.

Finding a program which GNU CC compiles without
crashing is not difficult. However, as we are interested
in isolating small state differences, we should better
begin with a small input difference. Any valid sub-
set of bug.c does the job; Figure 13 shows the alter-
nate input ok.c which is identical to bug.c, with one
exception—the “+ 0” has been removed.

t(double z[],int n){int i,j;for(;;){i = i + j + 1;z[i] =
z[i] ∗ (z[0]);}return z[n];}

Figure 13: Compiling ok.c works fine

In contrast to bug.c, compiling ok.c works fine. Our
task is now to identify how the extra “+ 0” in bug.c

causes the failure.

An automated test. The next item on our list is an au-
tomated test that decides whether the failure occurs
or not. For crashing programs, HOWCOME brings a
predefined test function that queries GDB for the back-
trace at the moment of the crash—that is, the current
program counter and the stack of calling functions at
the moment of the crash. The predefined test then re-
turns ✘ if the given run crashes at the same location
as r✘, ✔ if the program exits normally, and otherwise.

In our case, the backtrace of cc1 shows that it crashes
in if then else cond() at the location combine.c:6788;
test will return ✘ if and only if the given run crashes
at this very location.

A choice of events. We must decide at which events we
should capture and compare program states—that is,
moments in time during program execution.

HOWCOME provides various strategies for choosing
events automatically (Figure 14); for instance, the event
granularity can be finer as the failure comes closer.
User-specified events are possible as well.

Equidistant events

Focusing towards failure

User-specified focus

Figure 14: Strategies for choosing events

Here, we restrict ourselves to three equidistant events;
HOWCOME will interrupt cc1 and capture and com-
pare states as soon as execution reaches the main,
combine instructions, and if then else cond functions.



4.2 Extracting the Cause-Effect Chain
We now describe what happens while HOWCOME captures
and narrows states at the various events within cc1.

4.2.1 At main
HOWCOME starts by capturing the two program states of
r✔ and r✘ in main. Both graphs G✔ and G✘ have 27139 ver-
tices and 27159 edges (Figure 15); to squeeze them through
the bottleneck of the GDB command-line requires 15 min-
utes each. (This is why we look at three events only.)

After 12 seconds, HOWCOME determines that exactly one
vertex is different in G✔ and G✘—namely argv [2], which is
"bug.i" in r✘ and "ok.i" in r✔. These are the names of the
preprocessed source files as passed to cc1 by the GNU CC

compiler driver. This difference is minimal, so HOWCOME

does not need a Delta Debugging run to narrow it further.

4.2.2 At combineinstructions
As combine instructions is reached, GNU CC has already
generated the intermediate code (called RTL for “register
transfer list”) which is now optimized. Unfortunately, this
RTL code brings a problem for HOWCOME.

The tree containing the RTL code contains unions (i.e.
variant records without explicit tag field), where the proper
interpretation must be chosen. To disambiguate unions,
HOWCOME implements some heuristics—for instance, to
unfold each single interpretation and choose the one result-
ing in the largest graph. These heuristics have worked well
for all GNU CC data structures—except for the RTL tree.

Each node in the RTL tree contains a dynamic array of up
to 20 unions, each with 10 members—in other words, each
RTL tree node has up to 1020 possible interpretations. To
avoid HOWCOME work its way through this combinatorial
explosion, we had to provide a union disambiguation table
that tells HOWCOME which union members to unfold, based
on the (specified) union tag.10

Given the disambiguation table, HOWCOME quickly cap-

10Such a table must be supplied once for each union decla-
ration. However, unions could also be disambiguated auto-
matically. For each union instance v, one could determine
the moment its location is next accessed for read or write
(using appropriate debugger features), and then examine v’s
interpretation by the debuggee. Unfortunately, this method
requires one test run for each union instance of each state—
and we did not want to wait for so long.

Figure 15: The GNU CC G✔ memory graph (excerpt)
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Figure 16: Narrowing at combine instructions

tured the graphs G✔ with 42991 vertices and 44290 edges
as well as G✘ with 43147 vertices and 44460 edges. The
common subgraph of G✔ and G✘ has 42637 vertices; thus,
we have 871 vertices that have been either added in G✘ or
deleted in G✔.

