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ABSTRACT

Advances in recent years have made it possible in some cases to
locate a bug (the source of a failure) automatically. But debugging
is also about correcting bugs. Can tools do this automatically? The
results reported in this paper, from the new PACHIKA tool, suggest
that such a goal may be reachable.

PACHIKA leverages differences in program behavior to gener-
ate program fixes directly. It automatically infers object behavior
models from executions, determines differences between passing
and failing runs, generates possible fixes, and assesses them via
the regression test suite. Evaluated on the ASPECTJ bug history,
PACHIKA generates a valid fix for 3 out of 18 crashing bugs; every
fix pinpoints the bug location and passes the ASPECT] test suite.

1. INTRODUCTION

When a program fails, debugging starts—the process of locating
and fixing the bug that causes the failure. Recent years have seen
considerable advances in automated debugging: sophisticated pro-
gram analysis guides the programmer along dependencies [15], sta-
tistical debugging highlights execution features that correlate with
failures [14, 17], and experimental techniques automatically isolate
failure causes in the input [23] or program changes [4]. All these
techniques narrow down the set of possible bug locations, present-
ing the programmer with a list of likely locations.

Even with automated bug localization, the programmer must still
assess these locations to choose where and how to fix the program.
The goal of this work is to automate this final step as well, effec-
tively automating the entire debugging process for a significiant
subset of programming errors.

The following example, simple but addressing a real-life appli-
cation illustrates the approach. The APACHE MINA project pro-
vides a framework for building network applications. The project’s
bug database contains an entry for bug 293, complaining that test
VmPipeBindTest crashes with an assertion error. To debug the
failure, we first want to know how the failing run differs from pass-
ing runs; we are searching for anomalies that correlate with the
failure. In earlier work [5], we have shown how to extract object be-
havior models from executions—models that characterize behavior
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Figure 1: A combined model of passing and failing runs for the
MINA BaseIoAcceptor class.

as finite state machines over object states and method calls. Fig-
ure 1 shows such a model for the MINA BaseIoAcceptor class;
the solid transitions occur in the passing runs. We can see indi-
vidual states of the object, characterized by the properties of its
attributes. In the passing run, clients call setLocalAddress(),
then setHandler () to set up the attributes; a sequence of alternat-
ing bind () and unbind() calls then alters the object state.

The failing run follows different transitions, shown by dashed
lines in the figure. Besides a different method call order when set-
ting up the object, the client now calls unbind () multiple times in
a row—even when the bound attribute is already false. This be-
havior occurs only in the failing run. But is it also the cause of the
failure? To investigate this, we systematically generate patches that
alter the failing run to match the behavior from the passing runs. If
a patch fixes the failure and does not break the regression test suite,
we consider it valid.

In the example, there are several ways to change the behavior



(a) Java Program  (b) Failing and Passing Runs

D x OS-O

(c) Models

= 1
&
<=

GO ED

(d) Model Differences

Dir iava
CQ@O In Socket.java,
{ line 356:

> bind()

(e) Fix Candidates (f) Validated Fix

In Socket.java,
line 356:

> bind()

Figure 2: How PACHIKA works. PACHIKA takes a Java program (a) and out of its passing and failing runs (b), it mines object
behavior models (c). From differences (d) between the models, it derives fix candidates (e), which it then validates against automated
quality assurance (e.g., a regression test suite). Only validated fixes remain (f).

from failing to passing: we can (a) make the call to unbind()
conditional such that it only occurs when bound is true (as in the
passing run), or (b) insert a bind () call to reach the correct state in
which unbind() can be called. All of these fix candidates would
be valid at the abstraction level—but would they also work for the
concrete program?

We have built a tool called PACHIKA! that extracts the above
models from passing and failing runs of programs (currently in Java
), compares the models to determine anomalies, and automatically
generates possible fixes. PACHIKA validates the fixes against the
original failing run, ensuring that the fix indeed solves the problem
at hand; it also runs the program’s regression test suite to minimize
the risk of introducing new problems. Only fixes that pass this val-
idation will eventually be presented to the programmer.

In the MINA example, PACHIKA finds that the fix candidate (a)
introduces an alternate failure in the failing run, while candidate
(b)—inserting an additional bind() call—passes all the tests; this
candidate is the fix PACHIKA suggests to the programmer. This is
also how the real MINA bug was eventually fixed as indicated by
the project’s history.

The rest of this paper presents the details of the above approach,
and we evaluate its performance on real-life programs with real-
life bug. After recapitulating existing techniques to extract object
behavior models (Sections 2 and 3) and detecting anomalies (Sec-
tion 4), we make the following contributions:

e We present a technique to automatically derive fix candidates
from anomalies in program executions (Section 5). To our
knowledge, this is the first time that fixes are directly gener-
ated from mined specifications.

e We present a method for validating these fix candidates us-
ing the failing run as well as automated quality assurance
(Section 6), eventually suggesting the best fix.

o We evaluate the effectiveness and the efficiency of the ap-
proach on the iBUGS collection of real-life bugs (Section 7).

Our evaluation results are promising. PACHIKA, as expected, is
applicable only to a fraction of real-life bugs: In ASPECTJ, it gen-
erates a fix for 3 out of 18 post-release crashing bugs. For each
of these bugs, however, it produces a validated and reasonable fix;
in all other cases, it stays silent. The close-to-zero? rate of false
positives is due to the extensive fix validation: Even if PACHIKA
is able to produce a fix only for 15% of all failures, it will signifi-
cantly reduce debugging effort for these 15% while not negatively
affecting the other 85%. Even a low chance of synthesizing a fix

1“Pachika” is the Swahili word for “fix”, “insert”.
2The actual rate of false positives depends on the quality of the test
suite. This is discussed in Section 7.7.

thus brings an overall gain in productivity. Furthermore, such syn-
thesized fixes may eventually be deployed automatically as a “first
aid” while being refined by the programmer.

