
Quick Check

A Lightweight Tool for Random
Testing of Haskell Programs

Koen Claessen, John Hughes

Verification versus Validation

We want a program to be correct.
Problem: To verify it, we need specifications.

#! In Haskell, testing is quite efficient, because of
purity.
(When every function is correct and has no
side-effects, the whole program will be correct)

We can validate it by testing it.

Example
fac_naive n
!| n<2 ! = 1
!|otherwise = n * fac_naive (n-1)

fac n = foldr (*) 1 [0..n]
prop_fac :: Int -> Bool
prop_fac x = fac x == fac_naive x

Main> quickCheck prop_fac
Falsifiable, after 1 tests:
1

fac n = foldr (*) 1 [0..n]

Main> fac 1
0

Example
fac_naive n
!| n<2 ! = 1
!|otherwise = n * fac_naive (n-1)

fac n = foldr (*) 1 [1..n]
prop_fac :: Int -> Bool
prop_fac x = fac x == fac_naive x

Main> quickCheck prop_fac
OK, passed 100 tests.

How to generate test data?

Bool:
instance Arbitrary Bool where
 arbitrary = elements [True, False]

#! Int:
instance Arbitrary Int where
 arbitrary = choose (–1000, 1000)

#! Int → (Int → Bool) → [Char] → Int

class Arbitrary where
arbitrary! :: Gen a

Main> quickCheck property
(α →

Bool)

Generating more complex data

Gen α
Gen β Gen (α, β)

Gen [α]
Gen α
Gen PosInt
choose (0, 100)

Combinators

return! ! :: α → Gen α
elements! ! :: [α] → Gen α
choose ! ! :: (Int, Int) → Gen Int

oneof! ! :: [Gen α] → Gen α
frequency! ! :: [(Int, Gen α)] → Gen α
sized ! ! ! :: (Int → Gen α) → Gen α

Generating user defined data
data Colour = Red | Blue | Green
instance Arbitrary Colour where
arbitrary =
data Tree a = L a | T (Tree a) (Tree a)
instance Arbitrary a => instance Arbitrary Tree a where
arbitrary = oneof [liftM L arbitrary,
 liftM2 T arbitrary arbitrary]

oneof :: [Gen a] -> Gen a
return :: a -> Gen a

oneof [return Red,return Blue, return Green]

liftM :: (a -> t) -> Gen a -> Gen t
liftM2 :: (a -> b -> t) -> Gen a -> Gen b -> Gen t

Generating user defined data

data Tree a = L a | T (Tree a) (Tree a)

frequency :: [(Int, Gen a)] -> Gen a
return :: a -> Gen a
oneof :: [Gen a] -> Gen a

oneof [liftM L arbitrary,
 liftM2 T arbitrary arbitrary]

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary =

Generating user defined data

data Tree a = L a | T (Tree a) (Tree a)

frequency [(1, liftM L arbitrary),
 (2, liftM2 T arbitrary arbitrary)]

frequency :: [(Int, Gen a)] -> Gen a
sized :: (Int -> Gen a) -> Gen a

return :: a -> Gen a
oneof :: [Gen a] -> Gen a

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary =

Generating user defined data

What about functions?

data Tree a = L a | T (Tree a) (Tree a)

sized arbTree

arbTree :: Int -> Gen a
arbTree 0 = liftM L arbitrary
arbTree n = frequency [(1, liftM L arbitrary),
! !! (2, liftM2 T (arbTree (n `div` 2))

 (arbTree (n `div` 2)))]

frequency :: [(Int, Gen a)] -> Gen a
sized :: (Int -> Gen a) -> Gen a

return :: a -> Gen a
oneof :: [Gen a] -> Gen a

instance Arbitrary a => instance Arbitrary Tree a where
arbitrary =

Generating functions

newtype Gen = Int → Rand → α

Gen (α → β) = Int → Rand → α →
β α → Int → Rand → βα → Gen β =

promote :: (α → Gen β) → Gen (α → β)

Modifying the Random Number Seed
We need a function: α → Gen
β

We have: variant :: Int → Gen α → Gen α
 65, -1, -19, 2, 11, …

-52, 0, 41, -20, 1, …

variant a

variant b
1, 38, -12, 6, -472, …

original seed

How does variant solve our problem?

Coarbitrary

We still need a function: α → Gen β

coarbitrary :: α → Gen β → Gen β
variant :: Int → Gen α → Gen α

Bool:
instance Coarbitrary Bool where
 coarbitrary b g = !
 if b then variant 0 g else variant 1 g

Putting the stuff together

α → Gen βArbitrary β:

Coarbitrary α: α → Gen γ → Gen γ
coarbitrar
y

Gen β
arbitrary

promote :: (α → Gen β) → Gen (α → β)

instance (Coarbitrary a, Arbitrary b) => Arbitrary (a -> b) where
 arbitrary = promote

Gen (α →
β)

 (\x -> coarbitrary x arbitrary)
(α) (Gen β)

3 kinds of errors:

Errors in the test data generator

Errors in the program

Errors in the specification

Diverging Generators
Generators that produce nonsense

fac n = foldr (*) 1 [0..n]

Ill-defined properties
Missunderstanding of the code

Monitoring Test Data
prop_fac :: Int -> Property
prop_fac x ! = classify (x `mod` 2 == 0) „even“
 (fac x == fac_naive x)
Main> quickCheck prop_fac
OK, passed 100 tests (52% even).
prop_fac :: Int -> Property
prop_fac x = collect (x `mod` 3) (fac x == fac_naive x)
Main> quickCheck prop_fac
OK, passed 100 tests.
38% 2.
27% 0.
25% 1.

Advanced Properties

prop_fac :: Int -> Property
prop_fac x = x < 1 ==> fac x == 1

prop_fac :: Property
prop_fac = forAll niceInt (\x -> fac x == fac_naive x)

The trivial data Problem

Prop_Insert :: Int -> [Int] -> Property
Prop_Insert x xs = ordered xs ==> ordered (insert x xs)

Main> quickCheck prop_Insert
OK, passed 100 tests.

Prop_Insert :: Int -> [Int] -> Property
Prop_Insert x xs = ordered xs ==> classify (length xs < 3)
 „trivial“ (ordered (insert x xs))
Main> quickCheck prop_Insert
OK, passed 100 tests (95% trivial).

The trivial data Problem