The deltas for these 871 vertices are now subject to Delta
Debugging; the resulting run is shown in Figure 16. After
only 44 tests, we have narrowed the failure-inducing differ-
ence to one single vertex, created with the GDB commands

set variable $m9 = (struct rtx def *)malloc(12)
set variable $m9->code = PLUS
set variable $m9->mode = DFmode
set variable $m9->jump = 0
set variable $m9->fld[0].rtx = loop mems[0].mem
set variable $m9->fld[1].rtx = $m10
set variable first loop store insn->fld[1].rtx->

fld[1].rtx->fld[3].rtx->fld[1].rtx = $m9

That is, the failure-inducing difference is now the insertion
of a node in the RTL tree containing a PLUS operator—the
effect of the initial change “ + 0” from ok.c to bug.c. Each
of the tests required about 20 to 27 seconds of HOWCOME

time, and 1 second of GNU CC time.

4.2.3 At if thenelsecond
At this last event, HOWCOME captured the graphs G✔ with
47071 vertices and 48473 edges as well as G✘ with 47313 ver-
tices and 48744 edges. The common subgraph of G✔ and G✘

has 46605 vertices; 1224 vertices have been either added
in G✘ or deleted in G✔.

Again, HOWCOME runs Delta Debugging on the deltas of
the 1224 differing vertices (Figure 17). As every second test
fails, the difference narrows quickly. After 15 tests, HOW-

COME has isolated a minimal failure-inducing difference. It
consists of one single pointer adjustment, created with the
GDB command

set variable link->fld[0].rtx = &link

This final difference is the difference that causes GNU CC to
fail: It creates a cycle in the RTL tree—the pointer link→
fld [0].rtx points back to link ! The RTL tree is no longer a
tree, and this causes endless recursion in if then else cond ,
eventually crashing cc1.
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Figure 17: Narrowing at if then else cond

4.3 The GNU CC Cause-Effect Chain
The total cause-effect chain for cc1, as reported by HOW-

COME, looks like this:

Cause-effect chain for ’./gcc/cc1’
Arguments are -O bug.i (instead of -O ok.i)
therefore at main, argv[2] = "bug.i"

(instead of "ok.i")
therefore at combine instructions,

*first loop store insn->fld[1].rtx->
fld[1].rtx->fld[3].rtx->fld[1].rtx =
<new variable>

therefore at if then else cond,
link->fld[0].rtx = &link (instead of i1dest)

therefore the run fails.

With this output, the programmer can easily follow the
cause-effect chain from the root cause (the passed argu-
ments) via an intermediate effect (a new node in the RTL

tree) to the final effect (a cycle in the RTL tree). The
whole run was generated automatically; no manual interac-
tion was required. HOWCOME required 6 runs to extract
GNU CC state (each taking 15–20 minutes) and 3 Delta
Debugging runs (each taking 8–10 minutes) to isolate the
failure-inducing differences.11

Again, to fix the error, the programmer must check which
of the reported values is at fault. Assuming that the state
at combine instructions is fine and that the RTL cycle is not
intended, the programmer could re-run HOWCOME with a
finer granularity to isolate the moment where the RTL cycle
came to be. In future, we will extend HOWCOME to isolate
such transitions of causes and effects automatically as well.

4.4 More Case Studies
Besides debugging GNU CC and the sample program from
Section 2, we have applied HOWCOME to some more well-
known programs. These case studies are part of the HOW-

COME regression test suite. They are not related to a pro-
gram failure; nonetheless, they reflect how a small change in
the input propagates in the program state, and which state
fractions are relevant for generating changed output.

11The running times are shortcomings of our prototype:
Switching from GDB to direct memory access should speed
up state access by at least 1–2 magnitudes; reimplementing
HOWCOME in a compiled language instead of Python could
speed up Delta Debugging by up to 1 magnitude.