The remainder of the paper is organized along the individual
stages of PACHIKA (Figure 2). In the first step, PACHIKA traces
the execution of a failing and one or more passing runs (Section 2).
In the next step, PACHIKA analyzes the traces to identify relevant
objects and mines models for these objects (Section 3). The tool
then searches the models from the failing run and identifies method
invocations that violate preconditions as specified by the models
of the passing run (Section 4). PACHIKA then derives fix candi-
dates from model differences (Section 5). These fix candidates are
then validated against the test suite to find the best fix (Section 6).
Throughout these sections, we will use the MINA example as well
as another real-life example taken from the APACHE JDO project to
illustrate our approach.

After evaluating effectiveness and efficiency of PACHIKA (Sec-
tion 7), we discuss the general applicability to real-life bugs (Sec-
tion 8). We close with related work (Section 9), and conclusion and
consequences (Section 10).

2. TRACING

To obtain information about passing and failing runs, PACHIKA
must frace the executions—that is, collect all information required
to mine models. For this purpose, PACHIKA uses the ASM [13]
framework to inject additional statements into the program. The
injected instructions cause a flow of events to be written to a trace
file. Table 1 summarizes the event types and instrumentation sites
for all events handled by the tracer.

PACHIKA traces those events for all classes loaded during the
program run. The downside of this approach is that it incurs sig-
nificant runtime overhead. On the other hand, this makes the im-
plementation of the tracer much less complex and thus less error-
prone. Another advantage of tracing everything is that the set of
objects that can be investigated in later stages is not limited a pri-
ori.

For MINA, the tracer collects 15MB of trace data from the failing
run and 7MB of trace data from the passing run. When trace data
is collected, execution time increases from 0.3 seconds to 11 sec-
onds, which is a factor of roughly 33. Section 7.4 provides more
information on runtime overhead and discusses implications on the
applicability of PACHIKA.

3. MINING MODELS

The next step reads the trace file and generates object behavior
models for a subset of all traced objects (for details on how this sub-
set is chosen, see Section 4). In essence, the model miner builds and
maintains a representation of the heap and updates models when-
ever a method changes the state of an observed object.



Table 1: Types of events traced by PACHIKA. Access to arrays
is handled the same way as access to fields.

Event Traced Instrumentation
Data Sites
METHODSTART  Thread, Start of each method / con-
Method, structor
Parameters
METHODEND Thread, ARETURN, DRETURN, FRETURN,
Method IRETURN, LRETURN, RETURN
OBJECT_NEW Thread, NEW, NEWARRAY, ANEWARRAY,
Object MULTIANEWARRAY
FIELD_WRITE Thread, PUTFIELD, PUTSTATIC,
Object, AASTORE, BASTORE, CASTORE,
Value DASTORE, FASTORE, IASTORE,
SASTORE
FIELD_READ Thread, GETFIELD, GETSTATIC,
Object, AALOAD, BALOAD, CALOAD,
Value DALOAD, FALOAD, TALOAD,
SALOAD

e For an OBJECT_NEW event, a new State object that rep-
resents the current state of the object is created. This object
stores the identifiers and values of all fields in the object.
For primitive values, a string representation of the value is
stored. For complex values, PACHIKA stores the identifier of
the object referred to by the field.

o FIELD_WRITE events cause updating of the object’s repre-
sentation with the new value.

e For every METHODSTART event invoked on a relevant ob-
ject, PACHIKA extracts the object’s state right before invoca-
tion and pushes it on the stack of method start object states.
If the method is a constructor call, a new empty model is
created for this object.

e For every METHODEND event of a method invoked on a
relevant object, PACHIKA extracts the state at the end of the
method. The state for the corresponding method start is taken
from the stack of object states as described above. Finally,
PACHIKA adds a transition from the start state to the end state
labeled with the method name and signature.

Unfortunately, using concrete values for primitive fields gener-
ates models that are too fine-grained. As an example, consider the
model of a Vector whose state consists of the number of elements
currently in the Vector. If 100 objects are added to the Vector,
the miner generates a model with over 100 different states. How-
ever, Vector behaves the same as soon as it contains one or more
elements. Although the model is a precise representation of what
happened, it is difficult to compare the behavior of different ob-
jects. If there were a second Vector to which 200 elements were
added, PACHIKA would find many model differences although, on
an abstract level, the two objects behave the same.

One way to deal with this is to use abstract values rather than
concrete values in the model. The problem is to choose the right
level of abstraction. If the abstraction is too strong, we might lose
information that is vital for detecting violations. On the other hand,
if the abstraction is too weak, we might still end up with models
that are too fine-grained and thus discover too many anomalies.

Table 2: Abstractions used by PACHIKA.

Type Categories
Complex  x =null, x # null
Numerical x<0,x=0,x>0
Boolean X, X

Our method for abstraction is inspired by Liblit et al. [17], who
have successfully applied abstraction in the context of statistical
bug localization. Table 2 summarizes how concrete values are map-
ped to abstract values. The successful application of this approach
in the context of bug localization by Liblit et al. gives us reason
to believe that it provides a suitable level of abstraction when min-
ing anomalies. However, we did not investigate other abstraction
methods and therefore do not claim that our approach is the best.

In the case of the MINA failing run (Figure 1), the model has
5 different states, one of which is the empty starting state. Each
state contains the values for three attributes, which are mapped ac-
cording to Table 2.

3.1 Model Depth

The models that PACHIKA mines for the MINA bug contain all
the information required to fix it. PACHIKA detects an incorrect
value of bound and synthesizes a fix from the passing model. In
more advanced examples, many methods also have preconditions
on fields that are not part of the object, but rather part of other
objects referenced by this object. In that case, PACHIKA would be
unable to fix the bug, as it does not include the state of transitively
reachable objects.

