
Generating Test Cases for Specification Mining

Valentin Dallmeier · Nikolai Knopp · Christoph Mallon · Sebastian Hack · Andreas Zeller
Saarland University – Computer Science

Saarbrücken, Germany

{dallmeier, knopp, mallon, hack, zeller}@cs.uni-saarland.de

ABSTRACT
Dynamic specification mining observes program executions
to infer models of normal program behavior. What makes us
believe that we have seen sufficiently many executions? The
TAUTOKO1 typestate miner generates test cases that cover
previously unobserved behavior, systematically extending
the execution space and enriching the specification. To our
knowledge, this is the first combination of systematic test
case generation and typestate mining–a combination with
clear benefits: On a sample of 800 defects seeded into six
Java subjects, a static typestate verifier fed with enriched
models would report significantly more true positives, and
significantly fewer false positives than the initial models.

Categories and Subject Descriptors
D.2.1 [Software]: Software Engineering—Software/ Pro-

gram Verification, Requirements/Specifications

General Terms
Algorithms, Documentation, Reliability, Verification

Keywords
Specification mining, test case generation, typestate analysis

1. INTRODUCTION
In the past decade, automated validation of software sys-

tems has made spectacular progress. On the testing side,
it is now possible to automatically generate test cases that
effectively explore the entire program structure; on the ver-
ification side, we can now formally prove the absence of
undesired properties for software as complex as operating
systems. To push validation further, however, we need spec-

ifications of what the software actually should do.
Writing such specifications has always been hard—and

so far prohibited the deployment of advanced development

1“Tautoko” is the Mãori word for “enhance, enrich”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’10, July 12–16, 2010, Trento, Italy.
Copyright 2010 ACM 978-1-60558-823-0/10/07 ...$10.00.

methods. A potential alternative is specification mining—
i.e., extracting high-level specifications from existing code.
Mined specifications can be used for program understanding,
but also for formal verification or regression testing.

To have specifications reflect normal rather than potential

usage, dynamic specification mining observes executions to
infer common properties. Typical examples of dynamic ap-
proaches include DAIKON [10] for invariants or GK-tail [18]
for object states. The common issue of these approaches,
though, is that they are limited to the (possibly small) set
of observed executions. If a piece of code is not executed, it
will not be considered in the specification; if it is executed
only once, we do not know about alternative behavior.

To address this problem, we use test case generation to
systematically enrich dynamically mined specifications. Com-
bined this way, both techniques benefit from each other:
Dynamic specification mining profits from test case genera-
tion, since additional executions can be observed to enrich
the mined specifications. Test case generation, on the other
hand, can profit from mined specifications, as their comple-
ment points to yet unobserved behavior.

In a nutshell, our approach works as follows (see Figure 1).
We leverage our earlier work[7, 8] to dynamically mine type-

state specifications—finite state automata describing tran-
sitions between object states. The initially mined specifi-
cation contains only observed transitions (Section 2). To
enrich the specification, our TAUTOKO tool generates test
cases to cover all possible transitions between all observed
states, and thus extracts additional transitions from their
executions (Section 3). These transitions can either end in
legal states, thus indicating additional legal interaction; or
they can raise an exception, thus indicating illegal interac-
tion. Discovering such illegal interactions is the biggest ad-
vantage of our approach, as exceptional behavior is rarely
covered by conventional executions or tests.

How can we assess the benefits of such enriched specifica-
tions? For this purpose, we put them to use in static type-

state verification. Typestate verification statically discovers
illegal transitions. Its success depends on the completeness

of the given specification: The more transitions are known
as illegal, the more defects can be reported; and the more
transitions are known as legal, the more likely it is that ad-
ditional transitions can be treated as illegal. We expect that
our enriched specifications are much closer to completeness
than the initially mined specifications; and therefore, the
static verifier should be much more accurate in its reports.

This hypothesis is confirmed by an experiment (Section 4):
On a sample of 800 defects seeded into six Java subjects,

(a) Java Program (b) Initial Execution (c) Initial Model (d) Additional Executions (e) Enriched Model

open

close

open

close

close

open open

!
Figure 1: TAUTOKO overview. TAUTOKO takes an executable JAVA program (a) and observes its execu-

tion (b) to extract an initial typestate model (c). It then generates additional executions (test cases) to cover

missing model transitions (d). The additional observed behavior results in an enriched specification (e).

start

0

 <init>()

ex

 quit()

1

 openPort() quit()

Figure 2: Typestate for SMTPProtocol. The failing

call to quit() shows as a transition to ex.

we show that our static typestate verifier fed with enriched
models reports significantly more true positives, and signif-
icantly fewer false positives than when being fed with the
initial models.2 We expect this increased accuracy to gen-
eralize towards arbitrary uses of mined specifications, and
thus conclude (Section 6) that test case generation is a use-
ful method to enrich dynamically mined specifications.

2. MINING TYPESTATES
A typestate automaton (or simply typestate) is a finite

state automaton which encodes the legal usage of a class
under test (CUT). Its states represent different states of an
object, and transitions are labeled with method names. As
an example, consider Figure 2, showing the typestate for
the SMTPProtocol class from the ristretto [16] library. After
initialization, an SMTPProtocol object is in its initial state 0;
calling openPort() brings it into state 1; and calling quit()

from this state brings it back into the initial state 0.
If an invocation of method m in state s causes an excep-

tion, the typestate contains a transition from s to a special
state ex labeled with m. In our example, this is the case
if quit() is invoked from the initial state 0; this raises a
NullPointerException. A static typestate verifier can take
this very specification and check a client for conformance; if

2In the remainder of the paper, we will use the terms “spec-
ification” and “model” interchangeably.

it is possible to invoke quit() while still being in the initial
state 0, the verifier will flag an error.

To obtain such typestate specifications from programs,
we leverage the ADABU tool presented in earlier work [7,
8]. ADABU mines so-called object behavior models that cap-
ture the behavior of objects at runtime. A behavior model
for an object o is a finite state automaton where states are
labeled with the values of fields that belong to o, and transi-
tions occur when a method invoked on o changes the state.
Figure 3 shows an object behavior model for an instance of
SMTPProtocol. This model was mined by ADABU from an
execution of the regression test suite for SMTPProtocol.