Event Edges Vertices Deltas Tests
sample at main 26 26 12 4
sample at shell sort 26 26 12 7
sample at sample.c:37 26 26 12 4
cc1 at main 27139 27159 1 0
cc1 at combine instructions 42991 44290 871 44
cc1 at if then else cond 47071 48473 1224 15
bison at open files 431 432 2 2
bison at initialize conflicts 1395 1445 431 42
diff at analyze.c:966 413 446 109 9
diff at analyze.c:1006 413 446 99 10
gdb at main.c:615 32455 33458 1 0
gdb at exec.c:320 34138 35340 18 7

Table 3: Summary of case studies

Table 3 gives a short summary of the isolation details:

• In the bison parser generator, a shift/reduce conflict
in the grammar input causes the variable shift table to
be altered, which in turn generates a warning.

• In the diff file comparison program, printing of dif-
ferences is controlled by changes, whose value is again
caused by files→changed flag .

• Invoking the gdb debugger with a different debuggee
changes 18 variables, but only the change in the vari-
able arg is relevant for the actual debuggee selection.

In all cases, the resulting failure-inducing difference con-
tained only one element; the number of tests was at most 42.
No union disambiguation tables were needed.12

5. RELATED WORK
For the Snark’s a peculiar creature, that won’t

Be caught in a commonplace way.
Do all that you know, and try all that you don’t:

Not a chance must be wasted to-day!

—Lewis Carroll, The Hunting of the Snark

5.1 Algorithmic Debugging
Algorithmic debugging [12] is a means to automate the de-
bugging process. The idea is to isolate a failure-inducing
clause in a PROLOG program by querying systematically
whether subclauses hold or not. The query is resolved ei-
ther manually by the programmer or by an oracle relying on
an external specification.

Our approach is a divide-and-conquer scheme, too; how-
ever, it uses one single test to assess divisions of the problem
space, which makes automation far easier. Also, our ap-
proach focuses on isolating failure-inducing program state,
while Shapiro’s approach focuses on isolating failure-inducing
program code. One could easily combine both approaches
(for instance, by querying “Is a[2] = 0 correct?”) to in-
teractively isolate the code fragment whose execution causes
the state to become failure-inducing.

12The ultimate test would be, of course, to apply HOWCOME

onto itself. Unfortunately, GDB does not support Python,
the language HOWCOME is written in. However, whenever a
HOWCOME regression test failed, we routinely ran Delta De-
bugging on the generated GDB commands and thus quickly
isolated the failure causes.



5.2 Program Slicing
Program slicing [13, 14] is a means to facilitate debugging by
focusing on relevant program fragments. A slice for a loca-
tion p in a program consists of all other locations that could
possibly influence p (“all locations that p depends upon”).
As an example, consider the code fragment

if (p) { x = x * y; }

Here, the variable x is control dependent on p and data
dependent on x and y (but not on, say, z); the slice of x

would also include earlier dependencies of p, x, and y. The
slice allows the programmer to focus on relevant statements;
a slice also has the advantage that it is valid for all possible
program runs and thus needs to be computed only once.

In practice, slicing is not yet as useful as would be ex-
pected, since each statement is quickly dependent on many
other statements. The end result is often a program slice
which is not dramatically smaller than the program itself—
the program dependencies are too coarse [8]. Also, data
and control-flow analysis of real-life programs is non-trivial.
For programs with pointers, the necessary points-to analysis
makes dependencies even more coarse [7].

Dynamic slicing [1, 4, 9] is a variant of slicing that takes
a concrete program run into account. The basic idea is that
within a concrete run, one can determine more accurate data
dependencies between variables, rather than summarizing
them as in static slicing. In the dynamic slice of x, as above,
x is dependent on x, y, and p only if p was found to be true.

In cause-effect chains, p, x, and y are the cause for the
value of x if and only if altering them also changes the value
of x, as proven by test runs. If x is zero, for instance, p

can never be a cause for the value of x, because x will never
alter its value; y cannot be a cause, either. Consequently,
cause-effect chains have a far higher precision than static or
dynamic slices; furthermore, neither analysis nor complete
knowledge of the program is required.

On the other hand, cause-effect chains require several test
runs (which may or may not be faster than analysis), ap-
ply to a single program run only, and give no hints on the
involved statements. The intertwining of program analysis
and experimentation promises several mutual advantages.