We refer to models that contain state of transitively reachable
objects as deep models. To mine such models:

e We introduce a depth parameter which defines the number
of indirections on the heap PACHIKA will consider when in-
cluding state. For example, in MINA a model of depth O for
BaseIOAcceptor includes the values of attributes handler,
localAddress and bound. Depth 1 also includes the values
for attributes of handler and localAddress.

o State extraction is changed such that it includes the state of
transitively reachable objects up to the configured depth.

e For each method that changes at least one object, PACHIKA
calculates which models are affected by the changes and adds
transitions in the models for all objects.

Let us show another real-life example to illustrate the concept
of deep models, taken from the bug database of the APACHE JDO
project. In this example, a PersistenceManager class manages
objects stored in a database. Internally, PersistenceManager
uses a Transaction object to synchronize access to the database.
The Transaction object is available to clients via a getter method.
For consistency reasons, access to persistent objects requires an ac-
tive Transaction. In the failing run, a client requests an object by
calling getObjectById() when the Transaction is inactive. In
all passing runs, this is handled correctly.

Figure 3 shows a simplified version® of the passing and fail-
ing model for the PersistenceManager. The state contains the
transaction tx, as well as the Transaction object’s active flag
if the Transaction is not null. Transitions in the state of the
PersistenceManager now also occur if a method changes the

3The actual models mined for this example are too large to present
in a paper but can be viewed at the project’s web page (Section 10).
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Figure 3: A deep model of PersistenceManager for the pass-
ing and failing runs of bug JDO 28. In the failing run, the sec-
ond invocation of getObjectById() violates the precondition
that tx.active is true.

state of the Transaction. This model captures the interplay be-

tween calls to getObjectById(), tx.begin() and tx.commit ().

3.2 Mining Preconditions

Every method has a (potentially empty) set of preconditions that
need to be satisfied in order to invoke the method successfully. For
example, the unbind() method in the MINA example has the pre-
condition that bound needs to be false.

In some languages, such as Eiffel, Spec# and JML, programmers
would be able to provide preconditions explicitly. In this paper we
are working with plain Java programs where preconditions have to
be inferred. Section 10 discusses this idea further.

A first approach to mining preconditions from models would be
to search for common properties of attributes in states in which a
method is invoked. This approach has two disadvantages. First, it
limits preconditions to the state of the object the method is invoked
on. Second, a method typically does not read all attributes of the
state; PACHIKA would thus generate spurious preconditions.

To solve these problems, PACHIKA traces the set of fields that
are read by a method invocation and generates preconditions only
for those fields. For example, in the case of unbind (), PACHIKA
detects that the method only reads fields bound and handler, and
therefore only looks for preconditions that affect those two fields. If
a method reads a field that is part of a parameter, the field will also
be included in the set and thus PACHIKA also detects preconditions
for fields of parameters.

In practice, identifying the set of relevant fields is more complex
than only tracing field reads for every method invocation:

e Many methods create and use temporary objects. Field reads
on such objects cannot yield preconditions since those ob-
jects did not exist when the method was invoked. We there-
fore only include field reads on objects that existed prior to
the invocation.

e Many programs make extensive use of getter and setter meth-
ods. To retrieve the value of a field, a method invokes a get-
ter rather than accessing the field directly. To deal with this,
PACHIKA propagates a field access to the calling method if
the accessed object is also visible in the caller.

When generating models, PACHIKA annotates each method in-
vocation in the model with the set of fields read. This information
is then used in the next step to detect violations.

4. DETECTING VIOLATIONS

The basic technique for detecting anomalies is to compare mod-
els of passing and failing runs. From the passing models, PACHIKA
learns preconditions for a method invocation and checks the failing
model for violations of these preconditions.

Even a very short run of an object oriented program creates a
large number of objects. In MINA, for example, the failing run lasts
only 0.3 seconds but generates over 18,000 objects. Analyzing all
these models, while possible in principle, would take too much time
in practice. We need to find a heuristic that reduces the search space
by only considering a subset of all objects. A good heuristic selects
all objects whose behavior is relevant for the failure, and only few
objects that are irrelevant.

One way to approach this is to identify suspicious points in the
execution of the program and include all objects that are accessi-
ble at those points. For non-crashing bugs, this is difficult since
all points in the execution are equally suspicious. To alleviate this
problem, we could use an anomaly-based bug localization tool such
as TARANTULA [14] or DIDUCE [12] to identify suspicious points.
However, in that case, the quality of the generated fixes strongly
depends on the bug localization tool’s ability to identify the right
locations. To avoid this dependency, we limit the evaluation in this
paper to crashing bugs where it is easy to identify suspicious pro-
gram points.

For crashing bugs, we can use the crashing method as a suspi-
cious point and include all objects that are accessible to methods
on the stack. This heuristic assumes that a failure occurs close to
where the infection (a faulty program state) originates. This as-
sumption does not hold for all bugs. In our experience, however,
many crashing bugs are fixed in a method that is active when the
program crashes. We therefore believe that this heuristic will in-
clude the relevant objects in sufficiently many cases.

In its current state, PACHIKA requires the failing run to abort with
an exception and extracts models for all objects that are reachable
through the parameters of the methods on the stack. This approach
was inspired by work of Artzi et al. [2], who use a similar technique
to reproduce crashes. Unlike that approach, however, PACHIKA
does not include all transitively reachable objects, but only follows
references up to a certain depth (see Section 3.1).