Typestates and object behavior models are closely related.
The two main differences are as follows:

State In typestate automata, states are anonymous; in ob-
ject behavior models, they are labeled with the values
of fields.

Exceptions Typestates represent failing method calls by
transitions to a special state ex. In object behavior
models, information about exceptions is only stored at
edges.

Since both types of models are based on finite state au-
tomata, it is easy to convert an object behavior model to a
typestate. We therefore use ADABU to mine behavior mod-
els, and convert them to typestates afterwards. Converting
behavior models into typestate automata is straightforward
and essentially consists of the following three steps:

1. The automaton is initialized with two states labeled
start and ex.

2. Each state s of the behavior model is assigned a unique
number n, and a corresponding state labeled n is added
to the typestate.

3. For each invocation of a method m between two states
si and sj , a new transition labeled with m is added to
the typestate: If the invocation raised an exception,
the transition is added from si to ex, otherwise it is
added from si to sj .

The typestate in Figure 2 introduced earlier was not spec-
ified manually, but automatically obtained from the object
behavior model in Figure 3.

start

state=NOT_CONNECTED;
socket=null

 <init>()

 !quit()

state = PLAIN;
socket=1238

 openPort() quit()

Figure 3: Object behavior model mined by ADABU

from an execution of the regression test suite. Calls

that raise an exception (such as quit()) are marked

with“!”. This model can be automatically converted

into the typestate in Figure 2.

3. ENRICHING TYPESTATES
To yield precise results and few false positives during ver-

ification, a typestate needs to be complete, i.e. it needs to
contain all relevant states and transitions for all methods in
all states. To test TAUTOKO, we ran it on a set of projects
and mined typestates from the test suite executions for a
set of interesting classes. Unfortunately, for the investigated
classes, we found that most typestates only contained a frac-
tion of all transitions. In particular, most typestates were
missing transitions for failing methods, which renders mined
typestates useless for typestate verification.

We believe that the lack of observed failures is an issue
that is common to many projects—and thus affects every
approach for dynamic specification mining:

• Most defects due to wrong usage of a class raise excep-
tions and are therefore easy to detect and fix. Thus, a
specification miner will seldom record misuse and ex-
ceptions when tracing normal application executions.

• Unfortunately, we observed the same problem of miss-
ing exceptions when tracing test suites. Most devel-
opers do not test for exceptions. One explanation for
this is that triggering an exception often only covers a
few lines.

• To generate a complete model, lots of tests are re-
quired. Usually, developers do not have enough time
to write so many tests. Also, developers tend to skip
tests which they consider to be too obvious or are con-
vinced that they should work.

One way to approach this problem is to use test case gen-
eration to create new tests that execute previously unknown
states and transitions. The general idea of combining speci-
fication mining with test case generation was first described
by Xie and Notkin [32]. In this paper, we extend the orig-
inal idea to generate tests specifically targeted at enriching
typestate automata. There is a huge variety of test genera-
tion strategies, ranging from complex static analyses such as
symbolic execution [29] to simple random testing techniques

1 data(),authSend(),mail(),
rcpt(),authReceive(),helo()

0

 quit() 2

 auth()

 openPort()

 quit()

start

<init>()

Figure 4: An initial model of the SMTPProtocol class

as mined from the unmodified regression test suite.

[5, 22]. In this work, we use a test generation strategy that
generates new tests by mutating an existing test suite.

Our technique works as follows: In the first step, TAU-
TOKO executes the test suite and mines a model for the
CUT. This model is called the initial model. After that, it
attempts to generate mutations to the test suite such that
all methods are executed in all states of the initial model.
TAUTOKO then applies each mutant in isolation and mines
new models from the execution of the modified test suite.
Finally, the initial model and all new models are combined
into the model for the CUT.

To demonstrate the effect of TAUTOKO, consider Figure 4
which shows the initial model of class SMTPProtocol mined
from an execution of the project’s test suite. In contrast,
Figure 5 shows the enriched model generated by TAUTOKO
after evaluating all mutations. Not only does the enriched
model contain several additional transitions, but it now also
explicitly lists the exceptional behavior in its ex state. We
will use these models to illustrate the techniques presented
in this section.

Mutant generation starts by statically determining the set
of methods that belong to the CUT or one of its super types.
For every such method m, TAUTOKO tries to generate mu-
tations such that m is invoked in all states of the initial
model. To invoke method m in state s, TAUTOKO will ei-
ther add an invocation of m, or suppress one or more existing
method invocations. The choice of adding or deleting invo-
cations depends on the number and types of the parameters
m expects.

If m only requires a reference to the receiver object, TAU-
TOKO simply adds a new call to m right after a method call
that caused a transition to s in the initial model. For ex-
ample, in Figure 4, to invoke method dropConnection() in
state 1, TAUTOKO adds a call to dropConnection() right
after the call to openPort() that causes the transition to
state 1.

A problem arises if m expects parameters beyond the re-
ceiver object. In this case, we need to provide values for
the parameters in order to call m. Our approach is to reuse

existing invocations of m. If the initial model contains an
invocation of m in another state t, TAUTOKO suppresses
method calls such that the call occurs in state s instead.
For example, to call method authSend(byte[]) in state 0,
we can suppress the invocation of openPort() that causes
the transition from state 0 to 1.

The advantage of this approach is that it is simple to

1 data(),authSend(),getHostName(),getService(),mail(),
 getState(),rcpt(),authReceive(),reset(),helo()

0

 dropConnection(),quit()2

 auth()

ex

 startTLS()

 openPort()

 dropConnection(),getHostName(),getService(),getState()

 noop(),startTLS(),authSend(),auth(),quit(),
authReceive(),reset(),helo()

 dropConnection(),quit()

 getHostName(),getService(),getState() start

<init>()

Figure 5: Enriched model of the SMTPProtocol class. Compare with the initial model in Figure 4.

implement and works also for complex parameters that are
difficult to generate. However, our approach is unable to
handle methods with parameters that are never invoked by
the program. To call such methods, we would need more
generic test generation schemes [22, 28]. Still, our evaluation
results show that even with this simple approach, enriched
specifications already contain much more information and
are likely to be much more useful in any verification setting.