5.3 Dicing
Dicing [10] determines the difference of two program slices.
For instance, a dynamic dice could contain all the statements
that may have influenced a variable v at some location in a
failing run r✘, but not in a passing run r✔. The dice is likely
to include the statement relevant for the value of v.

As discussed in Footnote 5, the idea that an automated
process could isolate “the” erroneous statement can only
be based on heuristics. Also, dicing does not explain why
the erroneous statement was executed in r✘ and not in r✔—
that is, how the altered control flow came to be (which the
cause-effect chain explains). However, a dice can give good
suggestions which events to include in the cause-effect chain.

5.4 Testing for Debugging
Surprisingly, there are very few applications of testing for
purposes of debugging or program understanding. Our own
contributions [6, 17] have already been mentioned. Specif-
ically related to our GNU CC case study is the isolation of
failure-inducing RTL optimizations in a compiler, using sim-
ple binary search over the optimizations applied [15].

6. CONCLUSION AND CONSEQUENCES
If brute force doesn’t solve your problem,

you’re just not using enough.

—Anonymous

Cause-effect chains explain the causes of program failures
automatically and effectively. All that is required is an au-
tomated test, two comparable program runs and a means to
access the state of an executable program. Although rely-
ing on several test runs to prove causality, the isolation of
cause-effect chains requires no manual interaction and thus
saves valuable developer time.

As the requirements are simple to satisfy, we expect that
future automated test environments will come with an auto-
matic isolation of cause-effect chains. Whenever a test fails,
the cause-effect chain could be automatically isolated, thus
showing the programmer not only what has failed, but also
why it has failed. Although breaking the cause-effect chain
by fixing the program is still manual work, we expect that
the time spent for debugging will be reduced significantly.

All this optimism should be taken cum grano salis, as
there is still much work to do. Our future work will concen-
trate on the following topics:

Optimization. As stated in Section 4.3, HOWCOME could
be running faster by several orders of magnitude by
bypassing the GDB bottleneck and re-implementing
HOWCOME in a compiled language. Regarding Delta
Debugging, we are working on grouping variables such
that variables related by occurring in the same func-
tion or module are changed together, rather than hav-
ing a random assignment of variables to subsets.

Program analysis. As hinted at in Section 5, the integra-
tion of program analysis could make extracting cause-
effect chains much more effective. For instance, vari-
ables that cannot influence the failure in any way could
be excluded right from the start. Shape analysis [16]
could help to identify invalid data structures. Dicing
can suggest relevant events during a program run.

Event selection and isolation. The cause-effect chains as
shown so far contain only three elements; however,
there is no reason not to include, say, 100 elements
or more, especially if states are small and if testing
is cheap. Our future work will concentrate on how
to isolate the relevant events out of the cause-effect
chain—that is, those events where a variable is first
set to a failure-inducing value—and how to initially
select good candidates for relevant events.

Finding alternate runs. Delta Debugging requires that a
passing run is available, such that a there is a state dif-
ference that can be narrowed. In cases where no such
run is available, we could search for alternate paths
in a failing run that make the program pass the test.
Such paths could be determined by isolating failure-
inducing branches in the control flow.

Greater state. Right now, our method only works on the
state that is accessible via the debugger. However, dif-
ferences may also reside outside of the program state—
for instance, a file descriptor may have the same value
in r✘ and r✔, but be tied to a different file. We are
working on how to capture such external differences.



Presentation. Presenting variables and values textually is
appropriate for atomic values. However, if structural
changes turn out to be relevant, a graphical presen-
tation (like the figures in this paper) is much more
accurate. Such presentations could also be animated,
reflecting the dynamics of the program.

More case studies. Last but not least, we need many more
large case studies to gain further experience with our
method. We are currently building a so-called debug-
ging server around HOWCOME where anyone can sub-
mit failing programs via the Web to have their cause-
effect chains isolated automatically. As a side effect,
this will generate a database of case studies.

Overall, we expect that programmers will be able to pass
much of the boredom and monotony of debugging onto their
machines. Eventually, debugging may become as automated
as testing—not only detecting that a failure occurred, but
also why it occurred.
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