Once PACHIKA has mined models for all relevant objects from
the failing run, the next problem is to choose passing models against
which to compare the failing models. PACHIKA currently takes the
following approach:

o First, PACHIKA searches the passing run for invocations of
the same methods as for the failing run. For every such invo-
cation, PACHIKA extracts objects accessible from the method
and compares models for objects that were accessible through
the same path in the passing and failing runs. For example,
if a method m has a first parameter that is of complex type,
PACHIKA compares passing and failing models for the first
parameter.

o If no method invocation is found in the passing run, PACHIKA
identifies the set of classes for which models were mined
from the failing run. It then extracts models for all instances
of those classes from the passing run and then compares
models for the corresponding classes.

o If there are no suitable models in the failing run, PACHIKA
is unable to detect any violations and therefore exits without
generating a fix.

If PACHIKA is able to find comparable models, it will search the
models of the passing run for preconditions of method invocations.



For every method m that is part of the model, PACHIKA examines
all invocations of m and extracts the values for all fields accessed
by m (see Section 3.2). PACHIKA then mines the values for each
field and tries to derive simple preconditions such as a field hav-
ing the same value before all invocations of a method. The tool
currently has its own engine to detect preconditions. If necessary,
however, it could use DAIKON’s [9] invariant detection engine to
mine more complex preconditions.

The final step for detecting violations is to check all method in-
vocations from the failing model to see whether they violate any of
the preconditions mined from the passing model. If a method invo-
cation violates at least one precondition, PACHIKA remembers the
violated preconditions, as well as the state in which the violating
method was invoked.

For the MINA example, PACHIKA finds three relevant objects.
The passing run does not include an invocation of the crashing
method, and therefore PACHIKA compares models based on classes.
PACHIKA only finds one model with violations, shown in Figure
1. The violation is that unbind() in the passing run is only be-
ing called when bound is true. Note that PACHIKA does not ex-
tract preconditions for setLocalAddress() and setHandler(),
as those methods do not read fields.

For the JDO example, PACHIKA mines three models from the
failing run and compares them based on their classes. Altogether,
there are 4 violations, one of which is that getObjectById() re-
quires tx.active to be true.

S. GENERATING FIXES

For each invocation of a method m that violates at least one pre-
condition, PACHIKA generates fix candidates based on the passing
and failing models. In general, there are two possibilities to fix a
violation based on models. The first is to satisfy the preconditions
of m by inserting calls that make the necessary changes to the state.
The second strategy is to avoid the violation by deleting the violat-
ing call to m.

5.1 Inserting calls

In order to satisfy the preconditions of a method m, PACHIKA
searches the failing and passing models for states that satisfy the
preconditions and searches for a path to any of them. For example,
the violating method call in MINA happens in a state where bound
is false. The precondition from the passing run requires bound
to be true. PACHIKA finds one state that satisfies this condition and
two possible paths from the violating state to the correct state:

1. The first path is to invoke setLocalAddress() first and
then bind (). This path is not considered because setLocal
Address () requires an argument, and PACHIKA cannot syn-
thesize arguments.*

2. The second path is to invoke only bind (). This is a fix can-
didate as produced by PACHIKA.

Every feasible path is translated into code which injects calls to
all methods on the path right before the violating method call.

5.2 Deleting calls

The second strategy is to avoid the violation by deleting the
method call if at least one precondition is violated. Depending on

*Generally, PACHIKA is limited to methods that do not take argu-
ments. We are aware that this is a severe restriction. However, syn-
thesizing arguments for method invocations is a problem in itself
and is therefore left for future work.

where the fix is to be applied, we can remove the call at either the
caller or the callee site. To remove callee invocations, PACHIKA
generates an if-block that checks the precondition at the beginning
of the method, and adds a return instruction as the content of the
if-block. At the caller site, PACHIKA also creates an if-block that
suppresses the call if the precondition is violated. If the removed
method has a return type other than void, we try default values such
as true, false or null.

For MINA, PACHIKA generates another fix candidate consiting
of an if-block around the call to unbind() such that the method is
only invoked if bound is true.

6. CHOOSING THE BEST FIX

We refer to the non-validated fixes generated by PACHIKA as the
set of fix candidates. Each fix candidate is applied in isolation and
evaluated in two steps. First, we execute the failing test. If the
fix changes the outcome to passing, we call it a potential fix. For
each potential fix, we subject it to the program’s automated quality
assurance—in our case, all tests of the program’s regression test
suite. If the fix does not alter the outcome of any one test, we refer
to it as a validated fix. Only validated fixes will be presented to the
programmer as proposed fixes for the failure.

In the case of MINA, PACHIKA generates two candidate fixes, out
of which one is successfully validated against the test suite. The fix
is to add a call to bind() which ensures that the precondition for
unbind () is satisfied. For JDO, PACHIKA generates 8 fix candi-
dates, of which only one is a potential fix that is validated success-
fully against the test suite. The fix is to insert a call to tx.begin()
right before the second call to getObjectById().

Both fixes are semantically equivalent to the fixes that were ap-
plied by the developers, and thus can be considered to be valid fixes
for the failures.

The notion of “best fix” raises the question whether PACHIKA
can produce “bad” fixes, too. If a suggested fix passes all tests but
is considered incorrect, the test suite should be improved—very
much like, in mutation testing [7], an undetected mutation implies
a weakness in the test suite. As soon as the test suite (or gener-
ally, automated quality assurance) is set up to catch the invalid fix,
PACHIKA will filter it out.

7. EXPERIMENTAL EVALUATION

In the previous sections, we have seen how PACHIKA was able to
generate successful fixes for two bugs as they occurred in real-life.
The two examples were found by analyzing the bug databases of
MINA and JDO, manually inspecting the bug reports, extracting the
faulty version from the source repository, building and running the
test suites. This is a lot of manual effort and is not feasible for a
larger study.