Algorithm 1 shows pseudo code for the procedure to enrich
a typestate for class c. Input to the algorithm consists of the
test suite, the initial typestate and the set of methods that
can be called on c. The main loop of the algorithm (lines
3-23) iterates over all states s of the initial typestate. For
every method m that expects parameters other than the
receiver (lines 7-14), TAUTOKO finds all invocations of m in
the initial typestate (line 8), tries to find a path that leads
to s, and creates a mutated test that suppresses all method
calls along the path (line 12). If the sole parameter to m
is the receiver (lines 16-20), TAUTOKO finds all transitions
after which the object is in state s (line 16) and generates a
new test that invokes m right after the call that caused the
transition (line 18). The final loop (lines 25-28) executes all
tests, mines new typestates from each execution, and merges
the new typestate into the current version. After the loop
has finished, the procedure returns the enriched typestate.

4. EXPERIMENTAL EVALUATION
In this section, we investigate how well our approach works

in practice. Our goal is to compare the usefulness of enriched

models versus initial models as well as manually generated
complete models, and thus investigate the benefits and po-
tential drawbacks of our approach.

4.1 Subjects
To evaluate the effectiveness of TAUTOKO, we have ap-

plied it to six different JAVA subjects listed in Table 1. Al-
together, we chose 6 different classes for which we gener-
ated and evaluated typestate automata. Three classes (up-
per half in Table 1) are part of publicly available libraries,

whereas the remaining classes are part of the JAVA standard
API. In terms of domain, the subjects can be divided into
I/O (javamail, ristretto, socket and zip) and security

(javax.security and signature).
We chose our subjects by investigating a subset of open-

source projects from big hosting sites such as Sourceforge

and java.net, as well as classes from the JAVA standard
API. We included subjects that met the following criteria:

1. The API documentation of the class explicitly or im-
plicitly mentions restrictions on the order of method

invocation. In other words, we made sure that our
subjects are complex enough to yield interesting spec-
ifications.

2. As a source for test runs, we solely rely on execu-

tions as provided by the developers of the subject class.
This is to avoid introducing additional bias with self-
constructed test-cases. For the first three subjects in
Table 1, we use sample executions and regression test
suites provided by the respective projects. We made
sure that these runs cover all essential methods of the
subject class. For the JAVA standard classes in our
evaluation, we use conformance tests of the APACHE
HARMONY project. This project aims at providing an
open-source alternative to the JAVA standard classes,
and therefore has a sophisticated test suite to ensure
compliance with the original implementation by SUN.

3. To conduct the evaluation using the static typestate
verifier, we needed an additional application for each
subject that uses the subject class in its implementa-
tion. To find such applications, we searched the web
using koders.com and google code search engines. To
qualify for our evaluation, a project had to offer a min-
imum level of maturity and provide a test run that
executes the subject class (See Section 4.4.2 for a ra-
tionale).

We are aware that our selection process creates a bias
towards complex classes and well-tested projects. However,

Algorithm 1 Enrich Typestate Automaton

Require: Test Suite T = (t1, . . . , tn)
Require: Initial typestate Minit = (Vinit, Einit)
Require: Methods to investigate M
Ensure: Enriched Typestate Mfinal = (Vfinal, Efinal)

1: procedure Enrich(T,Minit)
2: T � = {}
3: for all s ∈ Vinit \ {start} do

4: Ms ← {Methods invoked in s}
5: for all m ∈ {M \ Ms} do

6: if hasParameters(m) then

7: Sm ← {s ∈ Vinit | ∃(s, s�, n) ∈ Einit : m =
n}

8: for all u ∈ Sm do

9: p← getPath(u, s)
10: if length(p) <∞ then

11: T �.add(suppressAllCalls(T, p))
12: end if

13: end for

14: else

15: Ts ← {(s, s�, n) ∈ Einit}
16: for all t ∈ Ts do

17: T �.add(addCall(T, t, m))
18: end for

19: end if

20: end for

21: end for

22: Mfinal ←Minit

23: for all t ∈ T �
do

24: Mnew ← run(t)
25: Mfinal ← merge(Mnew, Mfinal)
26: end for

27: end procedure

the purpose of this evaluation is not to evaluate the usage of
mined specifications in general. Instead, we study how our
approach for enriching mined specifications improves quality
and applicability of the specifications. Section 4.5 provides
a detailed discussion of threats to the validity of our results.

4.2 Enriching Models:
Quantitative Evaluation

In this section, we provide a quantitative evaluation of
our technique for enriching mined specifications. For every
subject, we mine an initial model (see Section 2) from the
execution of the test suite. Afterward, we use TAUTOKO
to mutate the test suite and mine an enriched model. To
quantify the difference between the two versions, we count
the number of states and the number of transitions. A tran-
sition in this context means a method call. Since we are
mostly interested in exceptional behavior, we also measure
the number of exceptional transitions. The results of the
quantitative evaluation are summarized in Table 2.

For SMTPProtocol, we also provided the initial model in
Figure 4 and the enriched version in Figure 53. Both ver-
sions have the same number of states. However, the enriched
version has about three times as many transitions. Also, the
initial model has no exceptional transitions, compared to 9
transitions in the enriched version.

3Models for the remaining subjects are available online at
the website given in Section 6.

Table 1: Subjects used in the case studies.

Subject Type Description

javamail SMTPTransport Sending mails via smtp.

javax.
security

LoginModule User authentication.

ristretto SMTPProtocol Sending mails via smtp.
signature Signature Handling of digital signa-

tures.
socket Socket Network communica-

tion.
zip ZipOutput

Stream

File compression with
zip algorithm.

