
Outline Introduction Exceptions A new design Semantics Extensions Summary

Imprecise Exceptions - Exceptions in Haskell

Christopher Krauß

Universität des Saarlandes
Informatik

22nd March 2006

Outline Introduction Exceptions A new design Semantics Extensions Summary

Outline

Introduction

Exceptions

Where do we use exceptions?
Different kinds of exceptions
Problems with pure and lazy languages
How to represent exceptions in a lazy language?

Present a new design based on sets of exceptions to model
imprecision

Sketch a semantics for this design

Some extensions of the basic idea

Outline Introduction Exceptions A new design Semantics Extensions Summary

Introduction

Imprecise exceptions at the hardware level:

Modern super scalar microprocessors

Many instructions run in parallel (increasing performance)

First exception encountered might not be the first
encountered in a sequential run

Use this idea at the programming level:

Improving performance by changing evaluation order

May change which exception is encountered first

Solving this problem: trade precision for performance

Present a design in Haskell depending on the IO monad

Outline Introduction Exceptions A new design Semantics Extensions Summary

Exceptions

Where do we use exceptions?

Disaster recovery

Alternative result

Short circuit control flow

Asynchronous events

Kinds of exceptions:

Synchronous exceptions

Asynchronous exceptions

Outline Introduction Exceptions A new design Semantics Extensions Summary

Exceptions in a lazy language

Why are exceptions not available in pure and lazy languages?

Lazy evaluation scrambles control flow
=> Programs do not have a readily predictable control flow

Purity is violated if exceptions are used in the usual way

Exceptions as values

Outline Introduction Exceptions A new design Semantics Extensions Summary

Exceptions as values

data ExVal a = OK a | Bad Exception

Good things about this approach:

No extension to the language is necessary
Type indicates whether the function can raise an exception
Impossible to forget to handle an exception
ExVal forms a monad ⇒ Comfortable use

Problems with this approach

Increased strictness
Excessive clutter:

Exceptions do not propagate implicitly
Inefficient

Loss of modularity and reuse of code
Loss of transformations

Outline Introduction Exceptions A new design Semantics Extensions Summary

Goals of the new design

For programs that don’t invoke exceptions:
Unchanged semantics and unaffected efficiency

All useful transformations remain valid

Possibility to reason about the exceptions a program might
raise

Stay lazy and keep referential transparency

Outline Introduction Exceptions A new design Semantics Extensions Summary

Basic Idea

Keep the idea of exceptions as values,
not as control flow (lazy evaluation!)

Extend this idea:
A value of any type is normal or exceptional

data Exception = DivideByZero
| Overflow
| UserError String
| ...

raise :: Exception -> a

catch :: a -> ExVal a

Outline Introduction Exceptions A new design Semantics Extensions Summary

Propagation

Automatic propagation

But think of laziness:

zipWith f [] [] = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f xs ys = raise UserError "Uneq lists"

Exceptions may be hidden in partially evaluated term

Propagation only if evaluation is forced (6= ML)

Outline Introduction Exceptions A new design Semantics Extensions Summary

Catching exceptions

catch :: a -> ExVal a

But what about:
catch ((1/0) + (raise Overflow))
Which exception is delivered?

Possible solutions to this problem:

Fix the evaluation order
→ Violates laziness
Go non-deterministic
→ Violates purity and referential transparency (e.g.
β-reduction)
Return both exceptions:
Exceptional values contain a set of exceptions
→ Implementation has to keep track of the whole set
→ Propagation not automated
→ Violates laziness

Outline Introduction Exceptions A new design Semantics Extensions Summary

Catching exceptions

catch :: a -> ExVal a

But what about:
catch ((1/0) + (raise Overflow))
Which exception is delivered?

Possible solutions to this problem:

Fix the evaluation order
→ Violates laziness
Go non-deterministic
→ Violates purity and referential transparency (e.g.
β-reduction)
Return both exceptions:
Exceptional values contain a set of exceptions
→ Implementation has to keep track of the whole set
→ Propagation not automated
→ Violates laziness

Outline Introduction Exceptions A new design Semantics Extensions Summary

Catching exceptions

catch :: a -> ExVal a

But what about:
catch ((1/0) + (raise Overflow))
Which exception is delivered?

Possible solutions to this problem:

Fix the evaluation order
→ Violates laziness

Go non-deterministic
→ Violates purity and referential transparency (e.g.
β-reduction)
Return both exceptions:
Exceptional values contain a set of exceptions
→ Implementation has to keep track of the whole set
→ Propagation not automated
→ Violates laziness

Outline Introduction Exceptions A new design Semantics Extensions Summary

Catching exceptions

catch :: a -> ExVal a

But what about:
catch ((1/0) + (raise Overflow))
Which exception is delivered?