To evaluate the effectiveness of our approach, we ran PACHIKA
on the two subjects provided by the iBUGS repository [6]. iBUGS
contains programs together with test runs and bugs as they actually
occurred in the history of the project. For a subset of the bugs,
iBUGS also provides test cases that reproduce the problem, which
we refer to as failing tests. In our experiments, we use the projects’
regression test suites as passing runs.

7.1 Subjects

Table 3 summarizes information about the subjects used in the
iBUGS study. The column “Crashing Bugs” gives the number of
bugs that caused the program to crash. We included all these bugs
in our study. For each bug in the repository, iBUGS contains a snap-
shot of the project right before and right after the bug was fixed.



Table 3: Subjects used in the paper. The first two rows show
characteristics of the examples used. The last two rows give de-
tails on the subjects used in the evaluation. Size was measured
using David A. Wheeler’s sloccount.

Program Crashing  Size ~ Number of
Bugs (LOO) Tests

MINA 1 14,773 89
DO 1 64,017 437
ASPECTJ 18 75,123 1,178
RHINO 8 37,902 1,499

Thus, the size of the project and the number of tests varies from
bug to bug. Columns “Size” and “Number of Tests” therefore list
only the values for the latest bug included in the study.

7.2 Experimental Setup

Currently, PACHIKA requires only one configuration parameter:
the depth for searches on the heap (cf. Section 3.1). For our ex-
periments, we used a depth of 1, which we believe to be a reason-
able compromise between speed and the range of violations that
PACHIKA can detect and possibly fix. This is further discussed in
Section 7.6.

7.3 Running the Experiments
To conduct the experiments, we perform the following steps:

1. First, we examine all bugs in the repository for which there
is at least one test case that reproduces the failure. Since
PACHIKA is currently limited to crashing bugs, only those
bugs that crash the program are included in the study. This
yields 18 usable bugs for ASPECTJ, and 8 usable bugs for
RHINO. For each such bug, PACHIKA executes the failing test
and parses the stack trace of the failure. The remaining steps
are performed for each of those bugs.

2. PACHIKA traces the failing run and identifies the set of ob-
jects that are accessible to methods on the stack when the
crashing method executes (cf. Section 4). For each such ob-
ject, a model is mined from the failing run. The remaining
steps are performed for each passing test in the test suite.

3. PACHIKA traces the passing run and searches the trace for
executions of the crashing method. If at least one invocation
is found, models for all visible objects are mined just like for
the failing run. If no invocation is found, PACHIKA mines
models for all classes for which at least one model was ex-
tracted from the failing run (cf. Section 4).

4. If the previous step yields at least one model, PACHIKA com-
pares models to generate candidate fixes for all active meth-
ods as described in Section 5. Each candidate fix is first
checked against the failing test and then against the test suite
(cf. Section 6).

7.4 Performance

Our experiments were performed on a 2 GHz AMD machine
with a maximum of 2 Gigabytes of memory. Table 4 lists infor-
mation about overhead and execution times. For MINA and JDO,
results are averages over all runs in the test suite. For ASPECTJ and
RHINO, we give averages for the latest version used in the experi-
ments. Tracing overhead is expressed as the factor by which exe-
cution time increases when tracing is turned on. The third column

Table 4: Tracing overhead and execution times for all subjects.

Tracing  Trace File Model
Overhead Size Mining

(factor) (MB) (s)
MINA 29 42 34
DO 16 356 212
ASPECTJ 9 223 110
RHINO 26 11 8

gives the execution time the model miner takes to extract models
for depth 1 (cf. Section 3.1).

Table 4 does not list times PACHIKA takes to generate fixes, since
these are negligible compared to the other steps. The time needed
to validate a candidate fix is equivalent to the execution time of the
test suite for almost all candidates. In some cases, a fix candidate
causes the program to loop endlessly. In that case, we terminate the
run after a timeout of two minutes and consider the test as failed.

As is to be expected, tracing incurs a huge amount of runtime
overhead. Since both ASPECTJ and RHINO contain over 1,000 tests,
tracing and mining the test suite was the most time-consuming part
in our experiments. For example, tracing and mining all 1,038 runs
in the test suite of bug 87376 takes a little less than two days. Un-
fortunately this needs to be done for each investigated bug, since
each bug is fixed in a different version of the code base.

In practice, however, tracing and mining the test suite only needs
to happen once for each released version of a program. As soon as
a new version is released to the public, we can trace the test suite,
mine models for all objects in the traces, and store them for reuse.
For every bug report filed for the new version, we can reuse the
cached models.

7.5 Results

For RHINO, PACHIKA generates fix candidates for three out of
eight bugs. None of these fixes turns the failing test into a passing
one. We examined the results in detail and found two causes:

e RHINO is considerably smaller than ASPECTJ and contains
only a very small number of classes that have complex mod-
els (see Section 8). Thus, PACHIKA finds only a small num-
ber of violations per bug.

e In many cases where a violation is found, technical restric-
tions such as the limitation to methods without parameters
prevent PACHIKA from generating a fix. We hope to remove
some of these restrictions in the near future and thus be able
to generate more fixes for RHINO.

The results for ASPECTJ are summarized in Table 5. For each
investigated bug, we give the number of candidate, potential, and
validated fixes (cf. Section 6). PACHIKA generates fix candidates
for 14 out of 18 bugs. For 6 bugs, PACHIKA finds at least one fix
that causes the failing run to pass. For 3 out of those 6 bugs, there
is at least one validated fix. The following sections discuss each of
those bugs in detail.

7.5.1 Checking for a null reference

Bug 173602 causes a NullPointerException to be thrown
in method resolve() in class InterTypeMethodDeclaration.
PACHIKA detects one violation for the invocation of resolve(),
namely that binding must not be null. The delete method call
strategy generates the fix as shown in Figure 4. The original fix



Table 5: Results of the experimental evaluation for ASPECT]J.
For 3 bugs out of 18, PACHIKA is able to generate a fix that fixes
the failure and passes the regression test suite.