Applied to all subjects, TAUTOKO discovers new states
for three out of six subjects, and significantly increases the
number of transitions for all of them. None of the initial
models for the first three subjects has exceptional transi-
tions, hinting at a low quality of the test suite. This is a gen-
eral trend we observed in many projects, as discussed earlier.
For each of those subjects, TAUTOKO discovers new tran-
sitions that trigger exceptions. Initial models for the JAVA
API classes already contain transitions to the error state.
Obviously, the conformance tests of the HARMONY project
also test for expected negative behavior. For the API sub-
jects, TAUTOKO significantly increases the number of both
exceptional and normal transitions. The largest relative in-
crease is observed for socket, with a total of 55 exceptional
transitions compared to only 2 in the initial model.

Overall, applying TAUTOKO leads to larger models with
significantly more transitions. In the next section, we inves-
tigate if TAUTOKO also improves the quality of the mined
specifications.

4.3 Enriching Models:
Qualitative Evaluation

In this section, we take a look at how well the initial and
enriched models reflect the complete model of the class. To
this end, we compare the mined models with complete usage
models. Since there are no models available for our subjects,
we had to manually create them. To create the models, we
investigated the source code to build a mental model that
was translated into a typestate. In a few cases it was difficult
to reliably judge if a method could be called in a certain
state. To clarify those cases, we wrote small test cases that
resolved the issue.

One problem with manual model generation is how to deal
with unchecked exceptions. In JAVA, many instructions may
cause null pointer dereferences or illegal array accesses. In-
cluding transitions for all those exceptions would introduce
a high degree of non-determinism, which essentially renders
the model useless. We therefore only include transitions for
checked exceptions.

Manually creating models involves a lot of human effort
(which, of course, is why we wanted to build TAUTOKO
in the first place.) We therefore restricted our evaluation
to only three subjects, namely SMTPProtocol, ZipOutput-
Stream and Signature. In total, we spent over 10 hours on
creating the specifications, where most of the time was spent
on SMTPProtocol, which is also the most complex. Due to
space restrictions, we cannot depict the complete specifica-

Table 2: Enriched models have more transitions, and many more exceptional transitions.

Original model Enriched model

Subject Mutations States Transitions Exceptional
Transitions

States Transitions Exceptional
Transitions

javamail 61 6 5 0 13 48 2
javax.security 9 6 5 0 6 14 6
ristretto 55 5 11 0 5 33 9

signature 23 5 30 8 5 39 13
socket 540 11 35 2 17 251 55
zip 145 11 24 5 14 62 18

tions here. However, they are available for download at the
address given in Section 6. Table 3 lists structural details of
the manually mined models.

To investigate whether TAUTOKO also improves the qual-
ity of the mined specifications, we compared initial and en-
riched models against the complete model:

ristretto The complete model has two more states than the
initial and the enriched models. The two additional
states are related to sending mails, which requires a
call to initiate the mail, followed by several calls to
set receivers, and a final call to send the mail. No
state-based specification miner can detect this proto-
col, since relevant state information is transmitted to
the server and is not kept locally. Apart from this,
all states and transitions of the initial model are also
reflected in the complete model.

The enriched model adds twenty valid transitions and
nine exceptional transitions. Two exceptional tran-
sitions are invalid according to the complete model.
They are caused by limitations of the mock server,
which is used in the test suite of SMTPProtocol. This
shows a limitation of our completion technique: TAU-
TOKO may break the boundaries of the test suite and
generate invalid transitions.

signature The initial and the enriched models have the
same number of states. All transitions in the ini-
tial model are in accordance with the complete model.
TAUTOKO adds nine additional transitions, five out of
which are exceptional transitions. All transitions are
also reflected in the complete model. In total, the en-
riched model misses six transitions. This is due to the
way TAUTOKO injects and suppresses method calls,
which prevents some methods from being called in cer-
tain states.

zip The complete model has many fewer states than both
the initial and the enriched model. This occurs because
states in the model miner also include values for fields
that are irrelevant for the usage of the object, such
as comment or method. The initial model essentially
contains the structure of the complete model twice,
once with method set and once without. The enriched
model contains additional states with comments. De-
spite the blow-up, the mined models are still useful
since they capture all exceptional transitions of the
complete model.

In summary, we found that the specification miner in com-
bination with TAUTOKO generates valid specifications com-

Table 3: Manually specified typestate models.

Subject States Transitions Exceptional
Transitions

ristretto 7 86 29
signature 5 48 12
zip 6 31 9

pared to manually deduced models. Like any test case gen-
eration technique, TAUTOKO cannot guarantee to cover all
possible transitions; and this limitation also holds for the
present subjects. Section 6 presents ideas for future work to
improve coverage. In one case, TAUTOKO generates transi-
tions that do not match the complete model. This is due to
restrictions which are inherent to the general technique of
enriching models by manipulating an existing test suite.

4.4 Are enriched models
more useful in practice?

Results of the previous sections show that applying TAU-
TOKO yields better specifications. However, we would also
like to know if this improvement matters in practice. To
investigate this, we ran a static typestate verifier on a set
of randomly generated defects and compared the results for
initial and enriched models. For ristretto, signature and
zip, we also included complete models from the previous
section. The evaluation setting is summarized in Figure 6
and detailed in the following sections.

4.4.1 Experimental setting
Our experiment assumes the following situation: A devel-

oper starts building an application and uses classes from a
library l that are unknown to her. To help the developer
avoid bugs due to incorrect usage of those classes, her IDE
supports lightweight typestate verification. Whenever the
developer changes a method that uses classes of l for which
a specification is available, the IDE launches the typestate
verifier. The verifier then analyzes all changed methods and
looks for incorrect usage of classes; if it finds a violation, it is
presented to the user. Obviously, we would like to catch as
many defects (true positives) and report as few false alarms
(false positives) as possible.