Possible solutions to this problem:

Fix the evaluation order
→ Violates laziness
Go non-deterministic
→ Violates purity and referential transparency (e.g.
β-reduction)

Return both exceptions:
Exceptional values contain a set of exceptions
→ Implementation has to keep track of the whole set
→ Propagation not automated
→ Violates laziness

Outline Introduction Exceptions A new design Semantics Extensions Summary

Catching exceptions

catch :: a -> ExVal a

But what about:
catch ((1/0) + (raise Overflow))
Which exception is delivered?

Possible solutions to this problem:

Fix the evaluation order
→ Violates laziness
Go non-deterministic
→ Violates purity and referential transparency (e.g.
β-reduction)
Return both exceptions:
Exceptional values contain a set of exceptions
→ Implementation has to keep track of the whole set
→ Propagation not automated
→ Violates laziness

Outline Introduction Exceptions A new design Semantics Extensions Summary

Fixing catch

Denotational: Think of maintaining the whole set

Operational: Stay imprecise, choose one member of the set

Get rid of the non-determinism problem:

Put catch into the IO monad:
catch :: a -> IO (ExVal a)

IO t is a computation which

Is evaluated without side effects
Does only have an effect when it is performed

Each call to catch can make a different choice

Purity and referential transparency remain

Non-determinism in exceptions separated from
non-determinism in values

Outline Introduction Exceptions A new design Semantics Extensions Summary

Relation between denotational and operational semantics

Difference between denotational and operational semantics

Difference not visible in pure subset (observed by denotational
semantics)

Performing the IO monad denotationally not covered

Exceptions are not observable in the pure part of the language

Outline Introduction Exceptions A new design Semantics Extensions Summary

Semantics of the design

[e1 + e2]ρ =
v1 + v2 if OK v1 = [e1]ρ

and OK v2 = [e2]ρ
Bad(S[e1]ρ ∪ S[e2]ρ) otherwise

But what about:
loop + raise Overflow

Model ⊥ as follows:
⊥ = E ∪ {NonTermination}
Straight forward rules for constants, variables, raise,
abstractions, applications, constructors, and fix

Slightly more complicated for case to maintain transitions

Outline Introduction Exceptions A new design Semantics Extensions Summary

Semantics of catch

catch (OK v) → return (OK v)
catch (Bad s) → return (Bad x)

if x ∈ s
catch (Bad s) → catch (Bad s)

if NonTermination ∈ s

In our example loop + raise Overflow:
Return any exception or non-termination are valid reactions

Outline Introduction Exceptions A new design Semantics Extensions Summary

Implementation

Standard exception handling mechanism

catch forces the evaluation of its argument to head normal
form

Evaluation of raise ex trims the stack to the top most
catch mark and returns Bad ex

catch returns OK val if there is no exception

Efficiency of programs that do not invoke exceptions stays
unaffected

Exceptional value behaves as first class value

Outline Introduction Exceptions A new design Semantics Extensions Summary

Extensions

Asynchronous exception (every transition can cause an
exception)

Detectable bottoms - detectable divergence

Pure functions on exceptional values:

Possible to compute on exceptional values
mapException :: (Exception -> Exception) -> a -> a
Not possible to return from exceptional to normal values

catch is non-deterministic
isException :: a -> Bool:
isException loop

Consider isException ((1/0) + loop)

Outline Introduction Exceptions A new design Semantics Extensions Summary

Other Languages

Design less expressive than in other languages

In ML:

Declare exceptions locally
Raise and handle it without being visible from the outside

IO monad like a trap door

But no loss of useful transformations

Outline Introduction Exceptions A new design Semantics Extensions Summary

Summary

All useful transformations stay valid
(Transformations use program equivalences)

Some equivalences get lost:
error "a" = error "b" no longer holds
→ Some transformations are refined

Scales to other extensions, such as adding concurrency

Model used in Glasgow Haskell compiler (4.0 and later)

Outline Introduction Exceptions A new design Semantics Extensions Summary

References

S. P. Jones, A. Reid, T. Hoare, S.Marlow, Fergus Henderson.
A semantics for imprecise exceptions. PLDI’99 Atlanta.

S. P. Jones. Tackling the Awkward Squad: monadic
input/output, concurrency, exceptions, and foreign-language
calls in Haskell. Microsoft Research, Cambridge 23rd May
2005.

S. P. Jones, S. Marlow, A. Moran, and J.Reppy.
Asynchronous exceptions in Haskell. PLDI 2000.

S. Thompson. Haskell: The Craft of Functional Programming.
International Computer Science Series. 1996.

Outline Introduction Exceptions A new design Semantics Extensions Summary

What about case

case x of (a,b) -> case y of (p,q) -> e
=
case y of (p,q) -> case x of (a,b) -> e
should hold

[case e of {pi → ri}]ρ
= [ri]ρ[v/pi] if OK v = [e]ρ

and v matches pi

= Bad(s ∪ (
⋃

i S([ri]ρ[Bad{}/pi]) if Bad s = [e]ρ

Outline Introduction Exceptions A new design Semantics Extensions Summary

β-reduction

let x = (1/0) + (raise Overflow)
in catch x = catch x

	Outline
	Introduction
	Exceptions
	A new design
	Semantics
	Extensions
	Summary