Fix Candidates Potential Validated
Bug Insert Delete Fixes Fixes

34858 420 50 0 0
43033 219 65 0 0
51322 112 190 56 1
67774 0 72 0 0
70619 6 1 0 0
75129 0 0 0 0
87376 20 218 0 0
107858 405 235 1 0
109614 0 0 0 0
120474 0 0 0 0
121616 123 0 38 1
125475 72 122 7 0
128237 283 4 123 0
131933 0 50 0 0
152631 0 783 0 0
158412 2895 310 0 0
158624 0 0 0 0
173602 17 13 7 1

public void resolve(ClassScope upperScope) {
// Fix from source repository
if (binding == null) ignoreFurtherInvestigation = true;
// Fix generated by PACHIKA
if (binding == null) {
return;

V V.V V VYV

}
if (munger == null) ignoreFurtherInvestigation = true;
if (ignoreFurtherInvestigation) return;

}
}

Figure 4: The proposed fix for bug 173602 is to not execute
method resolve() if the precondition for binding is violated.

also amounts to a conditional return which additionally sets the
ignoreFurtherInvestigation flag. This flag is later used by
ASPECT]J to stop processing the declaration object. However, not
setting the flag in this situation does not cause any problems, since
none of the tests in the test suite later fails.

7.5.2  Checking for error conditions

In the failing run of bug 121616, method resolve() in class
ValidateAtAspectJAnnotationsVisitor. PACHIKA detects a
precondition violation for parameter methodDeclaration, namely
that the ignoreFurtherInvestigation flag which is returned
by hasErrors() is true. The delete method strategy generates
a conditional return in case that the precondition is violated (Fig-
ure 5). In this case, the generated fix is equal to the fix applied by
the developers.

7.5.3 Invoking methods to set default state

The failing run for bug 51322 crashes ASPECTJ by causing a
NullPointerException in method build() of class InterType
MethodDeclaration. Figure 6 shows the relevant parts of this
method, together with the fix as applied by the developers, and the
fix generated by PACHIKA. The failing run contains two invoca-
tions of method build(), of which only the last one fails. For the
first invocation, PACHIKA detects a precondition violation for the

public boolean visit(MethodDeclaration methodDeclaration,
ClassScope scope) {

// Fix generated by PACHIKA

// is the same as in the source repository

if (methodDeclaration.hasErrors()) {

return false;
}
ContextToken tok = CompilationAndWeavingContext.
enteringPhase(...);

V V.V V V

Figure 5: The fix for bug 121616 surpresses the violation by
aborting the execution in case methodDeclaration has errors.

public EclipseTypeMunger build(ClassScope classScope) {

if(ignoreFurtherInvestigation) { return null;

} else {
binding = classScope.referenceContext.

binding.resolveTypesFor(binding);
// Fix generated by PACHIKA
binding.constantPoolDeclaringClass().
addDefaultAbstractMethods();
binding.constantPoolDeclaringClass() .methods();
// Fix from source repository
if (binding == null) {
throw new AbortCompilation();

}

ResolvedMember sig = new ResolvedMember(...);

VVVVYVYVVYV

3
}

Figure 6: The proposed fix for bug 51322 invokes methods that
initialize values, essentially avoiding the illegal access in a sub-
sequent invocation of build().

declaringClass attribute in the binding variable. The model
from the passing run contains a path that repairs this violation,
which consists of invoking addDefaul tAbstractMethods () and
methods(). When this fix is applied to ASPECTJ, the state of
binding is altered such that the second invocation of build()
no longer occurs and the failing run passes. The fixed version also
passes all the other tests.

The developer’s fix for this problem is simply to abort the ex-
ecution of build(), which is very different from PACHIKA’s fix.
However, both fixes comply with the specification as given by the
program’s test suite.’

7.6 Discussion

Our results show that PACHIKA works much better on ASPECTJ
(validated fixes for 3 out of 18 bugs) than on RHINO (no validated
fixes). A closer examination of the log files revealed that there are
much fewer violations of preconditions than in ASPECT]J, the reason
being that there is only a small number of classes that have models
with preconditions. The study in Section 8 compares the number
of classes with preconditions for all subjects in this paper.

In most cases where PACHIKA detects a violation, both fix strate-
gies generate fixes. In terms of the numbers of generated fixes, both
strategies are also roughly equivalent. In some cases, the insert
method call strategy generates a large number of fixes due to many
different paths through the model. However, with two out of three
validated fixes, the delete method call strategy in our experiments
is more successful when it comes to generating a correct fix.

SIf PACHIKA's fix would be considered incorrect, a simple remedy
is to extend the test suite appropriately, as discussed in Section 6.
We asked the developer who committed the original fix for his opin-
ion, but did not get a reply before the submission deadline.



In our experiments we used a depth of 1 for mining models.
Of the three validated fixes found by PACHIKA, only the fix for
bug 51322 actually requires a depth of 1. The two remaining fixes
would also have been found with depth 0. It may be that larger val-
ues for depth would have caused PACHIKA to generate more val-
idated fixes. A thorough investigation of how larger depths affect
fix generation is left for future work.

The validated fix for bug 51322 (Section 7.5.3) highlights a prob-
lem for approaches that validate fixes using the test suite: The qual-
ity of validated fixes is highly dependent on the quality of the test
suite. A bad test suite will cause many fixes to be validated suc-
cessfully and thus a lot of false positives to be presented to the
user. However, in the absence of a formal specification, a test suite
is still the best way to automatically assess the impact of a change
on the program.