To simulate the above situation in a controlled experi-
ment, we take the following steps:

1. For each subject used in the evaluation so far, we find
an application that uses the subject. We also require

(a) Class Client (c) Initial Model (d) Enriched Model

!
open

close

open

close

close

open open

(e) Second Client (f) Mutated Client

(h) Error
Reports

(g) JFTA
 Static Typestate Verifier

(b) Tautoko
 Spec
 Miner +

Figure 6: Evaluation overview. We take the

client (a) of a class and use TAUTOKO (b) to

mine both the initial model (c) and the enriched

model (d). We then take a second client (e) of the

same class and seed in a defect (f). The JFTA (see

Section 4.4.2) static typestate verifier (g) then pro-

duces error reports (h) for the mutated client using

both the initial model and the enriched model. Were

available, we also include complete models (see Sec-

tion 4.3). We compare the error reports in terms of

true positives and false positives.

the application to provide a test suite or other means
to execute the program.

2. We use our mutation tool to simulate changes a de-
veloper might make to the application. To this end,
we generate mutants that randomly inject or suppress
method calls to instances of the subject class in the
application.

3. For each mutated version, we execute the test suite

of the application to classify mutants. Mutants that
raise an exception at runtime are defects that we would
like a typestate verifier to detect. Mutants that do not
raise an exception use the class correctly, and therefore
the verifier should not report a warning.

4. Finally, we run the verifier for each mutated version
to analyze all methods touched by the mutant and re-
member all reported violations. We use the generated
mutants to measure how often the verifier points to a
method invocation that actually triggers an exception
(true positive), and how often the verifier reports a vi-
olation although the program runs without producing
an error (false positive).

The purpose of this experiment is to measure the effect
of using enriched specifications as generated by TAUTOKO
over using initial specifications produced by the test suite.
We therefore repeat step 4 with initial models generated by
the test suite and enriched models generated by TAUTOKO.
For three subjects, we also include results for the complete
models created for the qualitative evaluation of Section 4.3.

We ran our evaluation for the same set of subjects used for
the previous experiments. Table 4 lists the test sources for

generating models, as well as the names of all applications
used in the evaluation.

4.4.2 The JFTA Static Typestate Verifier
Unfortunately, existing typestate verifiers are either un-

available to the public [11], or require additional input [4].
We have therefore implemented our own typestate verifier
called JFTA. JFTA is a partially inter-procedural, flow- and
context-sensitive typestate verifier for JAVA classes. Input
to JFTA consists of the program’s byte code, a set of type-
state automata, and a set of methods which are to be an-
alyzed. In contrast to other tools such as Plural [4], JFTA
does not require the programmer to provide annotations of
the program code.

The core part of JFTA consists of a conservative dataflow
analysis algorithm. Aliasing information is calculated using
a demand-driven points-to analysis [26]. As the primary
focus of JFTA is to execute quickly, the implementation uses
several heuristics that trade precision for speed:

• When analyzing a method, JFTA only follows method
calls up to a certain (configurable) depth. Thus, the
analysis may miss method calls which potentially cau-
ses false positives or negatives.

• Information of different paths through a method is
merged together. Thus, the analysis is path insensi-
tive, which may cause false positives.

• Whenever the analysis is unable to determine the state
of an object, it simply assumes that the object can be
in any possible state. This may again generate false
positives.

Due to the above heuristics, our approach is less precise
than other tools such as [11]. However, in our setting we
are interested on the effect of using enriched specifications
rather than on absolute precision; and our results thus are
likely to generalize to all sorts of typestate verifiers. This is
further discussed in Section 4.5.

4.4.3 Results: True Positives
Table 5 summarizes the results for all changes that trigger

exceptions. The next six columns list results using initial,
enriched and complete models where available. “Reported”
lists the number of defects for which the verifier reports a
violation. “Actual” gives the number of cases where the re-
ported method call exactly matches the call that raises the
exception. For all numbers of reported errors, higher values
are better.

The results show that, when using enriched models, the
verifier pinpoints more violations than with initial versions.
For the first three subjects, initial models cannot point to
defects since they do not contain exceptional transitions.
For the remaining three subjects, initial models also detect
violations. For signature and socket, enriched models de-
tect considerably more violations. For zip, both versions
report violations for the same number of changes. However,
enriched models more frequently point to the method call
that raises the exception.

Better performance of enriched models in finding viola-
tions comes as no big surprise, as they include many more
exceptional transitions than initial models. Still, the in-
crease is considerable and the difference is statistically sig-
nificant according to a paired-t-test with p = 0.05.

Table 4: Details about where tests came from and which applications where tested.

Subject Test Source # Tests Application

javamail Regression test suite 6 JVerify Binary Verifier (sourceforge.net)
javax.security Regression test suite 5 Apache Jackrabbit (apache.org)
ristretto Regression test suite 5 Fin J2EE calendar server (dev.java.net)

signature Harmony compliance tests 16 opensc project (opensc-project.org)
socket Harmony compliance tests 5 CRSMail Server (sourceforge.net)
zip Harmony compliance tests 9 Huf 3.0 (sourceforge.net)

Table 5: Enriched models show more true positives.

Initial model Enriched model Complete model

Subject Defects Reported Actual Reported Actual Reported Actual

javamail 5 0 0 4 3 n/a n/a
javax.security 3 0 0 2 1 n/a n/a
ristretto 28 0 0 25 15 21 19

signature 12 6 4 12 10 12 10
socket 49 2 2 48 47 n/a n/a
zip 23 19 14 19 18 22 19

“Reported”: number of defects detected;
“Actual”: number of defects detected at the right method call.

Enriched models are better suited to finding errors

than initial models.

For zip and signature, complete models find slightly
more actual defects than enriched models. Thus for those
two cases, models enriched by TAUTOKO are almost as good
as manually created specifications. However, for ristretto

complete models find 4 more defects (19 compared to 15).
This is due to the nature of the typestate miner, which re-
lies on the values of fields to capture an object’s state (see
Section 4.3). Even when using complete models, the verifier
does not catch all defects. This is due to technical limita-
tions of JFTA, such as the limited call stack depth.

Automatically enriched models can be almost as good as

manually specified models.

4.4.4 Results: False Positives
Apart from finding errors, we would also like to have as few

false positives as possible. To investigate the false positive
rate of initial and enriched models, we repeated the above
experiment with changes that did not cause exceptions.