7.7 Threats to Validity

As with any empirical study, the interpretation of the results is
subject to several limitations.

External Validity The scope of our study is limited, as it only in-
vestigates 26 bugs in two programs. Therefore, the results of
our experiments are hardly generalizable. However, it is dif-
ficult to conduct a controlled experiment with realistic data
since there is only little such data available. A manual in-
vestigation, as we did it on MINA and JDO, requires a lot of
effort and is also difficult to reproduce for other researchers.
Although we are aware of these limitations, we believe that
our evaluation is realistic since it uses real post-release bugs®
and relies only on test runs from a bug database or the test
suite.

Internal Validity PACHIKA is a complex system that consists of
almost 30,000 lines of code. We verified the correctness of
model mining and fix generation for several small artificial
test cases. However, the huge amount of data and the com-
plexity of the system make it impossible to check every step
for realistic examples. It may well be that PACHIKA contains
errors which cause fixes to be missed or invalid fixes to be
generated. However, verifying potential fixes against the test
suite ensures that there are no false positives. We encourage
other researchers to validate our results. All bugs used in the
evaluation are available in the iBUGS dataset. PACHIKA is
also available for download; see Section 10 for details.

Construct Validity PACHIKA uses the test suite as a source of pro-
gram runs. As such, it depends on the tests to correctly clas-
sify a run as passing or failing. In some cases, this check
is not precise enough. For example, some tests in ASPECTJ
simply check the output for a certain keyword, which may
lead to a test outcome incorrectly being classified as passing.
However, we observed this problem only for a small num-
ber of tests and are confident that the huge number of tests
ensures a high quality of fixes that are presented to the user.

There also is a risk that PACHIKA generates fixes that only
apply to the symptom at hand, rather than the problem root
cause (“The method crashes when p is null, so let’s insert
a check for it”). This risk is best countered by quality assur-
ance; in particular, any increased level of automated valida-
tion (such as contracts or widespread program proofs) will

6We expect an evaluation of PACHIKA on artificially seeded bugs to
yield much better results—in particular if seeding includes addition
or deletion of method calls, as most mutation testing approaches do.

Table 6: How prevalent are classes with preconditions? With
the exception of MINA, roughly one third of all classes are com-
plex enough to be misused.

Number of  Classes with

Classes preconditions

MINA 166 15
DO 377 116
ASPECTJ 443 154
RHINO 52 17

automatically filter out more bad fix candidates as generated
by PACHIKA. Indeed, our evaluation indicates that this is al-
ready the case.

8. APPLICABILITY

After coming to the conclusion that automatic fixing of failing
programs was indeed feasible for some cases, we wanted to inves-
tigate the general applicability of tools like PACHIKA. In the exper-
imental evaluation in Section 7, our tool was only able to generate
fix candidates for a small number of bugs in RHINO, since only
few bugs actually revealed violations of preconditions. Obviously,
PACHIKA’s applicability is limited to bugs that cause a precondi-
tion violation. In order to get a feeling of PACHIKA's potential, we
wanted to know how many bugs actually show precondition viola-
tions.

For this purpose, we investigated a sample of bugs from the bug
databases of the projects used in the evaluation. For each bug, we
tried to determine whether or not the bug would have caused a vi-
olation of a precondition. However, we quickly came to the con-
clusion that it is not possible to realiably answer this question by
only looking at the bug report and source code. On the other hand,
manually building and executing each snapshot for a large enough
set of bugs is too time-consuming.

PACHIKA’s ability to detect bugs correlates with the number of
classes that may potentially be used in a wrong way. A high per-
centage of such classes would mean that there is a big potential for
wrong usage that causes violations. To measure the percentage, we
generated models for all classes used in our subjects and classified
models as having preconditions or not. A model has preconditions
if there is at least one method invocation other than that of a getter
method which requires another method to be invoked before. For
example, in Figure 1, the model for VmPipeAcceptor has precon-
ditions, because in order to satisfy the precondition of unbind(),
method bind () has to be invoked before.

Table 6 lists the number of classes for which we mined at least
one model (column 2), and the number of classes with precondi-
tions (column 3). Except for MINA, approximately one out of three
classes has a model with preconditions. Thus, roughly one third of
the classes in our projects are complex enough to be misused. Since
there are typically several objects with different types in the scope
at any point in the program, there is a big potential for detecting
anomalies based on violated preconditions.

9. RELATED WORK
9.1 Locating Bugs

The most frequent work in automated debugging deals with the
problem of bug localization—that is, relating a failure to possi-
ble bug locations. Milestones in that direction include the TARAN-
TULA approach by Jones et al. [14] as well as statistical debug-



ging [17] by Liblit et al., who allow the programmer to focus on a
small percentage of the code.

Like these approaches, PACHIKA leverages the difference be-
tween passing and failing executions; rather than suggesting lo-
cations, however, it produces fixes. By leveraging the test suite
(and all other forms of automated validation), PACHIKA can thus
successfully weed out invalid candidates, resulting in either a valid
fix—or nothing. This “no-false-positives” approach is where our
approach greatly differs from existing bug localization techniques.
Nonetheless, it can be easily combined with bug localization: When
PACHIKA cannot generate a fix, then bug localization may at least
suggest a location; or one could use locations as suggested by a
bug localization technique as suspicious locations for PACHIKA (cf.
Section 4).

9.2 Repairing Programs

Most related to PACHIKA is the recent work by Weimer et al. [22]
on automatic patch generation. Weimer et al. systematically mu-
tate a failing C program by inserting, swapping, and deleting state-
ments. Their approach then uses an extended form of genetic pro-
gramming to evolve those mutants that pass (1) the (previously fail-
ing) test and (2) as many tests as possible from a regression test
suite. The approach produces repairs in less than three minutes on
average on a set of ten selected bugs.

Our approach is similar to their technique in that it also gener-
ates potential fixes and assesses them via a regression test suite.
The contribution and potential of their approach over PACHIKA is
clearly the wide range of possible mutations, as well as the adaptive
approach in generating fixes.

Rather than using adaptive random search, however, PACHIKA
starts right away with behavioral differences between passing and
failing runs, which keeps the search space focused. Such a focus is
very much needed: It is unknown whether the approach of Weimer
et al. scales up to a program like ASPECTJ, with more than 75,000
lines of code and a test suite where one single run already takes a
minute; it is also unknown how much fine-tuning of parameters
is required to quickly find fixes. It is also unclear how the ap-
proach of Weimer et al. could integrate bug localization or mined
specifications, as PACHIKA does. Last but not least, we evaluate
PACHIKA on all previously documented crashing bugs of ASPECTJ
and RHINO—and thus get an idea of scalability and applicability
on real programs and real bugs.

9.3 Leveraging Specifications

Prior to [22], Weimer developed a method for automatically and
soundly patching programs with a given specification [21]. How-
ever, as Weimer states in [22], a formal specification is seldom
available—which is why PACHIKA mines and leverages behavior
models from passing and failing executions.

In the long run, we expect automatic fix generation to rely on
both search-based techniques (as in the approach of Weimer et al.)
as well as specification mining (as in PACHIKA)—in addition to
the wide range of information that is available via static analysis,
theorem provers, bug history, and other techniques.

9.4 Repairing State

Demsky et al. [8] show how to automatically fix data structures at
run-time, again according to a given specification. Rinard et al. [19]
suggest similar repair techniques for invalid memory accesses. In
both these works, only the program state is fixed. Weimer’s and
our work, though, look for repairs not only to the program state of
the current run, but to its actual code (which as a side-effect yields
repairs to the state as well). This requires many more checks, such

as contracts or a regression test suite, but also increases confidence
in the correctness of the repairs—besides, hopefully, providing a
permanent fix to the problem.

9.5 Mining Specifications

PACHIKA is an instance of specification mining tools. The behav-
ior models as mined by PACHIKA were first implemented in the AD-
ABU tool [5]. The concept was later adapted by Ghezzi et al. [10].
Their ADIHEU tool uses models generated by ADABU to support
recovering algebraic specifications from program runs. This ap-
proach could also be used in PACHIKA to capture object behavior
and find anomalies.

Dynamic invariants, as conceived by Ernst et al. [9], express
properties of data that hold at specific moments during the observed
executions. By checking object attribute states, one could use the
DAIKON tool to extract pre- and postconditions for method calls
and thus object behavior models.

The concept of learning models from actual program runs was
first explored by Amons et al. [1], applying a probabilistic NFA
learner on C traces. Their approach relies on manual annotations
to relate functions to objects (such as C sockets or X11 selections)
and to distinguish object definers from object users.

9.6 Generating Tests

Our work on generating fixes was heavily inspired by recent
work on generating tests. Ciupa et al. [3] generate random se-
quences of method calls, leveraging existing contracts to retain only
valid sequences. When a test case fails, the approach of Leitner et
al. [16] automatically extracts a test case that reproduces the fail-
ure. Both generation and extraction of call sequences to character-
ize passing and failing runs are key concepts of PACHIKA.

10. CONCLUSION AND CONSEQUENCES

The future of automated debugging lies in the automatic genera-
tion of fixes. Applied to real-life Java programs, our PACHIKA tool
can generate fixes for 3 out of the 18 post-release bugs that crash
ASPECTIJ. By leveraging the difference between normal and abnor-
mal behavior, we successfully constrain the search space to quickly
generate potential fixes that not only remove the problem at hand,
but also have a high diagnostic quality. Starting with behavioral
differences, coupled with strict filtering via the test suite ensures a
zero rate of false positives, ensuring that PACHIKA increases pro-
ductivity. The approach can easily be extended to quality assurance
beyond testing: As soon as a specification can be automatically val-
idated, PACHIKA can leverage it to filter fix candidates—such that
only true corrections remain.

There will always be bugs that cannot be fixed automatically.
Still, automatic fix generation has much room for improvement.
Our future work will focus on the following topics:

Alternate differences. Right now, the set of differences we ob-
serve and the set of fixes we can generate is limited to condi-
tional method calls. However, there are many more potential
fixes that could be generated. For instance, assigning a value
to an attribute could instantly fix the object state.

Adaptive fix generation. With a larger set of possible fixes, one
could consider adaptive techniques to systematically explore
the search space, as in the approach of Weimer et al. [22].
One interesting possibility could be to start with behavioral
differences as fix candidates (as PACHIKA does), and to use
these as a basis for further mutations.

Assessing the impact of fixes. What happens if there are multiple
fix candidates that all pass the test suite? In this case, we also



would like to minimize the impact on passing executions—
impact as measured using dynamic invariants [20], cover-
age [11], or object behavior models.

Leveraging contracts. A key aspect of the approach is the need
to ascertain, before calling a method, whether its precondi-
tion is satisfied. In the present work, as noted, preconditions
have to be inferred from a model. Although assertion infer-
ence has made considerable advances, it still falls short of
inferring all assertions that programmers would write, as in-
dicated in particular in a recent study by some of the authors
[18] . One of the next steps in our work is to apply the ideas
to the Eiffel language, where programmer-written contracts
not only filter out invalid fixes, but can also serve as boiler-
plates for generating alternative fixes.

The PACHIKA tool is available for download as an open source Java
system. The package also includes all the necessary data to repli-
cate and extend the above experiments. For more information on
PACHIKA, visit the project’s Web site:

http://www.st.cs.uni-saarland.de/models/
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