4 For
those changes, the verifier should not output violations.

The results of this experiment are shown in Table 6. The
columns “Initial” and “Enriched” list the number of false
positives for all types of models. For javamail and signa-

ture, we observe significantly fewer false positives. For the
remaining subjects, the difference is smaller, but enriched
models generally produce fewer false positives. A paired-t-
test yields a p-value of 0.0124, which tells us that enriched
models produce statistically significantly fewer false posi-
tives than initial models.

4We used coverage analysis to make sure that each change
is actually covered.

Table 6: Enriched models show fewer false positives.

Subject Changes Initial
model

Enriched
model

Complete
model

javamail 28 26 2 n/a
javax.security 4 4 2 n/a
ristretto 53 53 47 7

signature 29 12 0 0
socket 460 300 283 n/a
zip 30 26 18 15

Enriched models produce fewer false positives

than initial models.

Using complete models again yields the biggest improve-
ment for ristretto with only seven false positives remain-
ing. For the other two subjects, using manually created
models provides no benefits over using enriched models from
TAUTOKO.

4.5 Threats to Validity
As any empirical study, the results of our experiments

are subject to threats to validity. We distinguish between
threats to internal, external, and construct validity:

Threats to external validity concern our ability to gen-
eralize the results of our study. We cannot claim that
the results of our experimental evaluation are gener-
alizable. Our sample size is small; in total we in-
vestigate six subjects in twelve different applications.
Also, our choice of subjects is biased towards more
complex classes of projects with executable regression
test suites. Less complex classes tend to generate only
trivial models, and therefore TAUTOKO is unlikely to
enrich them. However, applying TAUTOKO on such
classes would not cause any harm, since the enriched

model always contains the initial model. In practice,
though, only specifications for classes that are complex
enough to be misused should be distributed.

Threats to internal validity concern our ability to draw
conclusions about the connections between our inde-
pendent and dependent variables. Our process of man-
ually creating complete models in Section 4.3 may be
subject to errors or bias. When creating the models,
we may have unintentionally left out states or transi-
tions, which may influence our results. We therefore
have used test cases to distinguish ambiguities wher-
ever necessary. In addition, we make the models avail-
able at our website so that other researchers can inves-
tigate them (see Section 6).

Threats to construct validity concern the adequacy of
our measures for capturing dependent variables. The
last experiment uses our typestate verifier to compare
models in terms of their ability to detect errors. A
potential problem exists because the typestate veri-
fier may miss violations due to over-approximations or
technical limitations. We may therefore be unable to
measure the number of correctly identified violations
for a specification. However, our evaluation uses the
same set of changes for both types of models. If over-
approximations prevent the verifier from detecting a
violation, it will do so for both types. As our eval-
uation focuses on the increase (or decrease for false
positives), we believe that this is no real threat for the
results of this experiment.

5. RELATED WORK
The idea of combining test case generation with specifi-

cation mining was conceived by Xie and Notkin [32]. They
present a generic feedback loop framework where specifica-
tions are fed into a test case generator, the generated tests
are used to refine the specifications, and the refined specifi-
cations are again given as input to the test case generator.
We extend this work by providing an implementation of the
framework for typestate mining, as well as an evaluation of
how useful enriched specifications are for a real-world appli-
cation.

TAUTOKO uses techniques from several different areas of
software engineering. The following sections summarize re-
lated work in the fields of test case generation, typestate
verification, and specification mining.

5.1 Test Case Generation
There is a large body of work on test case generation,

which is why we will limit the discussion to only a few rep-
resentative approaches. If available, we cite surveys that
provide more details in specific areas.

Several approaches use simple randomized algorithms to
generate tests. Ciupa et al. [5] apply random testing to
several industrial sized applications. Their work uses the
AUTOTEST approach, which relies on invariants as test or-
acles. Milicevic et al. [23] present KORAT, which also lever-
ages preconditions but works for JAVA programs. In contrast
to random techniques, TAUTOKO specifically generates test
cases to enrich a given initial model.

Another area in test case generation are search-based tech-
niques. The majority of these approaches systematically

analyze control-flow. Symbolic execution [17] simulates ex-
ecution of the program using symbolic values rather than
concrete ones and relies on constraint solvers to derive test
data. Recently (e.g. [19]), combinations of concrete and
symbolic execution were proposed to overcome limitations
of symbolic execution in terms of scalability. A survey of
existing search-based approaches can be found in [20]. In
contrast to these approaches, TAUTOKO mutates the pro-
gram to explore new behavior, thus changing the control
flow rather than analyzing it.

TAUTOKO is an instance of a model-based test generation
tool. Such tools require the presence of a model that de-
scribes the intended system behavior. This model is then
used to derive tests or input data. They come in very differ-
ent forms, e.g. as finite state machines, or algebraic speci-
fications. A survey on existing model-based approaches can
be found in [15]. On example of a model-based testing tool
is SPECEXPLORER [29], which is developed by Microsoft
Research. SPECEXPLORER explores specifications written
in SPEC# [2] model-checking techniques and provides test
cases for explored behavior.

The idea of mutating the test suite to generate test cases
was inspired by work of Tonella [28]. He proposes evolution-

ary testing: using genetic algorithms, an initially generated
test suite is mutated to satisfy a given coverage criterion.
In contrast to evolutionary testing, TAUTOKO uses a model
to guide test case generation. To our knowledge, we are
the first that use test-generation techniques to improve the
quality of mined typestates.

In the area of web application testing, Mesbah et al. [21]
extract state machines that describe the user interface of
AJAX applications. Their tool called ATUSA derives se-
quences of operations that are executed to explore the ap-
plication and trigger defects. In contrast, our approach ex-
plores JAVA classes and generates new tests to enrich spec-
ifications.

Gupta and Heidepriem [14] explore a new structural cover-
age criterion based on dynamic invariants. They use DAIKON
[10] to mine an initial set of likely invariants. Based on this
set, Gupta and Heidepriem generate a new test suite that
tries to cover as many invariants as possible. This test suite
can be used to remove spurious invariants from the initial
set. In contrast, TAUTOKO mines typestate automata and
uses mutation to generate new tests.

5.2 Typestate Verification
The term typestate was coined in 1986 by Strom and Yem-

ini [27]. Initially, typestates were used to distinguish unini-
tialized and valid pointers. This information was used to
detect potential null pointer dereferences and memory leaks
in PASCAL programs.

Since then, several approaches have been developed for
different platforms such as .NET [9] or JAVA [12] with vary-
ing levels of precision. A promising sound typestate verifier
for JAVA was presented by Fink et al. [11]. The tool uses a
staged approach with a total of four stages: early stages use
imprecise and fast techniques to filter instances that need
not be considered in later (more precise and thus expensive)
stages. The last stage is only required for objects referenced
by more than one method or objects stored in collections.
Fink et al. report analysis times ranging from one to ten
minutes for projects with up to 200 classes. In contrast to
their approach, JFTA is less precise due to its conservative

handling of arrays and collections. We would expect that us-
ing the tool by Fink et al. would further reduce the number
of false positives in our evaluation.

5.3 Specification Mining
The large body of work on mining specifications can be

grouped into dynamic and static approaches. The first tech-
nique by Cook and Wolf [6] considers the general problem of
extracting a finite state machine based model from an event
trace. They reduce the problem to the well-known grammar
inference problem [13] and discuss algorithmic, statistical
and hybrid approaches. Later, Larus et al. [1] proposed min-
ing specifications for automatic verification. Their approach
learns probabilistic finite state automata for C programs.
Following the assumption that common behavior is correct
behavior, Larus et al. use the inferred automata to search
for anomalies in other executions of the program.

Among the first approaches that specifically mine models
for classes is the work by Whaley et al. [31]. Their technique
mines models with anonymous states and slices models by
grouping methods that access the same fields. Lorenzoli et
al. [18] mine so-called extended finite state machines with
anonymous states. To compress models, the gk-tail algo-
rithm merges states that have the same k-future.

In terms of static techniques, there is also a huge num-
ber of different approaches. Wasylkowski et al. [30] mine
object usage models that describe the usage of an object
in a program. They apply concept analysis to find code
locations where rules derived from usage models are vio-
lated. Ramanathan et al. [24] use an inter-procedural path-
sensitive analysis to infer preconditions for method invoca-
tions. Shoham et al. [25] discover that static mining of au-
tomata based specifications requires precise aliasing infor-
mation to produce reliable results.

In the area of web services, Bertolino et al. [3] mine be-
havior protocols that describe the usage of a web service.
The approach uses a sequence of synthesis and testing stages
that uses heuristics to refine an initially mined automaton.
In contrast, TAUTOKO mines typestate automata for JAVA
programs.

6. CONCLUSIONS
Dynamic specification mining is a promising technique,

but its effectiveness entirely depends on the observed execu-
tions. If not enough tests are available, the resulting spec-
ification may be too incomplete to be useful. By system-
atically generating test cases, our TAUTOKO prototype ex-
plores previously unobserved aspects of the execution space.
The resulting enriched specifications cover more general be-
havior and much more exceptional behavior.

An evaluation with six different subjects shows that TAU-
TOKO is able to enrich specifications with new transitions in
all cases. With enriched specifications, a typestate verifier
produces significantly more true positives, and significantly
fewer false positives. Generally, we expect test case genera-
tion to be applicable to all techniques of dynamic specifica-
tion mining, improving the effectiveness of mined specifica-
tions.

Despite these advances, there is much more to do. Besides
general improvements regarding performance and scalabil-
ity, our future work will focus on the following topics:

Technical Improvements. TAUTOKO can only apply one
mutation at a time, which is why some states cannot
be fully explored. This is due to limitations of the in-
strumentation framework. In the future, we would like
to extend TAUTOKO such that arbitrary combinations
of mutations are possible.

Test Case Generation. TAUTOKO’s strategy for gener-
ating tests is simple but effective and only requires a
test suite as input. However, there are many other
approaches to test case generation that could be used
just as well. One idea for future work is to compare
different strategies in terms of their ability to enrich a
specification.

A Multi-Faceted View of Program Analysis. As de-
monstrated in this paper, there are many ways to in-
fer program properties: Not only can we examine their
code (static analysis) or their executions (dynamic ana-
lysis); but also generate new executions (test case gen-
eration) or even change their code (mutation analysis).
The interplay of these techniques brings lots of oppor-
tunities for exciting research topics.

All components of TAUTOKO are available for download.
We also include all models generated for our evaluation sub-
jects, as well as manually created models for three classes.
To learn more about TAUTOKO, visit its Web site:

http://www.st.cs.uni-saarland.de/models/

Acknowledgments. This work is funded by Deutsche
Forschungsgemeinschaft, Ze509/4-1 and Hasler-Stiftung, Grant
no. 2327. We thank the anonymous reviewers for their help
in improving the final version of this paper. Klaas Boesche
provided lots of support implementing JFTA. Andrzej Wa-
sylkowski, David Schuler, Yana Mileva and Gordon Fraser
provided helpful comments on earlier revisions of this paper.

7. REFERENCES
[1] G. Ammons, R. Bod́ık, and J. Larus. Mining

specifications. In Conference Record of POPL’02: The

29th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 4–16,
Portland, Oregon, Jan. 16–18, 2002.

[2] M. Barnett, R. Deline, M. Fähndrich, B. Jacobs, K. R.
Leino, W. Schulte, and H. Venter. The Spec#
programming system: Challenges and directions.
pages 144–152, 2008.

[3] A. Bertolino, P. Inverardi, P. Pelliccione, and
M. Tivoli. Automatic synthesis of behavior protocols
for composable web-services. In ESEC/FSE ’09:

Proceedings of the the 7th joint meeting of the

European software engineering Conference and the

ACM SIGSOFT symposium on The foundations of

software engineering, pages 141–150, New York, NY,
USA, 2009. ACM.

[4] K. Bierhoff and J. Aldrich. Modular typestate checking
of aliased objects. In OOPSLA ’07: Proceedings of the

22nd annual ACM SIGPLAN Conference on

Object-oriented programming systems and applications,
pages 301–320, New York, NY, USA, 2007. ACM.

http://www.st.cs.uni-saarland.de/models/

[5] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer.
Experimental assessment of random testing for
object-oriented software. In ISSTA ’07: Proceedings of

the 2007 International symposium on Software testing

and analysis, pages 84–94, New York, NY, USA, 2007.
ACM.

[6] J. Cook and A. Wolf. Discovering Models of Software
Processes from Event-Based Data. ACM Transactions

on Software Engineering and Methodology,
7(3):215–249, July 1998.

[7] V. Dallmeier, C. Lindig, A. Wasylkowski, and
A. Zeller. Mining object behavior with ADABU. In
WODA 2006: ICSE Workshop on Dynamic Analysis,
May 2006.

[8] V. Dallmeier, A. Zeller, and B. Meyer. Generating
fixes from object behavior anomalies. In Proceedings of

the 24th IEEE/ACM International Conference on

Automated Software Engineering, Auckland, New
Zealand, November 2009.

[9] R. Deline and M. Fähndrich. Typestates for objects. In
In Proc. 18th ECOOP, pages 465–490. Springer, 2004.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE

Transactions on Software Engineering, 27(2):1–25,
Feb. 2001. A previous version appeared in ICSE ’99,

Proceedings of the 21st International Conference on

Software Engineering, pages 213–224, Los Angeles,
CA, USA, May 19–21, 1999.

[11] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and
E. Geay. Effective typestate verification in the
presence of aliasing. ACM Transactions Software

Engineering Methodology, 17(2):1–34, 2008.
[12] E. Geay, E. Yahav, and S. Fink. Continuous

code-quality assurance with SAFE. In PEPM ’06:

Proceedings of the 2006 ACM SIGPLAN symposium

on Partial evaluation and semantics-based program

manipulation, pages 145–149, New York, NY, USA,
2006. ACM Press.

[13] E. Gold. Language identification in the limit.
Information and Control, pages 447–474, 1967.

[14] N. Gupta and Z. V. Heidepriem. A new structural
coverage criterion for dynamic detection of program
invariants. Automated Software Engineering,

International Conference on, 0:49, 2003.
[15] R. M. Hierons, K. Bogdanov, J. P. Bowen,

R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe,
M. Harman, K. Kapoor, P. Krause, and G. Lüttgen.
Using formal specifications to support testing. ACM

Comput. Surv., 41(2):1–76, 2009.
[16] http://ostatic.com/ristretto. Ristretto 1.0, 2010.
[17] J. C. King. Symbolic execution and program testing.

Commun. ACM, 19(7):385–394, 1976.
[18] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic

generation of software behavioral models. In ICSE ’08:

Proceedings of the 30th International Conference on

Software engineering, pages 501–510, New York, NY,
USA, 2008. ACM.

[19] R. Majumdar and K. Sen. Hybrid concolic testing. In
ICSE ’07: Proceedings of the 29th International

Conference on Software Engineering, pages 416–426,
Washington, DC, USA, 2007. IEEE Computer Society.

[20] P. Mcminn. Search-based software test data
generation: A survey. Software Testing, Verification

and Reliability, 14:105–156, 2004.
[21] A. Mesbah and A. van Deursen. Invariant-based

automatic testing of AJAX user interfaces. In ICSE

’09: Proceedings of the 2009 IEEE 31st International

Conference on Software Engineering, pages 210–220,
Washington, DC, USA, 2009. IEEE Computer Society.

[22] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and
E. Stapf. Programs that test themselves. Computer,
42:46–55, 2009.

[23] A. Milicevic, S. Misailovic, D. Marinov, and
S. Khurshid. Korat: A tool for generating structurally
complex test inputs. In ICSE ’07: Proceedings of the

29th International Conference on Software

Engineering, pages 771–774, Washington, DC, USA,
2007. IEEE Computer Society.

[24] M. K. Ramanathan, A. Grama, and S. Jagannathan.
Static specification inference using predicate mining.
In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN

Conference on Programming language design and

implementation, pages 123–134, New York, 2007.
ACM.

[25] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static
specification mining using automata-based
abstractions. In ISSTA ’07: of the 2007 int.

symposium on Software testing and analysis, pages
174–184, New York, 2007. ACM.

[26] M. Sridharan and R. Bod́ık. Refinement-based
context-sensitive points-to analysis for java. SIGPLAN

Not., 41(6):387–400, 2006.
[27] R. E. Strom and S. Yemini. Typestate: A

programming language concept for enhancing software
reliability. Transactions Software Engineering,
12(1):157–171, 1986.

[28] P. Tonella. Evolutionary testing of classes. SIGSOFT

Softw. Eng. Notes, 29(4):119–128, 2004.
[29] M. Veanes, C. Campbell, W. Schulte, and

N. Tillmann. Online testing with model programs.
SIGSOFT Software Engineering Notes, 30(5):273–282,
2005.

[30] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting
object usage anomalies. In ESEC-FSE ’07:

Proceedings of the the 6th joint meeting of the

European software engineering Conference and the

ACM SIGSOFT symposium on the foundations of

software engineering, pages 35–44, New York, NY,
USA, 2007. ACM.

[31] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. In
ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT

International symposium on Software testing and

analysis, pages 218–228, New York, NY, USA, 2002.
[32] T. Xie and D. Notkin. Mutually enhancing test

generation and specification inference. In Proc. 3rd

International Workshop on Formal Approaches to

Testing of Software (FATES 03), volume 2931 of
LNCS, pages 60–69, October 2003.

	1 Introduction
	2 Mining Typestates
	3 Enriching Typestates
	4 Experimental Evaluation
	4.1 Subjects
	4.2 Enriching Models: Quantitative Evaluation
	4.3 Enriching Models: Qualitative Evaluation
	4.4 Are enriched models more useful in practice?
	4.4.1 Experimental setting
	4.4.2 The JFTA Static Typestate Verifier
	4.4.3 Results: True Positives
	4.4.4 Results: False Positives

	4.5 Threats to Validity

	5 Related Work
	5.1 Test Case Generation
	5.2 Typestate Verification
	5.3 Specification Mining

	6 Conclusions
	7 References

